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1 Introduction

Let {W (t); t > 0} be a one-dimensional standard Wiener process with W (0) = 0, and let

{L(t, x); t > 0, x ∈ R} denote its local time process, jointly continuous in t and x. For any

Borel function f > 0,

∫ t

0

f(W (s)) ds =

∫ ∞

−∞
f(x)L(t, x) dx, t > 0.

Put L(t, 0) = L(t) and

Ut(x) :=
W (xt)√

2t log log t
,

Vt(x) :=
L(xt)√

2t log log t
, x ∈ [0, 1].

We consider x 7→ Ut(x) and x 7→ Vt(x) as elements of the space C = C[0, 1] of continuous

functions with metric

d(f, g) = sup
x∈[0,1]

|f(x)− g(x)|.

Recall the celebrated functional law of the iterated logarithm (FLIL) for W due to

Strassen [15]:

Theorem A With probability one, the set {Ut}t>1 is relatively compact in C, with limit set

equal to

S :=

{
f ∈ C : f(0) = 0, f is absolutely continuous, with

∫ 1

0

(f ′(x))2 dx 6 1

}
.

Using that {L(t), t > 0} has the same distribution as {sups∈[0,t] W (s), t > 0}, one can

easily obtain (cf. Csáki and Révész [7], Mueller [13], Chen [3]),

Theorem B With probability one, the set {Vt}t>1 is relatively compact in C, with limit set

equal to

SM := {g ∈ S : g is non-decreasing}.

In Csáki and Révész [7] a joint FLIL was given for the vector {(Ut(x), Vt(x)), x ∈ [0, 1]}t>1

on the space C(2) := C × C with metric

d((f1, g1), (f2, g2)) = sup
x∈[0,1]

√
(f1(x)− f2(x))2 + (g1(x)− g2(x))2.
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Theorem C With probability one, the set {(Ut, Vt)}t>1 is relatively compact in C(2), with

limit set equal to

S(2)
J :=

{
(f, g) : f ∈ S, g ∈ SM ,

∫ 1

0

(f ′(x))2 + (g′(x))2) dx 6 1, f(x)g′(x) = 0 a.e.

}
.

We are interested in studying similar joint FLIL for the Wiener process and the process

Y (t) =

∫ t

0

ds

W (s)
, t > 0.

Rigorously speaking, the integral
∫ t

0
ds/W (s) should be considered in the sense of Cauchy’s

principal value, i.e., Y (t) is defined by

Y (t) = lim
ε→0+

∫ t

0

ds

W (s)
1l{|W (s)|>ε} =

∫ ∞

0

L(t, x)− L(t,−x)

x
dx.(1.1)

Since x 7→ L(t, x) is Hölder continuous of order ν, for any ν < 1/2, the integral on the right

hand side of (1.1) is well-defined.

The study of Cauchy’s principal value of Brownian local time goes back at least to Itô and

McKean [12], and has become very active since the late 70s, due to applications in various

branches of stochastic analysis. For a detailed account of various motivations, historical facts

and general properties of principal values of local times, we refer to the recent collection of

research papers in Yor [17], to Chapter 10 of the lecture notes by Yor [18], and to the survey

paper by Yamada [16].

The process Y (·) defined in (1.1) is almost surely continuous, having zero quadratic

variation. It is easily seen that Y (·) inherits a scaling property from Brownian motion,

namely, for any fixed a > 0, t 7→ a−1/2Y (at) has the same law as t 7→ Y (t). Although the

aforementioned zero quadratic variation property distinguishes Y (·) from Brownian motion

(in particular, Y (·) is not a semimartingale), it is a kind of folklore that Y behaves somewhat

like a Brownian motion. Hu and Shi [11] proved a law of the iterated logarithm for Y (·):

lim sup
t→∞

Y (t)√
8t log log t

= 1 a.s.

FLIL for Y was not known before. Here we show that similarly to Theorem C, a joint

FLIL for W and Y holds. Introduce

Zt(x) =
Y (xt)√

8t log log t
, 0 6 x 6 1.

Our main result is
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Theorem 1.1 With probability one the set {(Ut, Zt)}t>1 is relatively compact in C(2), with

limit set equal to

S̃(2)
J =

{
(f, g) : f ∈ S, g ∈ S,

∫ 1

0

(f ′(x))2 + (g′(x))2) dx 6 1, f(x)g′(x) = 0 a.e.

}
.

Some consequences are as follows.

Corollary 1.2 With probability one, the set {Zt}t>1 is relatively compact in C, with limit

set equal to S given in Theorem A.

Corollary 1.3 With probability one, the set {(Ut(1), Zt(1))}t>1 is relatively compact in R2

with limit set equal to

{(x, y) ∈ R2 : |x|+ |y| 6 1}.

The organization of the paper is as follows: In Section 2 we present some preliminary

results for the distribution of the Wiener process and principal value, as well as certain

estimates for the increments of the processes concerned. In Section 3 we prove Theorem 1.1.

In Section 4 we prove the Corollaries. Some further remarks and consequences are given in

Section 5.

Throughout the paper, for any x ∈ R, we denote by Px the probability under which the

Wiener process W starts from W (0) = x (thus P = P0); unimportant constants (which are

finite and positive) are denoted by the letter c with subscript.

2 Preliminaries

2.1 Distribution results for Wiener process and principal value

First recall some results for principal value. Biane and Yor [1] proved the following result:

Let {B(s), 0 6 s 6 1} be a Brownian bridge, then

d

dx
P

(∫ 1

0

ds

B(s)
< x

)
=

|x|
2

∞∑
n=1

exp

(
−(2n− 1)2x2

8

)

>
|x|
2

exp

(
−x2

8

)
.(2.1)
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It follows that for 0 < α < β

P
(∫ 1

0

ds

B(s)
∈ (α, β)

)
> 2

(
exp

(
−α2

8

)
− exp

(
−β2

8

))
.(2.2)

It was proved in [5] (cf. (2.11), (2.14) and (2.16) there) that for any δ > 0 there exists

c1(δ) > 0 such that for all s > 0 and x > 0,

sup
z∈R

Pz(|Y (s)| > x) 6 c1(δ) exp

(
− x2

(8 + δ)s

)
.(2.3)

Lemma 2.1 Let s > 0, λ > 0, δ > 0 and 0 < ε < 1. For (a, α, z) ∈ R3, define

I = I(a, α, z) := Pz (a 6 W (s) 6 a + 2ελ, α 6 Y (s) 6 α + 4ελ) .(2.4)

Then

I 6
λ√
s

exp

(
−(|a− z| − 2ελ)2 − 4ε2λ2

2s

)
.(2.5)

Moreover, if |α| > 4ελ, then

I 6 c1(δ) exp

(
−(|α| − 4ελ)2

(8 + δ)s

)
,(2.6)

where c1(δ) is the constant in (2.3).

Proof: Observe that

I 6 Pz(a 6 W (s) 6 a + 2ελ) = P
(

a− z√
s

6 N 6
a− z + 2ελ√

s

)
,

where N is a standard normal variable. Hence (2.5) follows from a straightforward Gaussian

estimate.

Now for |α| > 4ελ, we have

I 6 Pz(α 6 Y (s) 6 α + 4ελ) 6 Pz(|Y (s)| > |α| − 4ελ),

which implies (2.6) by means of (2.3). ¤

For the lower estimates we prove several lemmas.
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Lemma 2.2 For α > 0, β − α > 4, 0 < δ < 1 we have

P(|W (1)| 6 1, α 6 Y (1) 6 β) > c2(δ) exp

(
−(α + 1)2

8(1− δ)

)
,(2.7)

where c2(δ) is a constant depending only on δ.

Proof: Let

G := sup{t : t 6 1, W (t) = 0},
B(s) :=

W (sG)√
G

, s ∈ [0, 1].

It is known that (B(s), s ∈ [0, 1]), G and (W (G+s(1−G))√
1−G

, s ∈ [0, 1]) are independent, and that

(B(s), s ∈ [0, 1]) is a (standard) Brownian bridge.

We have

P(|W (1)| 6 1, α 6 Y (1) 6 β)

> P(|W (1)| 6 1, α + 1 6 Y (G) 6 β − 1, |Y (1)− Y (G)| 6 1, G > 1− δ)

=

∫ 1

1−δ

P(|W (1)| 6 1, α + 1 6 Y (κ) 6 β − 1, |Y (1)− Y (κ)| 6 1 |G = κ)P(G ∈ dκ)

=

∫ 1

1−δ

P(α + 1 6 Y (κ) 6 β − 1 |G = κ)×
×P(|W (1)| 6 1, |Y (1)− Y (κ)| 6 1 |G = κ)P(G ∈ dκ).

Since under the condition G = κ, Y (κ)/
√

κ has the same distribution as
∫ 1

0
ds/B(s), where

B is a Brownian bridge, we get from (2.2)

P(α + 1 6 Y (κ) 6 β − 1 |G = κ) > 2

(
exp

(
−(α + 1)2

8κ

)
− exp

(
−(β − 1)2

8κ

))

> 2(1− e−1) exp

(
−(α + 1)2

8κ

)

> 2(1− e−1) exp

(
−(α + 1)2

8(1− δ)

)
.

This gives (2.7), with

c2(δ) := 2(1− e−1)P(|W (1)| 6 1, |Y (1)− Y (G)| 6 1, G > 1− δ).

The lemma is proved. ¤

6



Now we introduce the notation

Tb := inf{t : t > 0, W (t) = b}.(2.8)

By the reflection principle, we have for all u > 0 and (a, z) ∈ R2,

Pz(Ta 6 u) = 2Φ

( |z − a|√
u

)
,(2.9)

where Φ(x) := P(N > x) is the standard Gaussian tail distribution function.

In the sequel we shall use the inequalities:

Φ(x) >
1

(2π)1/2

(
1

x
− 1

x3

)
exp

(
−x2

2

)
, x > 1,(2.10)

Φ(x) 6
1

2
exp

(
−x2

2

)
, x > 0.(2.11)

(For (2.11), see Proposition II.1.8 of Revuz and Yor [14].)

Lemma 2.3 For s > 0, 0 < δ < 1, z ∈ R we have

Pz(T0 6 δs, |Y (T0)| 6 2
√

s) > c3(δ) Φ

( ||z| − √s|
δ
√

s

)
.(2.12)

Proof: By symmetry, it suffices to prove (2.12) for z > 0 (there is nothing to prove if z = 0).

Assuming first z >
√

s, we have

Pz(T0 6 δs, |Y (T0)| 6 2
√

s )

> Pz(T0 − T√s 6 δ(1− δ)s, T√s 6 δ2s, Y (T0)− Y (T√s) 6
√

s)

= P
√

s(T0 6 δ(1− δ)s, Y (T0) 6
√

s )Pz(T√s 6 δ2s),

where we used the fact that T√s 6 δ2s implies Y (T√s) 6 T√s/
√

s 6 δ2
√

s <
√

s.

By scaling, P
√

s(T0 6 δ(1− δ)s, Y (T0) 6
√

s ) is a positive constant depending only on δ.

In view of (2.9), we have proved (2.12) in case z >
√

s.

If 0 < z 6
√

s, we have, by scaling,

Pz(T0 6 δs, |Y (T0)| 6 2
√

s ) = P1

(
T0 6

δs

z2
, |Y (T0)| 6

2
√

s

z

)

> P1 (T0 6 δ, |Y (T0)| 6 2)

=: c4(δ),

from which (2.12) follows. ¤
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Lemma 2.4 Let s > 0, ε > 0, λ > 0, 0 < δ < 1, (α, z) ∈ R2 be such that ελ > 8
√

s. Then

we have

Pz(|W (s)| 6 ελ, α 6 Y (s) 6 α + 4ελ)

> c5(δ) exp

(
−(|α|+ 2ελ)2

8s(1− δ)2

)
Φ

( ||z| − √s|
δ
√

s

)
.(2.13)

Proof: Define, for n > 1,

Iλ,z(α, n) := Pz(|W (s)| 6 ελ, α 6 Y (s) 6 α + nελ).

Note that Iλ,z(α, n) is non-decreasing in n. Moreover,

Iλ,z(α, n) > Pz(|W (s)| 6 ελ, α 6 Y (s) 6 α + nελ, T0 6 δs)

=

∫ δs

0

Pz(|W (s)| 6 ελ, α 6 Y (s) 6 α + nελ |T0 = τ)Pz(T0 ∈ dτ)

>
∫ δs

0

Pz(Aτ ∩Bτ (n) |T0 = τ)Pz(T0 ∈ dτ),

where

Aτ := {|Y (τ)| 6 2
√

s},
Bτ (n) := {|W (s)| 6 ελ, α + 2

√
s 6 Y (s)− Y (τ) 6 α + nελ− 2

√
s}.

Under the condition {W (0) = z, T0 = τ}, Aτ and Bτ (n) are independent, so that

Iλ,z(α, n) >
∫ δs

0

Pz(Aτ |T0 = τ)Pz(T0 ∈ dτ)× inf
τ∈(0, δs)

Pz(Bτ (n) |T0 = τ).

By Lemma 2.3,

∫ δs

0

Pz(Aτ |T0 = τ)Pz(T0 ∈ dτ) = Pz(|Y (T0)| 6 2
√

s, T0 6 δs)

> c3(δ) Φ

( ||z| − √s|
δ
√

s

)
,

whereas according to Lemma 2.2, and by scaling,

Pz(Bτ (1) |T0 = τ)

= P(|W (s− τ)| 6 ελ, α + 2
√

s 6 Y (s− τ) 6 α + ελ− 2
√

s)

> P
(
|W (1)| 6 1,

α + 2
√

s√
s− τ

6 Y (1) 6
α + ελ− 2

√
s√

s− τ

)
.
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Assume α > 0 for the moment. By Lemma 2.2,

Pz(Bτ (1) |T0 = τ) > c2(δ) exp

(
− (α + ελ)2

8s(1− δ)2

)
,

which yields

Iλ,z(α, 1) > c6(δ) exp

(
− (α + ελ)2

8s(1− δ)2

)
Φ

( ||z| − √s|
δ
√

s

)
, α > 0,(2.14)

with c6(δ) := c3(δ)c2(δ). Since Iλ,z(α, 4) > Iλ,z(α, 1), this yields (2.13) in case α > 0.

To treat the case α 6 −ελ, we observe that

Iλ,z(α, 4) > Pz(|W (s)| 6 ελ, α 6 Y (s) 6 α + ελ)

= P−z(|W (s)| 6 ελ, −α− ελ 6 Y (s) 6 −α),

the last identity following via replacing W by −W . This gives Iλ,z(α, 4) > Iλ,−z(−α− ελ, 1).

Since −α− ελ > 0, we are entitled to apply (2.14) to deduce (2.13).

It remains to study the situation α ∈ (−ελ, 0). In this case,

Iλ,z(α, 4) > Pz(|W (s)| 6 ελ, α + ελ 6 Y (s) 6 α + 2ελ) = Iλ,z(α + ελ, 1),

which yields (2.13) in view of (2.14).

Lemma 2.4 is proved. ¤

Lemma 2.5 For s > 0, ε > 0, λ > 0, (a, z) ∈ R2 such that ε2λ2 > 2s, az > 0, and

|z| > s

2ελ
+ 3ελ, |a| > s

2ελ
+ 3ελ

we have

Pz(a 6 W (s) 6 a + 2ελ, |Y (s)| 6 2ελ) >
1

2
exp

(
−(|a− z|+ 2ελ)2

2s

)
.(2.15)

Proof: It suffices to prove the lemma for z > s
2ελ

+ ελ and a > s
2ελ

+ ελ (then by symmetry,

it will also cover the case a < 0 and z < 0). We have,

Pz(a 6 W (s) 6 a + 2ελ, |Y (s)| 6 2ελ)

> Pz

(
inf

06u6s
W (u) >

s

2ελ
, a 6 W (s) 6 a + 2ελ

)

= Pz(a 6 W (s) 6 a + 2ελ)
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−Pz

(
inf

06u6s
W (u) 6

s

2ελ
, a 6 W (s) 6 a + 2ελ

)
.

By the reflection principle,

Pz

(
inf

06u6s
W (u) 6

s

2ελ
, a 6 W (s) 6 a + 2ελ

)

= Pz
( s

ελ
− a− 2ελ 6 W (s) 6

s

ελ
− a

)

6 P
(

W (s)√
s

6 −a + z − s
ελ√

s

)

6
1

2
exp

(
−

(
a + z − s

ελ

)2

2s

)
,

the last inequality following from (2.11). On the other hand,

Pz(a 6 W (s) 6 a + 2ελ) = P
(

a− z√
s

6
W (s)√

s
6

a− z + 2ελ√
s

)

>
2ελ√
2πs

exp

(
−(|a− z|+ 2ελ)2

2s

)

> exp

(
−(|a− z|+ 2ελ)2

2s

)
.

Since a + z − s/(ελ) > |a− z|+ 2ελ, we obtain (2.15). ¤

Lemma 2.6 For s > 0, ε > 0, λ > 0, (a, z) ∈ R2 such that az < 0, |a| > 2ελ +
√

s and

min(ελ/2, |z|) >
√

s, we have

Pz(a 6 W (s) 6 a + 2ελ, |Y (s)| 6 2ελ) > c7(δ) Φ

( |a− z|+ 2ελ

(1− δ)
√

s

)
.(2.16)

Proof: First we show for a >
√

u, ελ > 2
√

u,

P (u) := P(a 6 W (u) 6 a + 2ελ, |Y (u)| 6 2
√

u) > c8(δ) exp

(
− a2

2(1− δ)u

)
.(2.17)

Define G√
u := sup{t 6 u : W (t) =

√
u }. Then

P (u) >
∫ δu

0

P(a 6 W (u) 6 a + 2ελ, |Y (u)| 6 2
√

u |G√
u = v)P(G√

u ∈ dv)

>
∫ δu

0

P(|Y (v)| 6
√

u |G√
u = v)P(a 6 W (u) 6 a + 2ελ |G√

u = v)P(G√
u ∈ dv).
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Under the condition {G√
u = v}, {M(r) := W (v+r(u−v))−√u√

u−v
, r ∈ [0, 1]} is a standard Brow-

nian meander, and from the well-known identity (Biane and Yor [1]) P(M(1) 6 x) =

1− exp(−x2/2), we get that, for v ∈ [0, δu], a >
√

u and ελ > 2
√

u,

P(a 6 W (u) 6 a + 2ελ |G√
u = v) = P

(
a−√u√

u− v
6 M(1) 6

a−√u + 2ελ√
u− v

)

= exp

(
−(a−√u)2

2(u− v)

)
− exp

(
−(a−√u + 2ελ)2

2(u− v)

)

> c9 exp

(
−(a−√u)2

2(u− v)

)

> c9 exp

(
− a2

2(1− δ)u

)
,

where c9 > 0 is an absolute constant. Hence

P (u) > c10(δ) exp

(
− a2

2(1− δ)u

)
,

with

c10(δ) := c9

∫ δu

0

P(|Y (v)| 6
√

u |G√
u = v)P(G√

u ∈ dv)

= c9 P(G√
u 6 δu, |Y (G√

u)| 6
√

u ),

which, by scaling, does not depend on u. This yields (2.17).

We now start proving (2.16). Let ελ > 2
√

s . Let T0 and T−√s be as in (2.8). It suffices

to prove (2.16) for z < −√s and a >
√

s (then by symmetry, it will also cover the case

z >
√

s, a < −2ελ − √s ). Since |Y (T−√s)| 6
√

s under Pz (recalling that z < −√s), we

have

Pz (a 6 W (s) 6 a + 2ελ, |Y (s)| 6 2ελ)

> Pz
(
T0 − T−√s 6 δs, |Y (T0)− Y (T−√s)| 6

√
s,

a 6 W (s) 6 a + 2ελ, |Y (s)− Y (T−√s)| 6 2
√

s
)
.

By the strong Markov property at times T−√s and T0, we get:

Pz (a 6 W (s) 6 a + 2ελ, |Y (s)| 6 2ελ)

>
∫ δs

0

( ∫ s−y

0

P (s− h− y)Pz(T−√s ∈ dh)

)
P−

√
s
(
T0 ∈ dy, |Y (T0)| 6

√
s
)
.(2.18)

By (2.17),

P (s− h− y) > c8(δ) exp

(
− a2

2(1− δ)(s− h− y)

)

11



> 2c8(δ) Φ

(
a√

(1− δ)(s− h− y)

)

= 2c8(δ)P−z−√s

(
W (s− h− y) >

a√
1− δ

− z −√s

)
,

the second inequality being a consequence of (2.11). Therefore, for y ∈ [0, δs],

∫ s−y

0

P (s− h− y)Pz(T−√s ∈ dh)

> 2c8(δ)

∫ s−y

0

P−z−√s

(
W (s− h− y) >

a√
1− δ

− z −√s

)
Pz

(
T−√s ∈ dh

)

= 2c8(δ)P
(

W (s− y) >
a√

1− δ
− z −√s

)

= 2c8(δ) Φ

(
a√
1−δ

− z −√s
√

s− y

)

> 2c8(δ) Φ

(
a− z

(1− δ)
√

s

)
,

(recalling that z < 0). Plugging this into (2.18), we get

Pz (a 6 W (s) 6 a + 2ελ, |Y (s)| 6 2ελ)

> 2c8(δ) Φ

(
a− z

(1− δ)
√

s

)
P−

√
s
(
T0 6 δs, |Y (T0)| 6

√
s
)

= c11(δ) Φ

(
a− z

(1− δ)
√

s

)
,

where c11(δ) := 2c8(δ)P−1(T0 6 δ, |Y (T0)| 6 1). This yields (2.16). ¤

Lemma 2.7 For s > 0, ε > 0, λ > 0, (a, z) ∈ R2 such that ελ > 2
√

s and |a| > 2ελ +
√

s,

we have

Pz(a 6 W (s) 6 a + 2ελ, |Y (s)| ≤ 2ελ)

> c12(δ) exp

(
− a2

2(1− δ)2s

)
Φ

( ||z| − √s|
δ
√

s

)
,(2.19)

with a constant c12(δ) > 0.

Proof: Again, it suffices to treat the case a >
√

s. In this case, we have

Pz(a 6 W (s) 6 a + 2ελ, |Y (s)| ≤ 2ελ)
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>
∫ δs

0

Pz(|Y (T0)| ≤ 2
√

s, T0 ∈ dh)P(a ≤ W (s− h) ≤ a + 2ελ, |Y (s− h)| ≤ 2
√

s− h )

> c13(δ) exp

(
− a2

2(1− δ)2s

)
Pz(|Y (T0)| ≤ 2

√
s, T0 ≤ δs),

hence (2.19) follows from Lemma 2.3. ¤

2.2 Increments

Recall the results for the increments of Wiener process (cf. [9]) and principal value (cf. [4]).

As T →∞, we have almost surely

sup
06t6T−aT

sup
06s6aT

|X(t + s)−X(t)| = O
(√

aT (log(T/aT ) + log log T )
)

,(2.20)

and for fixed T , as δ → 0 we have almost surely

sup
06t6T

sup
06s6δ

|X(t + s)−X(t)| = O(
√

δ log(1/δ)).(2.21)

Here in (2.20) and (2.21) X can be either W or Y .

3 Proof of Theorem 1.1

According to (2.20) for Y ,

lim
δ→0

sup
t>1

sup
06x, x′61, |x−x′|6δ

|Zt(x)− Zt(x
′)| → 0, a.s.

Now the relative compactness of {Zt}t>1 in C follows from the Arzelà–Ascoli theorem. This

fact and Theorem A imply that {(Ut, Zt)} is relatively compact in C(2). Our further proof

will consist of two steps:

(1) With probability one any (f, g) 6∈ S̃(2)
J is not a limit point.

(2) With probability one every (f, g) ∈ S̃(2)
J is a limit point.

Proof of (1): Obviously, if either f 6∈ S, or g(0) 6= 0, then (f, g) cannot be a limit point

almost surely. So from now on we assume that f ∈ S and g(0) = 0. Let x0 ∈ (0, 1] be a

point, where f(x0) 6= 0. Since f is continuous, there exists an interval (x1, x2) ⊂ [0, 1] such

13



that x0 ∈ (x1, x2] and f(x) 6= 0 for all x ∈ (x1, x2). We show that if (f, g) is a limit point,

then g is constant in (x1, x2). Since (f, g) is a limit point, there exists a sequence {tn}n>1

such that limn→∞ tn = ∞ and

|W (xtn)| > c14

√
2tn log log tn, x ∈ (x1, x2)

for some c14 > 0 and for every x ∈ (x1, x2)
∣∣∣∣
Y (xtn)− Y (x0tn)√

8tn log log tn

∣∣∣∣ =
1√

8tn log log tn

∣∣∣∣
∫ xtn

x0tn

ds

W (s)

∣∣∣∣

6
|xtn − x0tn|

4c14 tn log log tn
→ 0 = g(x)− g(x0),

as n → ∞. So g(x) = g(x0) for every x ∈ (x1, x2). So if (f, g) is a limit point and g is

absolutely continuous (which is not guaranteed so far), then we must have f(x)g′(x) = 0 a.e.

To this end, we need a lemma.

Lemma 3.1 Let (f, g) be such that f ∈ S, g(0) = 0 and either g is not absolutely continuous

or f(x)g′(x) = 0 a.e., and
∫ 1

0

(
(f ′(x))2 + (g′(x))2

)
dx > 1,(3.1)

holds. Then there exists a partition x0 = 0 < x1 < . . . < xk−1 < xk = 1 of [0, 1] such that

for any δ > 0 small enough, we have

Λk :=
k∑

i=1

(
(fi − fi−1)

2

xi − xi−1

1l{gi−gi−1=0} +
8

8 + δ

(gi − gi−1)
2

xi − xi−1

)
> 1,(3.2)

where fi := f(xi) and gi := g(xi).

Proof: If g is not absolutely continuous, then we can clearly find a partition x0 = 0 < x1 <

. . . < xj−1 < xj = 1 of [0, 1] such that

k∑
i=1

(gi − gi−1)
2

xi − xi−1

> 1 +
δ

8
,

so we have also (3.2). If g is absolutely continuous and (3.1) holds, then we can find a

partition x0 = 0 < x1 < . . . < xj−1 < xj = 1 of [0, 1] such that

j∑
i=1

(
(fi − fi−1)

2

xi − xi−1

+
(gi − gi−1)

2

xi − xi−1

)
> 1

14



holds. Moreover, for any small enough δ > 0, we have also

j∑
i=1

(
(fi − fi−1)

2

xi − xi−1

+
8

8 + δ

(gi − gi−1)
2

xi − xi−1

)
> 1.

For the ith interval of the above partition consider the following three cases: (i) fi−1 = fi,

(ii) fi−1 6= fi, and fi−1fi > 0, (iii) fi−1 6= fi, and fi−1fi < 0. In case (i) we can simply write

(fi − fi−1)
2

xi − xi−1

=
(fi − fi−1)

2

xi − xi−1

1l{gi−gi−1=0}.

In case (ii) let x′i = max{x 6 xi : f(x) = f(xi−1)} and x′′i = min{x > x′i : f(x) = f(xi)}.
(It is possible that x′i = xi−1 or x′′i = xi.) Consider the refinement of the partition by

replacing (xi−1, xi) with (xi−1, x
′
i), (x′i, x

′′
i ), (x′′i , xi). In the interval (x′i, x

′′
i ) f(x) must strictly

be between fi−1 and fi, so f(x) 6= 0, hence g′(x) = 0 for all x ∈ (x′i, x
′′
i ), thus g(x′i) = g(x′′i ).

Using the elementary inequality

(a + b)2

c + d
6

a2

c
+

b2

d
,

we may write

(fi − fi−1)
2

xi − xi−1

6
(f(x′i)− fi−1)

2

x′i − xi−1

+
(f(x′′i )− f(x′i))

2

x′′i − x′i
+

(fi − f(x′′i ))
2

xi − x′′i

=
(f(x′i)− fi−1)

2

x′i − xi−1

1l{g(x′i)−gi−1=0} +
(f(x′′i )− f(x′i))

2

x′′i − x′i
1l{g(x′′i )−g(x′i)=0}

+
(fi − f(x′′i ))

2

xi − x′′i
1l{gi−g(x′′i )=0}.(3.3)

In case (iii) let x′i = min{x > xi−1 : f(x) = 0} and x′′i = max{x 6 xi : f(x) = 0}. Consider

again the refinement of the partition by replacing (xi−1, xi) with (xi−1, x
′
i), (x′i, x

′′
i ), (x′′i , xi).

In the first and the last of these three intervals f(x) 6= 0, hence g′(x) = 0, thus g(x′i) = gi−1

and g(x′′i ) = gi. On the other hand, f(x′i) = f(x′′i ) = 0. So we again have (3.3).

By repeating this argument, we get finally a partition for which (3.2) holds. This com-

pletes the proof of the Lemma. ¤
Returning to the main course of the proof, choose ε > 0 such that

Λk − 20ε
k∑

i=1

1

xi − xi−1

> 1,

(fi−1 − ε, fi−1 + ε) and (fi − ε, fi + ε) are disjoint if fi 6= fi−1,
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|gi − gi−1| > 6ε if gi 6= gi−1.

Here fi = f(xi) and gi = g(xi), i = 1, . . . , k. We may also assume that |fi − fi−1| 6 1 and

|gi − gi−1| 6 1, i = 1, . . . , k, otherwise (f, g) cannot be a limit point by the usual law of the

iterated logarithm.

Define the events

A
(i)
t = {fi − ε 6 Ut(xi) 6 fi + ε, gi − gi−1 − 2ε 6 Zt(xi)− Zt(xi−1) 6 gi − gi−1 + 2ε}

= {ai 6 W (si) 6 bi, αi 6 Y (si)− Y (si−1) 6 βi}

with si = xit and

ai = (fi − ε)(2t log log t)1/2, bi = (fi + ε)(2t log log t)1/2,

αi = (gi − gi−1 − 2ε)2(2t log log t)1/2, βi = (gi − gi−1 + 2ε)2(2t log log t)1/2.

It follows from Lemma 2.1 putting λ = (2t log log t)1/2 there

P(A
(i)
t |W (si−1) = zi−1) 6

√
2 log log t

xi − xi−1

exp

(
−(fi − fi−1)

2 − 8ε

xi − xi−1

log log t

)

and if gi 6= gi−1, then

P(A
(i)
t |W (si−1) = zi−1) 6 c15 exp

(
− (gi − gi−1)

2 − 20ε

(8 + δ)(xi − xi−1)
8 log log t

)

with some c15 > 0. So for large enough t we have

P(A
(i)
t |W (si−1) = zi−1) 6 c16

√
log log t

xi − xi−1

[
exp

(
−(fi − fi−1)

2 − 8ε

xi − xi−1

log log t

)
1l{gi=gi−1}

+ exp

(
− (gi − gi−1)

2 − 20ε

(8 + δ)(xi − xi−1)
8 log log t

)
1l{gi 6=gi−1}

]
.

It follows that for all large t and some constants c17 > 0 and δ̃ > 0,

P(∩k
i=1A

(i)
t ) 6 c17 (log log t)3k/2 exp

(
−

(
Λk − 20ε

k∑
i=1

1

xi − xi−1

)
log log t

)

6 exp(−(1 + δ̃) log log t).

Let t = tn = exp(n/(log n)). Then
∑

n P(Atn) < ∞. By the Borel–Cantelli lemma,

lim inf
n→∞

d ((Utn , Ztn) , (f, g)) > ε a.s.(3.4)
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On the other hand, we infer from the increment results in Section 2.3 that

lim
n→∞

sup
t∈[tn,tn+1]

sup
x∈[0,1]

|Ut(x)− Utn(x)| = 0 a.s.,(3.5)

lim
n→∞

sup
t∈[tn,tn+1]

sup
x∈[0,1]

|Zt(x)− Ztn(x)| = 0 a.s.,(3.6)

Combining (3.5)–(3.6) with (3.4) gives that

lim inf
t→∞

d ((Ut, Zt) , (f, g)) > ε a.s.

for some ε > 0.

Thus we proved that if (f, g) 6∈ S̃(2)
J , then it is not a limit point with probability one, i.e.

(f, g) has an open ball neighboorhood of radius ε not containing (Ut, Zt) for large enough t.

However the exceptional ω-set of probability zero may depend on (f, g). Now we prove that

the totality of these exceptional ω-sets is still of probability zero. Denote the complement

of S̃(2)
J by D and for each (f, g) ∈ D consider the open balls defined above. Their union

covers D and being C(2) separable, we can select a countable subcover (cf. e.g. [2], p. 217).

The union of exceptional ω-sets belonging to this countable subcover is still of probability

zero. We call the complement of this last set of probability zero as our universal ω-set. Each

(f, g) ∈ D has a neighborhood which is completely contained in one of the elements of the

countable subcover, hence on the universal set this neighborhood for large enough t does not

contain (Ut, Zt), i.e. (f, g) is not a limit point. This completes the proof of (1). ¤

Proof of (2): Assume that (f, g) ∈ S̃(2)
J with strict inequality in the integral criterion, i.e.

∫ 1

0

((f ′(x))2 + (g′(x))2) dx < 1.

For given ε1 > 0, choose a partition x0 = 0 < x1 . . . < xk = 1 of the interval [0, 1] such that

sup
16i6k

(xi − xi−1) 6 ε2
1,

sup
16i6k

sup
x∈[xi−1,xi]

|f(x)− fi| 6 ε1,

sup
16i6k

sup
x∈[xi−1,xi]

|g(x)− gi| 6 ε1,

where fi = f(xi), gi = g(xi). We may assume that if gi−1 6= gi, then fi−1 = fi = 0.

Otherwise if it happens that gi−1 6= gi but either fi−1 6= 0 or fi 6= 0 (or both), then we can

choose x′ = min{x : x > xi−1, f(x) = 0}, x′′ = max{x : x < xi, f(x) = 0}. We must have

17



g(x′) = gi−1 and g(x′′) = gi so by refining the original partition by inserting new points x′,

x′′, the new partition satisfies the above assumption. Since

(f(xi)− f(xi−1)
2

xi−1 − xi

6
∫ xi

xi−1

(f ′(x))2 dx,
(g(xi)− g(xi−1))

2

xi−1 − xi

6
∫ xi

xi−1

(g′(x))2 dx,

(cf. for example [10], p. 52), we have

Λ̄k :=
k∑

i=1

(fi − fi−1)
2 + (gi − gi−1)

2

xi − xi−1

< 1.(3.7)

Now choose 0 < δ < 1 such that Λ̄k < (1− δ)2 and then choose ε > 0 such that

Γ :=
Λ̄k

(1− δ)2
+

(
20ε

(1− δ)2
+

2ε

δ2

) k∑
i=1

1

xi − xi−1

< 1(3.8)

and 5ε < |fi|, i = 1, 2, . . . , k.

Introduce the notations λ = (2t log log t)1/2, si = txi,

ai = (fi − ε)λ, bi = (fi + ε)λ,

αi = 2(gi − gi−1 − ε)λ, βi = 2(gi − gi−1 + ε)λ.

By using the strong Markov property of the Wiener process, it is readily seen that

P(ai 6 W (si) 6 bi, αi 6 Y (si)− Y (si−1) 6 βi, i = 1, 2, . . . , k)

> P(ai 6 W (si) 6 bi, αi 6 Y (si)− Y (si−1) 6 βi, i = 1, 2, . . . , k − 1)×
× inf

ak−16zk−16bk−1

P(ak 6 W (sk) 6 bk, αk 6 Y (sk)− Y (sk−1) 6 βk |W (sk−1) = zk−1).

Iterating this argument we can see that

P(ai 6 W (si) 6 bi, αi 6 Y (si)− Y (si−1) 6 βi, i = 1, 2, . . . , k)

>
k∏

i=1

inf
ai−16zi−16bi−1

P(ai 6 W (si) 6 bi, αi 6 Y (si)− Y (si−1) 6 βi |W (si−1) = zi−1).(3.9)

Next we show that for i = 1, 2, . . . , k we have

P(ai 6 W (si) 6 bi, αi 6 Y (si)− Y (si−1) 6 βi |W (si−1) = zi−1) >
c18(δ)

(log log t)1/2
×

× exp

(
−

(
(fi − fi−1)

2 + (gi − gi−1)
2 + 20ε

(1− δ)2(xi − xi−1)
+

2ε

δ2(xi − xi−1)

)
log log t

)
(3.10)
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with some c18(δ) > 0. To see (3.10) we apply Lemmas 2.4–2.7 with s = si − si−1 =

t(xi − xi−1), λ = (2t log log t)1/2 and t large enough and use the inequalities |fi − fi−1| 6 1,

|gi − gi−1| 6 1, ε < 1.

(1) In case fi = fi−1 = 0, apply Lemma 2.4 with α = (gi − gi−1 − ε)λ, |z| 6 ελ and

observe that by (2.10), Φ gives a constant×(log log t)−1/2 factor in front of the exponent.

(2) In case gi = gi−1, fifi−1 > 0, apply Lemma 2.5 with a = (fi−ε)λ and use |z−fi−1λ| 6
ελ.

(3) In case gi = gi−1, fifi−1 < 0, apply Lemma 2.6 with a = (fi−ε)λ and use |z−fi−1λ| 6
ελ.

(4) In case gi = gi−1, fi = 0, fi−1 6= 0, apply Lemma 2.4 with α = −2ελ, use that

|z − fi−1λ| 6 ελ and replace δ by 1− δ.

(5) In case gi = gi−1, fi = 0, fi−1 6= 0, apply Lemma 2.7 with a = (fi − ε)λ, |z| 6 ελ.

Assembling all these estimations, (3.10) follows. This combined with (3.9) gives

P(ai 6 W (si) 6 bi, αi 6 Y (si)− Y (si−1) 6 βi, i = 1, 2, . . . , k)

>
(c18(δ))

k

(log log t)k/2
exp(−Γ log log t),

where Γ < 1 is given by (3.8).

Now let ti = exp(7i log i), i = 1, 2, . . . and define

η0 = 0, Ti = ηi−1 + ti, ηi = inf{t : t > Ti, W (t) = 0}, i = 1, 2, . . .

It was shown in [6] that we have almost surely for all large enough n,

tn 6 Tn 6 tn

(
1 +

1

n

)
.

Define

Ŵ (n)(t) = W (t + ηn−1), t > 0,

Ŷ (n)(t) = Y (t + ηn−1)− Y (ηn−1), t > 0,

Û (n)(x) =
Ŵ (n)(xtn)√
2tn log log tn

, x ∈ [0, 1],

Ẑ(n)(x) =
Ŷ (n)(xtn)√
2tn log log tn

, x ∈ [0, 1].

Now let x0 = 0 < x1 < . . . < xk be a partition as before and consider the events

Ên = ∩k
i=1Ê

(i)
n with

Ê(i)
n = {âi 6 Ŵ (n)(ŝi) 6 b̂i, α̂i 6 Ŷ (n)(ŝi)− Ŷ (n)(ŝi−1) 6 β̂i},
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ŝi = xitn,

âi = (fi − ε)(2tn log log tn)1/2, b̂i = (fi + ε)(2tn log log tn)1/2,

α̂i = (gi − gi−1 − ε)+(2tn log log tn)1/2, β̂i = (gi − gi−1 + ε)(2tn log log tn)1/2.

Since P(Ên) = P(Etn), it follows from (3.11) that
∑

n P(Ên) = ∞ and since Ên are

independent, we have by the Borel–Cantelli lemma P(Ên i.o.) = 1. Since ε > 0 is arbitrary,

this implies

lim inf
n→∞

sup
16i6k

|Û (n)(xi)− f(xi)| = 0 a.s.

lim inf
n→∞

sup
16i6k

|Ẑ(n)(xi)− g(xi)| = 0 a.s.

Again, from the increment results in Subsection 2.2 it follows that

lim sup
n→∞

sup
16i6k

sup
x∈[xi−1,xi)

|Û (n)(xi−1)− Û (n)(x)| 6 ε1 a.s.

lim sup
n→∞

sup
16i6k

sup
x∈[xi−1,xi)

|Ẑ(n)(xi−1)− Ẑ(n)(x)| 6 ε1 a.s.

Since ε1 > 0 is arbitrary, these yield

lim inf
n→∞

d
(
(Ẑ(n), V̂ (n)), (f, g)

)
= 0 a.s.

On the other hand, the increment results in Subsection 2.2 once again yields that, as n →∞,

d((Û (n), V̂ (n)), (UTn , ZTn)) converges to 0 almost surely. Therefore,

lim inf
n→∞

d ((UTn , ZTn), (f, g)) = 0 a.s.,

Hence, (f, g) is a limit point of (Ut, Zt) with probability 1.

To complete the proof of Theorem 1.1, we have to show that there exists an ω-set of

probability one for which every (f, g) ∈ S̃(2)
J is a limit point.

First we show that there exists a countable dense subset K ⊂ S̃(2)
J . For any (f, g) ∈ S̃(2)

J

and ε > 0, as before, choose a partition x0 = 0 < x1 < . . . < xk−1 < xk = 1 such that

sup
xi−16x6xi

|f(x)− f(xi)| 6 ε, sup
xi−16x6xi

|g(x)− g(xi)| 6 ε

and g(xi−1) 6= g(xi) implies f(xi−1) = f(xi) = 0. Define (f̃ , g̃) ∈ S
(2)
J such that f̃(xi) = f(xi),

g̃(xi) = g(xi), i = 1, 2, . . . , k and let f̃ and g̃ be linear in between. Then

d((f, g), (f̃ , g̃)) < 2
√

2ε,

20



meaning that the set of pairs (f, g), where both f and g are piecewise linear (with the

same cut-off points), is dense. It can be seen that one can choose a countable dense subset

K = {(fn, gn)}∞n=1 (for example by taking all xi, fn(xi), gn(xi) rational) such that

∫ 1

0

(f ′n(x))2 + (g′n(x))2 dx < 1.

It follows that there exists an ω-set of probability one such that all (fn, gn) ∈ K are limit

points. Next we show that for this ω-set every (f, g) ∈ S̃(2)
J is a limit point. Since K is

dense, for each n we find (fn, gn) ∈ K such that

d((f, g), (fn, gn)) <
1

n

and since (fn, gn) is a limit point, we can find tn such that d((fn, gn), (Utn , Ztn)) < 1
n
. Hence

d((f, g), (Utn , Ztn)) < 2
n
. Consequently,

lim
n→∞

(Utn , Ztn) = (f, g),

i.e., (f, g) is a limit point.

This completes the proof of Theorem 1.1. ¤

4 Proof of Corollaries

The proof of Corollary 1.2 is obvious. To show Corollary 1.3 we need the following lemma.

Lemma 4.1 If f and g are absolutely continuous functions and f(x)g′(x) = 0 a.e., then

∫ 1

0

(f ′(x))2 1l{g′(x)6=0} dx = 0.(4.1)

Proof: Let

A = {x ∈ [0, 1] : f(x) = 0, f ′(x) 6= 0}.
For each x ∈ A, there exists δx > 0 such that f(y) 6= 0 for all y ∈ (x− δx, x + δx)\{x}. The

intervals {(x − δx, x + δx)}x∈A being disjoint and thus containing each a different rational

number, they are at most countably many. This means A is a countable set. Now (4.1)

follows immediately.
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This proof, more elegant than our original one, was kindly communicated to us by Omer

Adelman. ¤

Now we prove Corollary 1.3. It follows from Lemma 4.1 that if (f, g) ∈ S̃
(2)
J , then

∫ 1

0

(f ′(x) + g′(x))2 dx 6 1,

∫ 1

0

(f ′(x)− g′(x))2 dx 6 1,

from which (cf. [15])

|f(1) + g(1)| 6 1, |f(1)− g(1)| 6 1

showing that a limit point cannot be outside the set given in the Corollary.

To show that every point is a limit point, define

f(u) =
x(u− 1 + |x|)

|x| 1l{1−|x|≤u≤1}, g(u) =
yu

|y|1l{0≤u≤|y|} + y1l{|y|≤u≤1}.

It is easy to see that (f, g) ∈ S̃
(2)
J and f(1) = x, g(1) = y. So (x, y) is a limit point. ¤

5 Further consequences: additive functionals

Consider the additive functional

A(t) =

∫ t

0

ψ(W (s)) ds =

∫

R
ψ(x)L(t, x) dx,

where ψ is an integrable function such that ψ :=
∫
R ψ(x) dx 6= 0. Then by the ratio ergodic

theorem (cf. [12], p. 228)

lim
t→∞

A(t)

ψ L(t)
= 1 a.s.

Hence, introducing

Ṽt(x) :=
A(xt)

ψ
√

2t log log t
,

Theorem C implies

Corollary 5.1 With probability one, the set {(Ut, Ṽt)}t>1 is relatively compact in C(2), with

limit set equal to

S(2)
J :=

{
(f, g) : f ∈ S, g ∈ SM ,

∫ 1

0

(f ′(x))2 + (g′(x))2) dx ≤ 1, f(x)g′(x) = 0 a.e.

}
.
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On the other hand, there are additive functionals which can be approximated by the

principal value Y (t). Let ψ be a function as above and consider its Hilbert transform:

H(ψ)(x) =
1

π
p.v.

∫

R

ψ(y)

x− y
dy,

where p.v. indicates that the integral should be considered as a principal value. It was

shown in [8] that if ψ is a Borel function on R such that
∫

R
xκ|ψ(x)| dx < ∞,

for some κ > 0, then for all sufficiently small ε > 0, when t →∞,

B(t) :=

∫ t

0

(Hψ)(W (s)) ds =
ψ

π
Y (t) + o(t1/2−ε), a.s.

Introducing the notation

Z̃t(x) =
πB(xt)

ψ
√

8t log log t
,

we have

Corollary 5.2 With probability one, the set {(Ut, Z̃t)}t>1 is relatively compact in C(2), with

limit set equal to

S̃(2)
J =

{
(f, g) : f ∈ S, g ∈ S,

∫ 1

0

(f ′(x))2 + (g′(x))2) dx ≤ 1, f(x)g′(x) = 0 a.e.

}
.
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[8] Csáki, E., Shi, Z. and Yor, M. (2000). Fractional Brownian motions as “higher-order”
fractional derivatives of Brownian local times. Preprint.
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