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1. INTRODUCTION.

Let {W (t); t ≥ 0} be a real valued Wiener process, and denote its local time by

L(x, t) =
d

dx

∫ t

0
1{W (s) ≤ x} ds(1.1)

where 1{A} denotes the indicator function of the event A. Furthermore let

Tr = inf{t > 0; L(0, t) ≥ r}.(1.2)

It is wellknown that Tr is a so-called ”nice clock”. The hardly visited points of the Wiener
process were studied by Földes and Révész. A point in the state space is called hardly visited
if its local time is nonzero, but less than a finite constant. They asked; what can we say
about the measure of those points which are hardly visited? Their answer was the following
result.

Theorem A. [FR,92] For any fixed q > 0

2q

j2
0

≤ lim sup
r→∞

µ(y; 0 < L(y, Tr) < q)

log log r
≤ 4q

j2
0

a.s.(1.3)

where j0 is the smallest positive root of the Bessel function

J0(z) =
∞∑

k=0

(−1)k z2k

22k(k!)2
,(1.4)

and µ(.) denotes the ordinary Lebesgue measure. Eisenbaum and Shi revisited this problem
and they proved that in (??) the lower bound is sharp, that is to say

Theorem B [ES, 99] For any fixed q > 0

lim sup
r→∞

µ(y; 0 < L(y, Tr) < q)

log log r
=

2q

j2
0

a.s..(1.5)

They investigated the lower class behavior of the hardly visited points as well;

Theorem C [ES,99]For any fixed q > 0

lim inf
r→∞ µ(y; 0 < L(y, Tr) < q) log log r = 2 q a.s.(1.6)
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In this note we want to investigate the measure of those points which are heavily visited
in the sense that they are visited constant times as much as the origin. This investigation
will also be based on the nice clock setting that is to say the Tr diffusion. Let us define for
β > 0

Yr(β)
def
= µ(y; L(y, Tr) > βL(0, Tr)) = µ(y; L(y, Tr) > β r).(1.7)

First we want to investigate the lim sup and lim inf behavior of Yr(β). Let

ϕp
r(λ) = E (exp(−λµ(y; L(y, Tr) > p))).(1.8)

Theorem 1.1.

ϕp
r(λ) = E (exp(−λµ(y; L(y, Tr) ≥ p))) = (R p

r(λ))2(1.9)

where for p > 0

R p
r(λ) =





1− r
p

K0(
√

2λp)
K2(

√
2λp) if r ≤ p

√
2r

p
√

λ

K1(
√

2λr)
K2(

√
2λp) if r ≥ p

(1.10)

and for p = 0
R 0

r(λ) =
√

2λrK1(
√

2λr).(1.11)

here Ki(.) stand for the Bessel functions of the third kind.

For the upper tail of the distribution of Yr(β) we prove

Theorem 1.2. For any β ≥ 0

P(Yr(β) > xr) = P(Y1(β) > x) ∼ 1

x
as x →∞.(1.12)

The following integral test characterizes the upper class behavior of Yr(β).

Theorem 1.3. Let f(x) be nondecreasing , with limx→∞ f(x) = +∞ and let

I(f) =
∫ ∞

1

dx

xf(x)
.(1.13)

For any β ≥ 0
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• If I(f) < +∞ then

lim
r→∞

Yr(β)

r f(r)
= 0. a.s.(1.14)

• If I(f) = +∞ then

lim sup
r→∞

Yr(β)

rf(r)
= +∞ a.s.(1.15)

It is worthwhile to spell out the β = 0 case of the above theorem. Introduce

m∗(r) = max
0≤s≤Tr

W (s), m∗(r) = − min
0≤s≤Tr

W (s)(1.16)

and
Q(r) = m∗(r) + m∗(r).(1.17)

Then clearly Q(r) = Yr(0) is the Lebesgue measure of the points visited by the Wiener
process up to Tr. ( the range up to Tr)

Consequence 1.1 Theorem 1.3 remains valid if Yr(β) is replaced with Q(r).

Remark 1. It was proved in [F,89] that Theorem 1.3 holds if Yr(β) is replaced by m∗(r)
or m∗(r). From this result, the above consequence would not have been hard to conclude.
However the fact that for Q(r) and Yr(β) the same integral test hold, indicates that roughly
speaking Yr(β) independently from the value of β can be as big as the range itself.

To treat the liminf behavior we need the asymptotics of the lower tail. We prove that

Theorem 1.4. For any fixed 0 ≤ β < 1 and for any ε > 0 we have for x → 0

exp

(
−2K(β)(1 + ε)

x

)
< P(Yr(β) ≤ xr) = P(Y1(β) ≤ x) < exp

(
−2K(β)(1− ε)

x

)
(1.18)

where K(β) =
(
1−√β

)2
. For β = 1 we have for x → 0

P(Y1(1) ≤ x) ∼ 2x.(1.19)

For β > 1 we have

P(Y1(β) = 0) =

(
1− 1

β

)2

and for x → 0 P(0 < Y1(β) ≤ x) ∼ c(β)
√

x,(1.20)

where c(β) is a constant the value of which is unimportant.
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Theorem 1.5. For any 0 ≤ β < 1

lim inf
r→∞ Yr(β)

log log r

r
= 2K(β) a.s.(1.21)

It is interesting to compare Theorem 1.5 with the following result;

Theorem D. ([F,89]) For any 0 ≤ β < 1

P


lim inf

r→∞ inf
|y|< rK(β)

2 log log r

L(y, Tr)

r
= β


 = 1.(1.22)

Theorem D roughly tells us that for big r, on the symmetric interval around the origin of
length rK(β)/log log r every point has a local time which is at least βr. On the other hand
our Theorem 1.5 tells us that the total Lebesgue measure of those points whose local time
is at least βr is at least twice as much .

Remark 2. Let us define

ρ+
(b) = inf{x ≥ 0, L(x, Tr) = b} ρ−(b) = inf{x ≤ 0, L(x, Tr) = b}(1.23)

ρ(b) = ρ+
(b) + ρ−(b).(1.24)

For b = βr with 0 ≤ β < 1, ρ(βr) is the Lebesgue measure of those x-s which are visited
before hitting the βr level. The Laplace transform of ρ+

(βr) and ρ−(βr) are wellknown, see e.g.
[IM,65] (we are only interested in the 0 ≤ β ≤ 1 case);

E(exp(−λρ(βr)))) =




√
1

β

K1(
√

2λr)

K1(
√

2λβr)




2

0 ≤ β ≤ 1.(1.25)

Observe that Yr(β) ≥ ρ(βr). (??) combined with the asymptotics for the large values of
the Bessel functions (see (??) ) would confirm that the asymptotic distribution of ρ(βr) and
Yr(β) are the same, so we could get most of Theorem 1.4 from that observation as well. The
fact that ρ(βr) and Yr(β) has the same liminf behavior suggests that the factor 2 difference
observed above between Theorem D and Theorem 1.5. which seems to be natural to be
attributed to the possible return of the L(x, Tr) above the level βr after hitting it, should
instead be attributed to the lack of symmetry of hitting the level βr on the positive and
negative side. We again spell out the β = 0 case as follows;
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Consequence 1.2

lim inf
r→∞ Q(r)

log log r

r
= 2 a.s.(1.26)

In case β > 1 we have the following results.

Theorem 1.6. For any β > 1 we have

lim inf
r→∞ Yr(β) = 0 a.s.(1.27)

Finally in case of β = 1 we prove

Theorem 1.7.

lim inf
r→∞ Yr(1)

log r

r
= 0 a.s.(1.28)

For any ε > 0

lim inf
r→∞ Yr(1)

(log r)2+ε

r
= +∞ a.s.(1.29)

Remark 3. Clearly (??) is not sharp. From (??) one suspects that the correct exponent of
log r in (??) should be 1 + ε.
After getting the results in this nice clock setting, the next natural question is what can we
say about the general case. We ask what can we say about

Xt(β)
def
= µ(y; L(y, t) > β L(0, t)).(1.30)

Our answer is summarized in the following theorems.

Theorem 1.8. Let f(x) and I(f) be as in Theorem 1.3. For any β ≥ 0

• If I(f) < +∞ then

lim
t→∞

Xt(β)

L(0, t) f(L(0, t))
= 0. a.s.(1.31)

• If I(f) = +∞ then

lim sup
t→∞

Xt(β)

L(0, t)f(L(0, t))
= +∞ a.s.(1.32)
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Then again introducing the Lebesgue measure V (t) of the points visited up to t;

M∗(t) = max
0≤s≤t

W (s), M∗(t) = − min
0≤s≤t

W (s)(1.33)

and
V (t) = M∗(t) + M∗(t),(1.34)

we get that

Consequence 1.3 Theorem 1.8 holds if Xt(β) is replaced by V (t).

Theorem 1.9. For all 0 ≤ β < 1

lim inf
t→∞

Xt(β)

L(0, t)
log log t = 2K(β) a.s..(1.35)

Here we get the following special case (β = 0);

Consequence 1.4

lim inf
t→∞

V (t)

L(0, t)
log log t = 2 a.s..(1.36)

Remark 3. The lower half of the above statement is not new as it was proved by Knight
[K,73], that

lim inf
t→∞

sup0≤s≤t |W (s)|
L(0, t)

log log t = 1 a.s..(1.37)

which implies that

lim inf
t→∞

V (t)

L(0, t)
log log t ≥ 2 a.s..(1.38)

Theorem 1.10. For any β > 1 we have

lim inf
t→∞ Xt(β) = 0 a.s..(1.39)

Finally we have in case β = 1
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Theorem 1.11.

lim inf
t→∞ Xt(1)

log L(0, t)

L(0, t)
= 0 a.s..(1.40)

For any ε > 0

lim inf
t→∞ Xt(1)

(log L(0, t))2+ε

L(0, t)
= +∞ a.s.(1.41)

It is easy to observe that as XTr(β) = Yr(β) it is enough to prove the divergent part of
Theorem 1.3 (??), and the convergent part of Theorem 1.8 (??). Furthermore as

lim
r→∞ log log Tr/ log log r = 1

we only have to prove that in Theorem 1.5 in (??) 2K(β) is an upper bound, and in Theorem
1.9 it is a lower bound in (??). Similarly concerning Theorems 1.6 and 1.10 we only have to
prove Theorem 1.6. As to Theorems 1.7 and 1.11 we need to prove only (?? ) of Theorem
1.7, and (??) of Theorem 1.11.

2. PRELIMINARIES.

Fact 1. Theorem F. Borodin [B,89] Let f(r) r ∈ (0, h) be a piecewise continuous function
with f(0) = 0. Then

E

(
exp

{
−

∫ ∞

−∞
f(L(y, Tr)) dy

}
, sup

y∈R
L(y, Tr) < h

)
= R2(r)1[0,h](r)(2.1)

where R(.) is the continuous solution of the problem

2rR′′ − f(r)R = 0

R(+0) = 1, R(h− 0) = 0.(2.2)

Remark 4. In case h = +∞ the boundary condition R(h− 0) is replaced by the condition
R(+∞) is bounded.

Fact 2. For the Bessel functions Kν(.) we have the following asymptotics (see [GR,80]
formulas 8.446-447);

K0(z) = − log
z

2
+ ψ(1)−

(
z

2

)2

log
z

2
+

(
z

2

)2

ψ(2) + o(z3) as z → 0,(2.3)
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K1(z) =
1

z
+

z

2
log

z

2
+ Dz + o(z2) as z → 0(2.4)

K2(z) =
2

z2
− 1

2
+ o(z2−ε) as z → 0(2.5)

where

ψ(1) = −C, ψ(2) = 1−C, D =
2C− 1

4

where C is the Euler constant.
As to the asymptotics at infinity we have:

Kν(x) ∼
(

π

2x

)1/2

exp (−x)

(
1 +

4ν2 − 1

8x
+ O

(
1

x2

))
as x →∞.(2.6)

Most of the time we will need only the first term of the above formula, which we spell out
separately;

Kν(x) ∼
(

π

2x

)1/2

exp (−x) as x →∞.(2.7)

Fact 3. Scale change property: For any β > 0

Yr(β)

r
D
= Y1(β)(2.8)

Consequently we have for the distribution function;

1− F β(x)
def
= P(Y1(β) > x),(2.9)

P(Yr(β) > x) = 1− F β
(

x

r

)
.(2.10)

We mention here the following Tauberian theorem;

Fact 4. Theorem G. (see in [Do,50] page 511, Theorem 3) Let g(x) ≥ 0 and suppose that
for some γ ≥ 0, and c ≥ 0

∫ ∞

0
e−sxg(x) dx ∼ c

sγ
L

(
1

s

)
as s → 0(2.11)
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holds, where L(.) is slowly varying at infinity. Then we have

∫ t

0
g(x) dx ∼ c

Γ(γ + 1)
tγL(t) as t →∞.(2.12)

Fact 5. Let F (x) be a distribution function in [0,∞) and define

U(x) =
∫ x

0
(1− F (y)) dy and Û(s) =

∫ ∞

0
e−sx dU(x).(2.13)

According to Theorem 3.9.1 ( [BGT,89 ], page 172) if `(.) is slowly varying at infinity, c > 0,
then the following two statements are equivalent.

U(λx)− U(x)

`(x)
→ c log λ x →∞ for all λ > 0(2.14)

Û( 1
λx

)− Û( 1
x
)

`(x)
→ c log λ x →∞ for all λ > 0.(2.15)

If (??) hold we say that U ∈ Π` ( U is in the de Haan class) with `- index c.
By Theorem 3.6.8 of ([BGT,89], page 159) if U(.) satisfies (??) then

1− F (x) ∼ c
`(x)

x
as x →∞.(2.16)

Fact 6. For any nondecreasing function f(x) for which limx→∞ f(x) = +∞ and any ρ > 1
the following sum and integral

∞∑

k=1

1

f(ρk)
and

∫ ∞

1

1

xf(x)
dx(2.17)

are equiconvergent.

The following is a special case of de Bruijn’s exponential type Tauberian theorem. To see it
in full generality we refer to Bingham et al [BGT,89] page 254.

Fact 7. Let Z be a nonnegative random variable and let a > 0 be a constant. Then the
following two conditions are equivalent.

lim
s→∞

1√
s

log E(e−sZ) = −a(2.18)
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lim
x→0

x log P(Z ≤ x) = −a2

4
.(2.19)

Fact 8. Theorem H. (see e. g. [F,89] Theorem 1) Let m(r) be m∗(r) or m∗(r) . (see (??)).
Define I(f) as in Theorem 1.3. then we have

P (m(r) > rf(r) i.o.)=

{
0 if I(f) < ∞,
1 if I(f) = ∞.

Fact 9. (see e.g. Ito -McKean [IM,65], Knight [K,81]) {L(x, Tr); x ≥ 0} and {L(x, Tr); x ≤
0} are diffusions in x, both have the same generator, they are in natural scale, started from
L(0, Tr) = r, furthermore the two diffusions are independent. Hence for any β > 1 we have
that the probability that L(x, Tr) hits βr before it hits 0 is 1/β. Thus

P(sup
x≥0

L(x, Tr) ≥ βr) =
1

β
.(2.20)

Furthermore by the above independence we can conclude that

P(µ(y; L(y, Tr) > βr) = 0) =

(
1− 1

β

)2

.(2.21)

3. PROOFS OF THE THEOREMS.

Proof of Theorem 1.1.
For p > 0 apply Theorem F with

f(r) =

{
0 if r < p
λ if r ≥ p

(3.1)

and h = +∞. Then by the theorem

ϕp
r(λ) = E (exp(−λµ(y; L(y, Tr) > p))) = (Rp

r(λ))2(3.2)

where Rp
r(λ) is the bounded solution of the following problem;

2rR′′(r) = 0 if r < p

2rR′′(r)− λR(r) = 0 if r ≥ p

R(+0) = 1.(3.3)
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The general solution of the above problem is;

Rp(r) = Ar + 1 if r < p

Rp(r) = B
√

rI1(
√

2λr) + C
√

rK1(
√

2λr) if r ≥ p

R(+0) = 1.(3.4)

Because of the boundedness of the solution we must have B = 0. A and C can be calculated
from the continuity of R(.) and R′(.). After some tedious calculations and using the following
wellknown identities for the Bessel functions of the third kind (see e.g. [GR,80] formulas
8.486),

K ′
1(z) = −K0(z)− K1(z)

z
, K1(z) +

z

2
K0(z) =

z

2
K2(z)(3.5)

we get that

A = −C

√
λ

2
K0(

√
2λp), C =

1

p
√

λ/2 K2(
√

2λp)
.(3.6)

( ??) and (??) easily leads to (??).
To get the p = 0 case we only have to consider the second line of (??) and take the limit as
p → 0. Using (??) we arrive to (??). 2

Proof of Theorem 1.2.
First recall that (see (??))

ϕβ
1 (s) = E (exp(−sµ(y; L(y, T1) > β))) = E (exp(−sY1(β)))(3.7)

and
1− F β(x) = P (Y1(β) > x).(3.8)

It is easy to show that for s → 0

1− ϕβ
1 (s) = (1 + o(1)) s log

(
1

s

)
.(3.9)

independently from the value of β. Integration by part reveals that

1− ϕβ
1 (s)

s
=

∫ ∞

0
e−sx(1− F β(x)) dx.(3.10)

One can conclude based on a Tauberian theorem (our Theorem G) that
∫ x

0
(1− F β(u)) du ∼ c log x as x →∞(3.11)
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However to conclude the asymptotic behavior of 1− F β(x) as x →∞ one needs to follow a
more delicate argument based on Fact 5.

We will show that for

Ûβ(s) =
∫ ∞

0
e−xs dUβ(x) =

∫ ∞

0
e−xs(1− F β(x)) dx =

1− ϕβ
1 (s)

s
(3.12)

where
Uβ(x) =

∫ x

0
(1− F β(y)) dy(3.13)

(??) holds with `(x) ≡ 1 and c = 1. Thus introducing s = 1/x (s → 0 as x → ∞) we show
that for any fixed λ > 0

lim
s→0

(
Ûβ(

s

λ
)− Ûβ(s)

)
= log λ.(3.14)

independently from the actual value of β.
This would imply according to Fact 5 that

1− F β(x) ∼ 1

x
as x →∞.(3.15)

Thus we have to show that (??) holds for all β ≥ 0. We have to consider the β = 0 0 < β ≤ 1,
and the β ≥ 1 cases separately. However observing that for any 0 ≤ β1 < β2

Y1(β1) ≥ Y1(β2)(3.16)

we conclude that

1− F β1(x) = P (Y1(β1) > x) ≤ P (Y1(β2) > x) = 1− F β2(x).(3.17)

Consequently it is enough to show that (??) holds for β = 0 and for β ≥ 1.
We start with the β = 0 case. By (??) we have ϕ0

1(s) = 2sK2
1(
√

2s). Furthermore

Û 0(s) =
1− ϕ0

1(s)

s
=

1

s
− 2K2

1(
√

2s).(3.18)

Using (??) of Fact 2. we have by an easy but tedious calculation that as s → 0

Û 0(
s

λ
)− Û 0(s)

=
λ

s
− 2K2

1




√
2s

λ


− 1

s
+ 2K2

1(
√

2s)
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=
λ

s
− 2




√
λ

2s
+

√
s

2λ
log

√
s

2λ
+ D

√
2s

λ
+ o(s)




2

− 1

s
+ 2




√
1

2s
+

√
s

2
log

√
s

2
+ D

√
2s + o(s)




2

=
λ

s
− 2

(
λ

2s
+ log

√
s

2λ
+ 2D + o(

√
s)

)

− 1

s
+ 2

(
1

2s
+ log

√
s

2
+ 2D + o(

√
s)

)

= −2 log

√
s

2λ
+ 2 log

√
s

2
+ o(

√
s) = log λ + o(

√
s).(3.19)

In the above calculation the o(.)-s might depend on λ. Thus we arrive to

lim
s→0

Û 0(
s

λ
)− Û 0(s) = log λ.(3.20)

proving the theorem for β = 0. Now we have to consider the β ≥ 1 case in a similar manner.
We need to use the first line of (??). We get that

1− ϕβ(s)

s
=

2

βs

K0(
√

2sβ)

K2(
√

2sβ)
− 1

β2s

(
K0(

√
2sβ)

K2(
√

2sβ)

)2

.(3.21)

Using (??) and (??) it is easy to conclude that for any small enough ε > 0

K0(z)

K2(z)
= −z2

2
log

z

2
+ ψ(1)

z2

2
+ o(z4−ε) as z → 0.(3.22)

and consequently (
K0(z)

K2(z)

)2

= o(z4−ε) as z → 0.(3.23)

Based on the above asymptotics, we get that as s → 0

Û(
s

λ
)− Û(s)

=
2λ

βs


−sβ

λ
log

√
sβ

2λ
+ ψ(1)

sβ

λ
+ o

(
s

λ

)2−ε′

 +

λ

β2s
o(s2−ε′)

−

 2

βs


−sβ log

√
sβ

2
+ ψ(1) sβ + o(s)2−ε′


 +

1

β2s
o(s2−ε′)


 .(3.24)
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Thus we get

lim
s→0

Û(
s

λ
)− Û(s) = log λ(3.25)

in this case as well. 2

Proof of the divergent part of Theorem 1.3.
Assume now that I(f) = +∞. Select and fix an arbitrary big K > 0. Let rk = ρk with some
ρ > 1. We show that for any fixed β > 0

P(µ(y; L(y, Trk
) ≥ βrk) ≥ Krkf(rk) i.o.) = 1.(3.26)

We define two sequences of events {Ak} {Bk} k = 1, 2, ...

Ak
def
= {µ(y; L(y, Trk

) ≥ βrk) > Krkf(rk)}(3.27)

Bk
def
= {µ(y; L(y, Trk

)− L(y, Trk−1
) ≥ βrk) > Krkf(rk)}.(3.28)

Then clearly Bk implies Ak and by the strong Markov property

µ(y; L(y, Trk
)− L(y, Trk−1

) > x)
D
= µ(y; L(y, Trk−rk−1

) ≥ x).(3.29)

Furthermore the events {Bk} k = 1, 2, ... are independent. Thus we only have to prove that

∞∑

k=1

P(Bk) = +∞.(3.30)

Observe now that according to (??) and Theorem 1.2 and scale change we have

P(Bk) = P(µ(y; L(y, Trk−rk−1
) > βrk) > Krkf(rk)) =

P(µ(y; L(y, Trk−rk−1
) > (rk − rk−1)β

rk

rk − rk−1

) > (rk − rk−1)
rk

rk − rk−1

Kf(rk)) =

P(Y1(β
ρ

ρ− 1
) >

ρ

ρ− 1
Kf(ρk)) ∼
ρ− 1

ρKf(ρk)
.(3.31)

Using Fact 6 we conlude from (??) that (??) holds. Hence

P(Bk i.o.) = 1
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which implies that
P(Ak i.o.) = 1.

Now sending K → +∞ we proved the divergent part of the theorem. 2

Proof of Theorem 1.4.:
According to (??) - (??) and (??) for 0 < β < 1 we have

ϕβ
1 (s) =

(
Rβ

1 (s)
)2

=
2

sβ2

(
K1(

√
2s)

K2(
√

2sβ)

)2

∼ 2

sβ2

(√
βe

−2

(√
2s−
√

2sβ

))

=
2

sβ
3
2

e
−√s

√
8

(
1−
√

β

)
as s →∞.(3.32)

Now we can apply Fact 7 with a =
√

8
(
1−√β

)
thus we have

lim
x→0

x log P (Y1(β) ≤ x) = −2(1−
√

β)2 = −2K(β).(3.33)

In case β = 0, using (??), (??) and (??) we get that

ϕ0
1(s) ∼ π

√
s

2
exp(−

√
8s).(3.34)

Observe that now Fact 7 is applicable again with a =
√

8, thus (??) holds for β = 0 as well.
Concerning now the β = 1 case we get from the first line of (??) with the help of (??) and
(??)

R1
1(s) = 1− K0(

√
2s)

K2(
√

2s)
=

√
2

s

K1(
√

2s)

K2(
√

2s)
∼

√
2

s
as s →∞.(3.35)

Consequently by (??)

ϕ1
1(s) ∼

2

s
as s →∞.(3.36)

Applying now the Tauberian theorem (see e.g. [Fe,70] Theorem 2 on page 445) we get that

P(Y1(1) ≤ x) ∼ 2x as x → 0,(3.37)

Turning to the β > 1 case we have seen (see (??))

16



R β
1 (s) = 1− 1

β

K0(
√

2sβ)

K2(
√

2sβ)
=

βK2(
√

2sβ)−K0(
√

2sβ)

βK2(
√

2sβ)
=

β(K2(
√

2sβ)−K0(
√

2sβ)) + (β − 1)K0(
√

2sβ)

βK2(
√

2sβ)
=

2√
2sβ

K1(
√

2sβ)

K2(
√

2sβ)
+

(
1− 1

β

)
K0(

√
2sβ)

K2(
√

2sβ)
(3.38)

where in the last line we used (??). Now as ϕβ
1 (s) =

(
R β

1 (s)
)2

we have that

ϕβ
1 (s)−

(
1− 1

β

)2

= ϕβ
1 (s)−P(Y1(β) = 0) =

∫ ∞

0+
e−sudP(Y1(β) ≤ u).(3.39)

We get from (??) with easy but tedious calculation using (??) and (??) again that for
s → +∞

ϕβ
1 (s)−

(
1− 1

β

)2

∼ c∗(β)√
s

(3.40)

where c∗(β) = 2
√

2√
β
(1 − 1

β
)(2 − 1

β
) ≤ 4

√
2. Now (??) follows from (??) and the ordinary

Tauberian theorem (see.g. [Fe,70] Theorem 2 on page 445) proving our theorem. 2

Proof of the upper bound (divergent part) of Theorem 1.5
We will show that for any fixed 0 < β < 1 and arbitrary small fixed η > 0 there exists a
sequence rk →∞ such that for

Bk
def
=

{
µ(y; L(y, Trk

) > rkβ) ≤ (1 + 3η)2K(β)rk

log log rk

}
(3.41)

P(Bk i.o.) = 1.(3.42)

Let rk = k2k. Define

Ak
def
=

{
µ(y; L(y, Trk

)− L(y, Trk−1
) > rkβ) ≤ (1 + 2η)2K(β)rk

log log rk

}
.(3.43)

First we show that for k big enough Ak imply Bk. Recall the definition of Q(r), in (??) the
range of the Wiener process up to Tr. For arbitrary small δ > 0 by Theorem H we have for
k > k0(ω)

Q(rk−1) ≤ rk−1(log(rk−1))
(1+δ) ≤ η2K(β)rk

log log rk

,(3.44)
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where the second inequality in (??) can be seen with easy calculation using the the definition
of rk. Observe that L(y, Trk

) 6= L(y, Trk
) − L(y, Trk−1

) can only occur if y is visited before
Trk−1

, thus

µ(y; L(y, Trk
) > rkβ) ≤ µ(y; L(y, Trk

)− L(y, Trk−1
) > rkβ) + Q(rk−1)(3.45)

hence by (??) for k big enough Ak implies Bk. Thus we only have to prove

P(Ak i.o.) = 1.(3.46)

Clearly the events Ak are independent and by the strong Markov property and scale change
and the lower bound in Theorem 1.4 we have that for any ε > 0 and k big enough

P (Ak) = P

(
µ(y; L(y, Trk−rk−1

) > rkβ) ≤ (1 + 2η)2K(β)rk

log log rk

)
=

P

(
µ(y, L(y, T1) > β

rk

rk − rk−1

) ≤ (1 + 2η)2K(β)rk

(rk − rk−1) log log rk

)
≥

P

(
µ(y, L(y, T1) > β) ≤ (1 + 2η)2K(β)rk

(rk − rk−1) log log rk

)
≥

exp


−

2
(
1−√β

)2
(1 + ε)(rk − rk−1)

(1 + 2η)2(1−√β)2rk

log log rk


 ≥

exp

(
− (1 + ε)

(1 + 2η)
log log rk

)
.(3.47)

Clearly when we apply Theorem 1.4 we can select ε = η. With this selection we conclude
that

exp

(
− (1 + η)

(1 + 2η)
log log rk

)
≥ exp (− log log rk) ≥ 1

2k log k
.(3.48)

By (??)
∑

k P (Ak) = +∞ thus we have (??) which implies (??). Sending now η → 0 gives
the theorem. 2

Proof of Theorem 1.6
First recall that according to Fact 9 for any β > 1

P(sup
x≥0

L(x, Tr) ≥ βr) =
1

β
(3.49)
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and also

P( sup
−∞<x<+∞

L(x, Tr) < βr) = P(µ(y; L(y, Tr) > βr) = 0) =

(
1− 1

β

)2

> 0.(3.50)

(??) combined with the tail σ−field form of Blumenthal’s zero-one law [Bl,57] (see this e.g
in Durett [Du, 96] Theorem 2.12, page 17) implies that

P(lim inf(µ(y; L(y, Tr) > βr) = 0) = 1.(3.51)

2

Proof of Theorem 1.7
Let rk = k4k. Define for an arbitrary small γ > 0

Ak = {µ(y; L(y, Trk
)− L(y, Trk−1

) > rk − rk−1) <
γ rk

2 log rk

}.(3.52)

Then using (??) the strong Markov property and scale change we get that

P(Ak) = P(µ(y; L(y, Trk−rk−1
) > rk − rk−1) <

γ rk

2 log rk

) ∼
γrk

(rk − rk−1) log rk

>
γ

log rk

=
γ

4k log k
.(3.53)

We conclude that
∑

k P(Ak) = +∞. By the independence of the Ak-s and the selection of
the sequence rk we have that

P(Ak i.o.) = 1.(3.54)

Let

Bk = {µ(y; L(y, Trk
)− L(y, Trk−1

) > rk) <
γ rk

2 log rk

}.(3.55)

Then clearly Ak ⊂ Bk, hence

P(Bk i.o.) = 1.(3.56)

On the other hand by Theorem 1.3 we have that for k big enough and arbitrary ε > 0

Q(Trk−1
) ≤ (k − 1)4(k−1)(4(k − 1) log(k − 1))1+ε <

γk4k

2(4k log k)
(3.57)
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thus (??) implies that

P(Yrk
(1) <

γrk

log rk

i.o.) = 1(3.58)

Sending now γ → 0 proves (??). 2

Proof of the convergent part of Theorem 1.8.
Suppose that for an f(.) satisfying the conditions of the theorem we have I(f) < +∞. Fix
β ≥ 0.
First assume that we can prove for rk = ρk with some ρ > 1 that for an arbitrary fixed ε > 0

∞∑

k=1

P(µ(y; L(y, Trk
) > βrk−1) > ε rk−1f(rk−1)) < ∞.(3.59)

We show that (??) implies the convergent part. If (??) holds then for k > k0(ω) we have

µ(y; L(y, Trk
) > βrk−1) ≤ ε rk−1f(rk−1)).(3.60)

If Trk−1
≤ t < Trk

we have that

µ(y; L(y, t) > βL(0, t)) ≤ µ(y; L(y, Trk
) > βrk−1) ≤ ε rk−1f(rk−1) =

εL(0, Trk−1
)f(L(0, Trk−1

)) ≤ ε L(0, t)f(L(0, t)).(3.61)

So we only have to prove (??). By Theorem 1.2 and scale change we have

P(µ(y; L(y, Trk
) > βrk−1) > ε rk−1f(rk−1)) = P(µ(y; L(y, Tρk) > βρk−1) > ε ρk−1f(ρk−1))

= P

(
µ

(
y; L(y, T1) >

β

ρ

)
>

ε

ρ
f(ρk−1)

)

∼ ρ

ε

1

f(ρk−1)
.(3.62)

But the last expression sums in k as I(f) is finite by Fact 6, which proves the convergent
part. 2

Proof of the lower bound (convergent part) of 1.9.
We will need the following wellknown observation. From the exact distribution of Tr/r

2 and
the Borel -Cantelli lemma one can easily conclude that for a small enough C > 0

Tr >
Cr2

log log r
a.s.(3.63)

20



if r is large enough. (??) easily implies that for r large enough we have

log log Tr > log log r a.s..(3.64)

Select and fix an arbitrary small ε > 0. Let rk = exp(k(1−ε)), and now select a small enough
0 < ρ < ε such that β(1 + ρ) < 1 and


1−

√
β(1 + ρ)

1−√β




2

> 1− ε(3.65)

should hold. Define the events

Ak =

{
inf

Trk−1
≤t<Trk

µ(y, L(y, t) > βL(0, t)) log log t

L(0, t)
≤ 2K(β)(1− 5ε)

}
.(3.66)

We show that
∑

k P(Ak) < +∞.
Select k0 big enough such that for k > k0

rk

rk−1
< 1 + ρ should hold. Using again scale

change and the upper bound in Theorem 1.4, (?? and (??) we get that for k > k0

P(Ak) ≤ P

(
inf

Trk−1
≤t<Trk

µ(y, L(y, t) > βL(0, t)) ≤ 2K(β)(1− 5ε)L(0, Trk
)

log log Trk−1

)
≤

P

(
µ(y, L(y, Trk−1

) > βL(0, Trk
)) ≤ 2K(β)(1− 5ε)rk

log log rk−1

)
=

P

(
µ(y, L(y, T1) > β

rk

rk−1

) ≤ 2K(β)(1− 5ε)rk

rk−1 log log rk−1

)
≤

P

(
µ(y, L(y, T1) > β(1 + ρ)) ≤ 2K(β)(1− 5ε)rk

rk−1 log log rk−1

)
≤

exp


−2(1−

√
β(1 + ρ))2(1− ε)rk−1

(1− 5ε)2(1−√β)2rk

log log rk−1


 ≤

exp

(
−(1− ε)2rk−1

(1− 5ε)rk

log log rk−1

)
=: p(k, ε).(3.67)

Observe now that by the choice of k0, and by the selection of ρ < ε we have for k > k0 that
rk−1

rk
> 1− ε. Then we have

p(k, ε) ≤ exp

(
− (1− ε)4

(1− 5ε)
log (k − 1)

)
≤ exp (−(1 + ε) log (k − 1))(3.68)
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which sums in k. Hence
∑

k P(Ak) < ∞, thus
{

inf
Trk−1

≤t<Trk

µ(y, L(y, t) > βL(0, t)) log log t

L(0, t)
> 2K(β)(1− 5ε)

}
a.s.(3.69)

and by sending ε → 0 we have the theorem. 2

Proof of (??) of Theorem 1.11.
Select and fix an arbitrary large K > 0. Let rk = exp(kα) with some 0 < α < 1. Define

Ak = {µ(y, L(y, Trk−1
) > rk) ≤ Krk

(log rk)β
}.(3.70)

We want to show that for an appropriate choice of α and β
∑

k

P(Ak) < ∞.(3.71)

Using the exponential Markov inequality and Theorem 1.1 with p = rk and r = rk−1 we get
that for any λ > 0

P(Ak) < exp

(
λKrk

(log rk)β

)
E

(
exp(−λµ(y, L(y, Trk−1

) > rk)
)

=

exp

(
λKrk

(log rk)β

) (
1− rk−1

rk

K0(
√

2λrk)

K2(
√

2λrk)

)2

.(3.72)

Observe that by (??) for x →∞

K0(x)

K2(x)
=

1− 1
8x

+ O
(

1
x2

)

1 + 15
8x

+ O
(

1
x2

) = 1− 2

x
+ O

(
1

x2

)
.(3.73)

Now it is an easy computation to see that for k big enough we have

rk − rk−1

rk

∼ rk−1

rk

α

k1−α
≤ α

k1−α
.(3.74)

Now select λ = (log rk)β

rk
, then apply (??) and (??) to get

P(Ak) < eK


1− rk−1

rk

K0

(√
2(log rk)β

)

K2

(√
2(log rk)β

)




2

<
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c1

(
α

k1−α
+

c2

(log rk)β/2

)2

=

c1

(
α

k1−α
+

c2

kαβ/2

)2

(3.75)

where c1 and c2 are positive constant, the first of which depends on K. For arbitrary small
ε > 0 we select now β = 2+ε and α = 2/(4 + ε). With this choice of α and β we have 1−α =
αβ/2 = (2 + ε)/(4 + ε) > 1/2. Hence

∑
k P(Ak) is convergent proving (??). Consequently

for k big enough

µ(y, L(y, Trk−1
) > rk) ≥ Krk

(log rk)2+ε
a.s..(3.76)

For Trk−1
< t < Trk

we get from (??) by monotonicity and using rk = L(0, Trk
) that

µ(y, L(y, t) > L(0, Trk
)) ≥ KL(0, Trk

)

(log L(0, Trk
))2+ε

a.s.(3.77)

implying that

µ(y, L(y, t) > L(0, t)) ≥ KL(0, t)

(log L(0, t))2+ε
.(3.78)

Sending K →∞ proves the theorem.
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