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Euclidean Polygons

A polygon is a plane region bounded by finitely many straight
lines, connected to form a polygonal chain.

polygon = polus (many) + gonia (corner)

Example:

By polygon, we will mean a simple polygon i.e. a polygon that
does not intersect itself and has no holes, equivalently, whose
boundary is a single closed polygonal path (simple closed curve).
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Scissors Congruence

A polygonal decomposition of a polygon P in the Euclidean plane
is a finite collections of polygons P1,P2, . . .Pn whose union is P
and which pairwise intersect only in their boundaries.

Example: Tangrams
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Polygons P and Q are scissors congruent if there exist polygonal
decompositions P1, . . . ,Pn and Q1, . . . ,Qn of P and Q respectively
such that Pi is congruent to Qi for 1 ≤ i ≤ n.

In short, two polygons are scissors congruent if one can be
cut up and reassembled into the other. Let us denote scissors
congruence by ∼sc . We will write P ∼sc Q

Example: All the polygons below are scissors congruent.
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Scissors Congruence

The idea of scissors congruence goes back to Euclid. By “equal
area” Euclid really meant scissors congruent (though not using this
term and without proof !).
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Scissors Congruence is an equivalence relation

∼sc is an equivalence relation on the set of all polygons in the
Euclidean plane.

I (Reflexive) P ∼sc P.

I (Symmetric) P ∼sc Q then Q ∼sc P.

I (Transitive) P ∼sc Q and Q ∼sc R then P ∼sc R.

Transitivity follows by juxtaposing the two decompositions of Q
and using the resulting common sub-decomposition of Q to
reassemble into P and R, thus showing that P ∼sc R.
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Area determines Scissors Congruence

It follows from definition that P ∼sc Q =⇒ Area(P) = Area(Q).

Does Area(P) = Area(Q) =⇒ P ∼sc Q ?

Theorem (Wallace-Bolyai-Gerwien )

Any two simple polygons of equal area are scissors congruent, i.e.
they can be dissected into a finite number of congruent polygonal
pieces.
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Some history

Source: https://www.cut-the-knot.org/do_you_know/Bolyai.shtml

https://www.cut-the-knot.org/do_you_know/Bolyai.shtml


Sketch of Proof

Step 1: Triangulate the polygon.

Step 2: Show that any two triangles with same base and equal
heights are scissors congruent.

Step 3: Triangles with same area are scissors congruent.

Step 4: Finish proof of Theorem.
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Proof

Step 1: Triangulate polygon i.e. Every polygon has a
polygonal decomposition into triangles.

Proof:

For a polygon, choose a line of slope m which is distint from the
slopes of all its sides. Lines of slope m through the vertices of the
polygon decompose it into triangles and trapezoids, which again
can be decomposed into (acute) angled triangles. �
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Proof

Step 2: Scissors congruence for parallelograms and triangles
of same base and equal height.

Proof: Let ABCD be a rectangle with base AB and height AD.
Let ABXY be a parallelogram with height AD. Assume
|DY | ≤ |DC |. Then

ABCD ∼sc AYD + ABCY ∼sc ABCY + BXC ∼sc ABXY .

A B

D CY X



Proof

If |DY | > |DC |, then cutting along the diagonal BY and regluing
the triangle BXY , we obtain the scissors congruent parallelogram
ABYY1 such that |DY1| = |DY | − |DC |. Continuing this process k
times, for k = [|DY |/|DC |], we obtain the parallelogram
ABYk−1Yk such that |DYk | < |DC |, which is scissors congruent to
ABCD as above.

Y X

A B

D CY1



Proof

Since any triangle is scissors congruent to a parallelogram with the
same base and half height, this implies that any two triangles with
same base and height are scissors congruent. �.



Proof

Step 3: Any two triangles with same area are scissors
congruent.

Proof: By Step 2, we can assume both the triangles are right
angles triangles.

Let Area(ABC ) = Area(AXY )

=⇒ |AB||AC |
2

=
|AY ||AX |

2

=⇒ |AY |
|AC |

=
|AB|
|AX |

=⇒ ABY ∼ AXC SAS test A B

C

X

Y

This implies BY is parallel to XC . Hence triangles BYC and BYX
have same base and same height which implies by Step 2 that they
are scissors congruent i.e.
ABC ∼sc ABY + BYC ∼sc ABY + BYX ∼sc AXY . �
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Proof

Step 4: Putting it all together.

Any triangle T is scissors congruent to a right triangle with height
2 and base equal to the area of T , which is scissors congruent to a
rectangle with unit height and base equal to area of T . Lets
denote such a rectangle by Rx where x is its area (= base).

Thus for any polygon P ,

P ∼scT1 + . . .+ Tn by Step 1

∼scRArea(T1) + . . .+ RArea(Tn) by Step 3

∼scRArea(T1)+...+Area(Tn) by laying rectangles side by side

∼scRArea(P) by Step 1

Hence, if polygons P,Q have equal area then
P ∼sc RArea(P) = RArea(Q) ∼sc Q. �
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Visualizing scissors congruence

Visualization application by Satyan L. Devadoss, Ziv Epstein, and
Dmitriy Smirnov is implemented in HTML5 and JavaScript.

The interface allows the user to input her own intial and terminal
polygons. It then rescales the polygons so that they are of the
same area, by calculating the optimal scaling factor for each
polygon such that the following two constraints are satisfied: both
polygons are of equal area, and the wider of the two is not too
wide that is goes off the screen.

http://dmsm.github.io/scissors-congruence/.

http://dmsm.github.io/scissors-congruence/.


Scissors Congruence in 3 dimensions

A polyhedron is a solid in the Euclidean 3-space E3 whose faces
are polygons.
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Scissors Congruence in 3 dimensions

A polyhedron is a solid in the Euclidean 3-space E3 whose faces
are polygons.

We will not allow solids whose boundary in not a sphere (i.e. S2)



Scissors Congruence in 3 dimensions

A polyhedral decomposition of a polyhedron P is a finite
collections of polyhedra P1,P2, . . .Pn whose union is P and which
pairwise intersect only in their boundaries (faces or edges).

Scissors Congruence

Two polyhedra P and Q are scissors congruent if there exist polyhe-
dral decompositions P1, . . . ,Pn and Q1, . . . ,Qn of P and Q respec-
tively such that Pi is congruent to Qi for 1 ≤ i ≤ n. In short, two
polyhedra are scissors congruent if one can be cut up and reassem-
bled into the other. As before, let us denote scissors congruence by
∼sc , and write P ∼sc Q.



Scissors Congruence in 3 dimensions

A polyhedral decomposition of a polyhedron P is a finite
collections of polyhedra P1,P2, . . .Pn whose union is P and which
pairwise intersect only in their boundaries (faces or edges).

Scissors Congruence

Two polyhedra P and Q are scissors congruent if there exist polyhe-
dral decompositions P1, . . . ,Pn and Q1, . . . ,Qn of P and Q respec-
tively such that Pi is congruent to Qi for 1 ≤ i ≤ n. In short, two
polyhedra are scissors congruent if one can be cut up and reassem-
bled into the other. As before, let us denote scissors congruence by
∼sc , and write P ∼sc Q.



Scissors Congruence in 3 dimensions

I If P ∼sc Q then Volume(P) = Volume(Q).

I ∼sc is an equivalence relation on the set of all polyhedra E3

I (Reflexive) P ∼sc P.
I (Symmetric) P ∼sc Q then Q ∼sc P.
I (Transitive) P ∼sc Q and Q ∼sc R then P ∼sc R.

As before, transitivity follows by juxtaposing the two
decompositions of Q and using the resulting common
sub-decomposition of Q to reassemble into P and R, thus
showing that P ∼sc R. This is harder to visualize or draw.
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Hilbert’s Problems

In a famous lecture delivered at the International Congress of
Mathematics at Paris in 1900, and a subsequent paper Hilbert
posed 23 problems which influenced 20th-century mathematics.

Hilbert’s Third Problem

Given any two polyhedra of equal volume, is it always possible to cut
the first into finitely many polyhedral pieces that can be reassembled
to yield the second?

Hilbert made clear that he expected a negative answer.
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Solution to Hilbert’s Third Problem

The negative answer to Hilbert’s Third problem was provided in
1902 by Max Dehn.

Dehn showed that the regular tetrahedron and the cube of the
same volume were not scissors congruent.

6∼sc



Solution to Hilbert’s Third Problem

The negative answer to Hilbert’s Third problem was provided in
1902 by Max Dehn.

Dehn showed that the regular tetrahedron and the cube of the
same volume were not scissors congruent.

6∼sc



Solution to Hilbert’s Third Problem

The negative answer to Hilbert’s Third problem was provided in
1902 by Max Dehn.

Dehn showed that the regular tetrahedron and the cube of the
same volume were not scissors congruent.

6∼sc



Dehn’s solution

Volume is an invariant of scissors congruence i.e. two scissors
congruent objects have the same volume.

Dehn defined a new invariant of scissors congruence, now known as
the Dehn invariant.

Dehn invariant

For an edge e of a polyhedron P, let `(e) and θ(e) denote its length
and dihedral angles respectively. The Dehn invariant δ(P) of P is

δ(P) =
∑

all edges e of P

`(e)⊗ θ(e) ∈ R⊗ (R/πQ)

The ⊗ symbol is called tensor product and implies that δ(P) does
not change when you cut along an edge or cut along an angle i.e.
δ(P) in an invariant of scissors congruence.
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Dehn’s solution

I In δ(P), dihedral angles which are rationals multiples of π are
0 !

I δ(unit cube) = 12× 1⊗ (π/2) = 0 since π/2 = 0 ∈ R/πQ
I For a regular tetrahedra with unit volume, the lengths of all

its sides is some positive number a and all its dihedral angles
are α where cos(α) = 1/3.

I δ(tetrahedra) = 6× a⊗ arccos(13)

I
arccos(13)

π
is irrational ! (needs proof)

I δ(unit cube) = 0 6= 6× a⊗ arccos(13) = δ(tetrahedra)

I Thus the unit cube and the unit tetrahedra are not scissors
congruent !
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Scissors congruence in other geometries and higher
dimensions

The possible 2-dimensional geometries are Euclidean, spherical and
hyperbolic.

It is known that area determines scissors congruence in
2-dimensional spherical geometry S2 and hyperbolic geometry H2.
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Scissors congruence in other geometries and higher
dimensions

I Does volume and Dehn invariant determine scissors
congruence in E3 ? Yes they do ! Sydler solved this in 1965.
This question is known as the “Dehn invariant sufficiency”
problem.

I “Dehn invariant sufficiency” is still unsolved for
3-dimensional spherical and hyperbolic geometry H3, as well
as in higher dimensions.

I Dupont and Sah (1982) related scissors congruence to the
homology of groups of isometries of various geometries and
K -theory of fields !

I Walter Neumann and Jun Yang (1999) used a “complexified”
Dehn invariant in H3 to define invariants of hyperbolic
3-manifolds.
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