
Classi�ation of Surfaes via Morse Theory

Abhijit Champanerkar

Ajit Kumar

S. Kumaresan

Introdution

In this artile we lassify all ompat surfaes up to homeomorphism using Morse theory.

The single most important tool is the gradient like ow assoiated with a Morse funtion.

While it is well-known (and worked out in detail in [4℄ and [7℄) how the homotopy type

hanges as when one passes a ritial point, the hange in homeomorphism type is perhaps

not so well-known. Even in the books where it is done, tehnial details are inadequate

and a beginning graduate student may have diÆulty in �lling them. The highlights of

this exposition are the two theorems (Theorem 13 and theorem 16) whih tell us how the

homeomorphism type hanges as we pass a ritial point of index 0, 1 and 2. One we prove

these theorems the lassi�ation follows easily.

We have taken most of the ideas from [2℄. We have modi�ed and supplied details for

most of the proofs and hanged the style of presentation to make the exposition rigorous

and luid.

Setion 1 deals with basi de�nitions and Morse Theorem. In Setion 2 we introdue the

gradient ow and use it to prove that the di�eomorphism type of a manifold does not hange

between the two levels whih does not ontain a ritial point. This is the �rst appliation

of the gradient ow and all the details have been painstakingly worked out. Setion 3

inludes modi�ation of Morse funtions and the proofs are an exellent illustration of the

use of bump funtions. Setion 4 deals with one of the two important theorems regarding

rossing of ritial levels of index 0 and 2. In Setion 5 we prove theorems regarding

passing of ritial level of index 1. For better understanding of the results proved, we have

inluded lassi�ation of losed 1-manifolds and onrete examples suh as sphere, torus

and projetive plane in Setions 4 and 5. Setion 6 inludes onneted sums. We have not

dealt with the tehnialities of unambiguity and assoiativity of onneted sums. In the last

setion we �nish the lassi�ation using the results from earlier setions. The noteworthy

point of the lassi�ation is that the orientable as well as non orientable ases are treated

simultaneously.

Sine we have aimed the artile at fresh graduate students, we have supplied all details

for most of the proofs. We also illustrate the theorems using examples and give simple

appliations of the theorem proved. We have inluded pitures wherever neessary to assist

the geometri understanding of ideas and the results. We hope that this artile will introdue

the readers to some of the basi tehniques and ideas of di�erential topology.

1



1 Critial Points and Morse Lemma

We assume all surfaes to be ompat, onneted, without boundary (losed) unless stated

otherwise.

De�nition 1. Let M be a smooth manifold and f : M ! R, a smooth funtion on M . A

point p 2 M is said to be a ritial point of f if Df(p) is singular on T

p

(M). The image

of p under f , that is, f(p) is alled a ritial value of f . Any real number whih is not a

ritial value is alled a regular value of f .

Example 1. If f is a onstant funtion on M then all points of M are ritial points.

Example 2. Let M = S

2

� R

3

and f(x; y; z) = z. Then N = (0; 0; 1) and S = (0; 0;�1)

are the two ritial points of f .

Example 3. If M is a ompat manifold then there exist at least two ritial points for

any nononstant funtion f on M , namely the maximum and minimum of f .

Example 4. Let M = T

1

- the 2-dimensional torus and f be the height funtion on M .

Then there are four ritial points X

1

; X

2

; X

3

; X

4

. See Fig. 1.
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Figure 1: Critial Points on the torus and the sphere

Let M be a smooth manifold of dimension n. Let � : U ! M be a parameterizations,

where U � R

n

is an open set ontaining 0. If �(0) = p, then we say that � is entered at p.

De�nition 2. Let M be a smooth manifold of dimension n and f : M ! R, a smooth

funtion on M . Let (�; U) be a parameterization entered at p. De�ne g := f Æ �. The

Hessian of f with respet to � is a matrix de�ned as

H

�

(f) = H(f Æ �) := (

�

2

g

�x

i

�x

j

); 1 � i; j � n:
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Let M be a surfae. Let (�; U) and ( ; V ) be two parameterization entered at p. Let

(x; y) and (u; v) be oordinates w.r.t. � and  respetively. Let �(u; v) = (x(u; v); y(u; v))

be the orresponding hange of oordinates. De�ne h(u; v) := g Æ �(u; v). Then h = f Æ  

and the partial derivatives of h are as follows:

�h

�u

= g

x

x

u

+ g

y

y

u

;

�h

�v

= g

x

x

v

+ g

y

y

v

;

�

2

h

�u

2

= g

xx

x

u

2

+ 2g

xy

x

u

y

u

+ g

yy

y

u

2

+ g

x

x

uu

+ g

y

y

uu

;

�

2

h

�v

2

= g

xx

x

v

2

+ 2g

xy

x

v

y

v

+ g

yy

y

v

2

+ g

x

x

vv

+ g

y

y

vv

;

�

2

h

�u�v

= g

xx

x

u

x

v

+ g

xy

x

u

y

v

+ g

x

x

uv

+ g

yx

x

v

y

u

+ g

yy

y

u

y

v

+ g

y

y

uv

:

If p is a ritial point of f then g

x

= 0 = g

y

and hene the Hessians of f with respet to

� and  are related as follows :

H

 

(f) = J

t

(�) ÆH

�

(f) Æ J(�) (1)

where J(�) denotes the Jaobian of �.

De�nition 3. Let f be a smooth funtion on a surfae M . A ritial point p of f is said

to be non degenerate if H

�

(f)(p) is non singular for any parameterization � entered at p.

It follows from Eq. 1 that this de�nition is independent of the parameterization.

Example 5. All ritial points in Example 1 are degenerate. All ritial points in Example

2 and 4 are non degenerate.

De�nition 4. The index of a non degenerate ritial point p of smooth funtion f on a

surfae M is the dimension of the maximal subspae of T

p

M on whih H(f) is negative

de�nite.

The index of a ritial point is independent of the parameterization follows from Sylvester's

Law.

Remark 1. Conepts of non degeneray and index also hold for any smooth manifold.

Example 6. In Example 4 X

1

is a ritial point of index 0, X

2

and X

3

are ritial points

of index 1 and X

4

is of index 2.

Theorem 1 (Morse, 1932). Let M be a surfae and f : M ! R, a smooth funtion on

M . Let p 2M be a non degenerate ritial point of f . Then there exists a parameterization

(�; U) entered at p and oordinates (X; Y ) suh that

f Æ �(X; Y ) = f(p) + g

i

(X; Y ); 0 � i � 2;

where i is the index of p and g

i

's are de�ned as follows:

g

0

(X; Y ) = X

2

+ Y

2

, g

1

(X; Y ) = X

2

� Y

2

and g

2

(X; Y ) = �X

2

� Y

2

:
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De�ne a map g := f Æ� : U ! Rwhere � is a parameterization entered at p. Then g is

smooth and (0; 0) is a non degenerate ritial point of g. It is enough to prove the following

form of the above theorem.

Theorem 2. Let U � R

2

be a neighborhood of (0; 0) and f : U ! R be a smooth funtion.

Assume that (0; 0) is a non degenerate ritial point of f of index i for 0 � i � 2. Then

there exists a di�eomorphism � : V ! �(V ) � U , where V is an open set ontaining (0; 0)

in R

2

, �(0; 0) = (0; 0) and a system of oordinates (X; Y ) on U suh that

f Æ �(X; Y ) = f(0; 0)+ g

i

(X; Y ):

Proof. By Taylor series expansion f near origin is of the form:

f(x; y)� f(0; 0) = R(x; y)x

2

+ 2S(x; y)xy+ T (x; y)y

2

(2)

where R; S and T are smooth funtions de�ned as:

R(x; y) =

Z

1

0

(1� t)f

xx

(tx; ty)dt; R(0; 0) = r;

S(x; y) =

Z

1

0

(1� t)f

xy

(tx; ty)dt; S(0; 0) = s;

T (x; y) =

Z

1

0

(1� t)f

yy

(tx; ty)dt; T (0; 0) = t:

Note that R(0; 0) =

1

2

f

xx

(0; 0); S(0; 0) =

1

2

f

xy

(0; 0) and T (0; 0) =

1

2

f

yy

(0; 0): In lassial

notation we say that (0; 0) is a non degenerate ritial point of f if rt� s

2

6= 0.

Case 1. Let rt� s

2

> 0 and r > 0. Sine R is ontinuous, there exists a neighbourhood

U

1

� U of (0; 0) in whih R and RT � S

2

remain positive. So we an write Eq. 2 as:

f(x; y)� f(0; 0) = R(x; y)[x+ y

S(x; y)

R(x; y)

℄

2

+ y

2

R(x; y)T (x; y)� S

2

(x; y)

R(x; y)

: (3)

De�ne

X = X(x; y) :=

p

R(x; y)[x+ y

S(x;y)

R(x;y))

℄;

Y = Y (x; y) := y

q

R(x;y)T (x;y)�S

2

(x;y)

R(x;y)

:

De�ne � : U

1

! R

2

as �(x; y) = (X(x; y); Y (x; y)). Then �(0; 0) = (0; 0) and Jaobian

J(�)(0; 0) =

p

rt � s

2

6= 0. Hene by inverse mapping theorem � is invertible in some

neighbourhood V of (0; 0). De�ne �(X; Y ) = �

�1

(X; Y ) = (x(X; Y ); y(X; Y )). Then Eq. 3

beomes:

f Æ �(X; Y ) = f(0; 0)+X

2

+ Y

2

= f(0; 0)+ g

0

(X; Y ):

Sine r is positive, t is also positive and hene the index of (0; 0) is 0.

Case 2. Let rt� s

2

> 0 and r < 0. Then we write Eq. 3 as:

f(x; y)� f(0; 0) = �(�R(x; y))[x+ y

S(x; y)

R(x; y)

℄

2

� y

2

R(x; y)T (x; y)� S

2

(x; y)

�R(x; y)

:
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Then de�ne

X = X(x; y) :=

p

�R(x; y)[x+ y

S(x;y)

R(x;y))

℄;

Y = Y (x; y) := y

q

R(x;y)T (x;y)�S

2

(x;y)

�R(x;y)

:

Again proeeding as before we get

f Æ �(X; Y ) = f(0; 0)�X

2

� Y

2

= f(0; 0)+ g

2

(X; Y ):

Sine r is negative, t is negative and hene index of (0; 0) is 2.

Case 3. Let rt� s

2

< 0 and r > 0. Using similar arguments as before we get:

f Æ �(X; Y ) = f(0; 0)+X

2

� Y

2

= f(0; 0)+ g

1

(X; Y ):

If r is negative, then we an write Eq. 3 as:

f(x; y)� f(0; 0) = �(�R(x; y))[x+ y

S(x; y)

R(x; y)

℄

2

+ y

2

S

2

(x; y)� R(x; y)T (x; y)

�R(x; y)

:

Then de�ne

X = X(x; y) := y

q

S

2

(x;y)�R(x;y)T (x;y)

�R(x;y)

;

Y = Y (x; y) :=

p

�R(x; y)[x+ y

S(x;y)

R(x;y)

℄

Proeeding as above we get

f Æ �(X; Y ) = f(0; 0)+X

2

� Y

2

= f(0; 0)+ g

1

(X; Y ):

If t is non zero then the same arguments go through.

Lastly suppose both of them are zero (for example the ase of hyperbola f(x; y) = xy).

Consider a map �(x; y) = (u(x; y); v(x; y)), where u = x + y and v = x � y. Now de�ne a

map g(u; v) = f(

u+v

2

;

u�v

2

). Then

g

u

=

1

2

f

x

+

1

2

f

y

and g

uu

=

1

4

f

xx

+

1

2

f

xy

+

1

4

f

yy

:

Hene g

uu

(0; 0) =

1

2

f

xy

(0; 0) = s 6= 0. Otherwise the rt � s

2

= 0, a ontradition. Again

proeeding as above for the funtion g we get the required result. Chek that in any ase

the index of (0; 0) is 1.

Remark 2. The onverse of the above theorem is also true.

Example 7. Let M = P

2

be the projetive plane obtained by identifying antipodal points

of S

2

. Consider the map f : M ! R de�ned by f [(x; y; z)℄ = x

2

+ 2y

2

+ 3z

2

. Chek that

this is a smooth funtion on P

2

. [(1; 0; 0)℄; [(0; 1; 0)℄ and [(0; 0; 1)℄ are the only ritial points

with index 0; 1 and 2 respetively.
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Let us illustrate this example. Let U

1

= f[(x; y; z)℄ : x 6= 0g, U

2

= f[(x; y; z)℄ : y 6= 0g

and U

3

= f[(x; y; z)℄ : z 6= 0g. De�ne maps

�

1

: R

2

! U

1

as �

1

(u; v) =

[(1; u; v)℄

p

1 + u

2

+ v

2

;

�

2

: R

2

! U

2

as �

2

(u; v) =

[(u; 1; v)℄

p

1 + u

2

+ v

2

and

�

3

: R

2

! U

3

as �

3

(u; v) =

[(u; v; 1)℄

p

1 + u

2

+ v

2

:

It is easy to hek that (�

i

;R

2

) for i = 1; 2; 3 are parameterizations and that (U

i

; �

i

�1

)

for i = 1; 2; 3 form a hart on P

2

. We will �nd ritial points and their indies using the

remark 2. De�ne a map g = f Æ �

1

: R

2

! R as

g(u; v) = f Æ �

1

(u; v) =

1

1 + u

2

+ v

2

+

2u

2

1 + u

2

+ v

2

+

3v

2

1 + u

2

+ v

2

Its is easy to hek that g

u

; g

v

vanishes only at (u; v) = (0; 0). Hene [(1; 0; 0)℄ is the only

ritial point of f in U

1

. De�ne

U(u; v) :=

u

p

1 + u

2

+ v

2

and V (u; v) :=

v

p

2

p

1 + u

2

+ v

2

It is easy to hek that these are oordinates in some neighbourhood of (0; 0). Let � be the

inverse of (U; V ). Then g Æ �(U; V ) = 1 + U

2

+ V

2

. Hene by remark 2 [(1; 0; 0)℄ is a non

degenerate ritial point of index 0. Similarly one an hek for the other ritial points.

Remark 3. Morse Theorem is true for any smooth manifold.

Corollary 3. Non degenerate ritial points of a smooth funtion are isolated.

The funtion g

i

; i = 0; 1; 2 de�ned in the theorem 1 are alled the model funtions.

Model neighbourhood of g

i

's are neighbourhoods U(s); s > 0 of (0; 0) in R

2

de�ned as

follows:

For i = 0 and i = 2, U(s) is a dis of radius

p

s.

U(s) = f(X; Y ) 2 R

2

: X

2

+ Y

2

� sg

For i = 1,

U(s) = f(X; Y ) 2 R

2

: jX

2

� Y

2

j � s; jXY j � sg:

This is an otagon whih is homeomorphi to a retangle. See Fig. 2.

De�nition 5. Let f : M ! R be a smooth funtion on a losed surfae M . Let p be a non

degenerate ritial point of f . Let (�; U) be a parameterization entered at p suh that f

in U is of the form

f(�(X; Y )) = f(p) + g

i

(X; Y )

where i is the index of p. Let V � U be a model neighbourhood for g

i

. Then the neigh-

bourhood �(V ) of p is alled a anonial neighbourhood of p and (�; V ) is alled a anonial

parameterization. See Fig. 3.

We will assume that boundary is inluded in anonial neighbourhoods.
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Figure 3: Canonial Neighbourhoods

2 Morse Funtions and the Gradient Flow

De�nition 6. Let M be a smooth manifold. A smooth one-parameter group of di�eomor-

phisms on M is a smooth map � : R�M ! M de�ned as (t; x) 7! �

t

(x) satisfying the

following properties:

� �

0

= id

M

� For eah t 2 R the map �

t

: M !M as t 7! �

t

(x) is a di�eomorphism.

� For r; s 2 R; �

r+s

(x) = �

r

Æ �

s

(x) for all x 2M .

Sine the map � is smooth, for eah x 2 R the map t 7! �

t

(x) is a smooth urve in M .

Hene

d

dt

(�

t

(x)) j

t=0

= X(x) 2 T

x

M:

That is, the map X : M ! TM de�ned as x 7!

d

dt

(�

t

(x)) j

t=0

is a smooth vetor �eld

on M . This vetor �eld is said to be generated by the smooth one-parameter group of

di�eomorphism � on M . Conversely, any smooth one-parameter group of di�eomorphism

arises this way on any ompat manifold. More preisely:

Theorem 4. Let M be a smooth ompat manifold. Let X 2 �(M) be a smooth vetor

�eld on M . Then there exists a unique smooth one-parameter group of di�eomorphism

� : R�M !M whih generates X. That is,

d

dt

(�

t

(x)) j

t=0

= X(x) and �

0

(x) = x:
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This theorem follows from a well known basi theorem in ODE.

Theorem 5. Let U � R

n

be open. Let X : U ! R

n

be a smooth map. Given x

0

2 U there

exists an open neighbourhood 
 of x

0

in U , an � > 0 and a smooth map F : (�; �)� 
! U

suh that F (y; 0) = y for all y 2 
 and

d

dt

(F (t; x) j

t=0

= X(x).

If (Æ; V;G) is another solution satisfying onditions similar to above then F = G on

(�; �)� V where � :=minfÆ; �g.

Proof. Refer to [1℄ or [5℄.

We will use one-parameter group of di�eomorphisms to prove many important results

in this artile.

De�nition 7. Let f be a smooth funtion on a surfae M . Then f is said to be a Morse

funtion if all its ritial points are non degenerate.

Example 8. 1. All model funtions are Morse funtions.

2. Height funtions on the sphere S

2

and the torus are Morse funtions.

3. The funtion de�ned in Example 7 is a Morse funtion.

There always exist Morse funtions on any losed manifold. (We will not get into the

tehnialities of this result. Interested readers an refer [7℄.)

Let f be a smooth funtion on any surfae M . Let a and b be real numbers suh that

a < b. We will use the following notations:

M(a) = fx 2M : f(x) � ag = f

�1

(�1; a℄;

M

0

(a) = fx 2M : f(x) � ag = f

�1

[a;1);

V (a) = fx 2M : f(x) = ag = f

�1

(a);

W (a; b) = fx 2M : a � f(x) � bg = f

�1

[a; b℄:

These sets are illustrated in Fig. 4.

Theorem 6. LetM and N be n dimensional smooth manifolds with boundary. Let f : M !

N be a di�eomorphism. Them f maps interior of M onto interior of N and the boundary

of M onto the boundary of N .

Theorem 7. Let M be a ompat surfae and f be a smooth funtion on M . Let a and

b be regular values of f . Then M(a) and W (a; b) are ompat surfaes with V (a) as the

boundary of M(a) and disjoint union of V (a) and (b) as the boundary of W (a; b). Also

V (a) is a losed 1-manifold.

The proofs of theorem 6 and theorem 7 are simple appliations of Impliit Funtion

Theorem and Inverse Mapping Theorem.

Any losed manifold M an be embedded in R

N

for some large N . Hene for eah

x 2M , the tangent spae T

x

M inherits an inner produt from R

N

.
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Theorem 8. Let M be a surfae and f : M ! R, a smooth funtion on M . Assume that a

and b are regular values of f with a < b suh that W (a; b) does not ontain any ritial point

of f . Then M(b) is di�eomorphi to M(a), V (b) is di�eomorphi to V (a) and W (a; b) is

di�eomorphi to V (a)� [a; b℄.

Proof. The idea of the proof is to push M(a) to M(b) using the one-parameter group of

di�eomorphisms. Sine we want V (a) to be mapped di�eomorphially to V (b), the integral

urves of the vetor �eld should be transversal to the level urves of f . In partiular the

modi�ed gradient vetor �eld of f may do the job. The details are given below.

Let � > 0 be small enough suh that f

�1

(a� �; b+ �) does not ontain any ritial points

of f . Let � : M ! R be a non negative smooth funtion suh that � is 1 on W (a; b) and it

is 0 on the omplement of W (a� �; b+ �). See Fig. 5. De�ne a vetor �eld

Y (x) =

(

�(x)

kgrad(f(x))k

2

grad(f(x)) x 2 W (a� �; b+ �);

0 otherwise.

This is a smooth vetor �eld transversal to the level urves of f in W (a; b). Let � be

the one-parameter group of di�eomorphisms assoiated with the vetor �eld Y . For eah

x 2M onsider the map t 7! f(�

t

(x)) =  (t). This is a smooth funtion from R to R. Its

derivative

d

dt

 (t) = Df(�

t

(x))

d

dt

�

t

(x) = Df(�

t

(x))Y (�

t

(x)) = �(�

t

(x)):

That is, if �

t

(x) 2 W (a; b) then

d

dt

 (t) = 1. Hene  is linear as long as �

t

(x) lies in

9
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Figure 5: M(b) is di�eomorphi to M(a)

W (a; b). This means that  (t) = t+ A for some onstant A. But  (0) = f(�

0

(x)) = f(x).

Hene  (t) = t+ f(x) for all x suh that �

t

(x) 2 W (a; b).

We laim that �

b�a

maps M(a) di�eomorphially onto M(b). Let us �x x 2M(a). By

Mean-Value Theorem

j

f(�

b�a

(x))� f(�

0

(x))

b� a

j = j

 (b� a)�  (0)

b� a

j � sup

t2[0;b�a℄

j 

0

(t)j � 1:

This implies that jf(�

b�a

(x))�f(x)j � b�a. That is, f(�

b�a

(x)) � b�a+f(x) � b�a+a =

b. Thus �

b�a

maps M(a) into M(b).

To prove that �

b�a

is onto as a map from M(a) to M(b), it is enough to prove that

if f(x) > a then f(�

b�a

(x)) > b. Let us assume this and prove that �

b�a

is onto. Let

x 2M(b). Sine �

b�a

is a di�eomorphism of M , there exists y 2M suh that �

b�a

(y) = x.

If f(y) > a, then by assumption f(�

b�a

(y)) = f(x) > b. Whih is a ontradition to the

fat that x 2 M(b). Hene f(y) � a. This proves that �

b�a

is onto as a map from M(a)

to M(b). Also �

b�a

is one-one and hene �

b�a

is a di�eomorphism as a map from M(a) to

M(b).

Now let us prove the laim. Let f(�

b�a

(x)) � b for f(x) > a. Sine  

0

(t) � 0,  

is inreasing. That is,  (b � a) �  (0). This implies that for all x 2 M; f(�

b�a

(x)) �

f(�

0

(x)) = f(x) > a. Thus a � f(�

t

(x)) � b for all t 2 [0; b� a℄. Hene f Æ �

t

(x) is linear

in [0; b� a℄. Hene f(�

b�a

(x)) = b� a+ f(x) > b� a+ a > b. This is a ontradition.

�

b�a

maps V (a) di�eomorphially onto V (b) by theorem 6.

For the last part we de�ne a map

� : V (a)� [a; b℄!W (a; b) as �(x; t) = �

t�a

(x):

10
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Figure 6: Modi�ation at a loal minimum

We laim that � is a di�eomorphism. Sine  is inreasing along the integral urves,

a = f(�

0

(x)) � f(�

t�a

(x)) � f(�

b�a

(x)) = b:

Hene �(x; t) 2 W (a; b). For y 2 W (a; b), de�ne �(y) = (�

a�f(y)

(y); f(y)). Chek that �

and � are inverse of eah other.

3 Modi�ation of a Morse Funtion

Let f be a Morse funtion on a surfaeM . The idea is to improve f to a new Morse funtion

g having the same ritial points with same indies and whih oinides with f outside some

anonial neighbourhood of a ritial point. We need following lemmas at our disposal.

Lemma 9. Let f : M ! R be a Morse funtion. Let p 2M be a ritial point of f of index

0. Assume that f(p) = . Let a �  be any real number. Then there exists a Morse funtion

g on M having the same ritial points with same indies as f and whih oinides with f

outside some anonial neighbourhood of p and is suh that g(p) = a.

Proof. If a = , then there is nothing to prove.

Let a < . Let (�; U) be a anonial parameterization entered at p. Let �(U) = V . Let

f(�V ) = b. Let � : [; b℄! R be a smooth map suh that �

0

> 0; �() = a and �(x) = x for

x near b. Now de�ne g : M ! R as:

g(x) =

(

�(f(x)); x 2 V

f(x); x =2 V

See Fig. 6. It is easy to hek that g is smooth. We laim that g has the required properties.

11



First of all g(p) = �(f(p)) = �() = a. For x 2 V;Dg(x) = �

0

(f(x))Df(x). Sine the

derivative of � is positive, derivative of g in V is zero only when x = p. Thus p is the only

ritial point of g in V . Also g Æ �(X; Y ) = �(f(p) +X

2

+ Y

2

) on U , the Hessian of g at 0

is given by

H(g) =

�

2�

0

() 0

0 2�

0

()

�

:

Hene the index of p is 0.

Lemma 10. Let f : M ! R be a Morse funtion. Let p 2 M be a ritial point of f of

index 2. Assume that f(p) = . Let a �  be any real number. Then there exists a Morse

funtion g on M having the same ritial points with same indies as f and whih oinides

with f outside some anonial neighbourhood of p and is suh that g(p) = a.

Proof. Use similar arguments as above.

Lemma 11. Let f : M ! R be a Morse funtion. Let p 2 M be a ritial point of f of

index 1. Assume that f(p) = . Let � 2 R be any real number. Then there exists a Morse

funtion g on M having the same ritial points with same indies as f and whih oinides

with f outside some anonial neighbourhood V of p and is suh that g(p) = + �.

Proof. The idea is to hange the model funtion g

1

suitably. We will show that for any

real number �, there exists a bounded neighbourhood say U

1

of (0; 0) in R

2

and a Morse

funtion h : R

2

! R suh that h(x; y) = x

2

� y

2

for (x; y) =2 U

1

, h(0; 0) = � and (0; 0) is the

only ritial point of h and index of (0; 0) is 1. Let us assume this laim and omplete the

proof.

PSfrag replaements

f
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Figure 7: Modi�ation at a saddle point

Choose a anonial parameterization (�; U) suh that U

1

� U . Now de�ne g : M ! R

as

g(x) =

(

f(p) + h Æ �

�1

(x) x 2 �(U) = V ;

f(x) x =2 V :

12



Then g(p) = + h(0; 0) = + �. It is easy to see that g is smooth. Also ritial points of g

in V are ritial points of h Æ �

�1

in U . Hene p is the only ritial point of g in V and its

index is 1. See Fig. 7.

Now let us prove the laim made earlier. Let � > 0 be �xed. Let w : R ! R be

a smooth non negative funtion suh that w(0) = 1, w

0

(0) = 0; yw

0

(y) � 0for all y and

w(y) = 0 for y =2 (�a; a) for some positive number a. Also de�ne a smooth non negative

funtion � : R! R suh that �(0) = �, �

0

(0) = 0, �(x) = 0 for x =2 (�a; a) for some positive

number a and suh that

2x+ �

0

(x) > 0 if x > 0;

2x+ �

0

(x) < 0 if x < 0:

Note that sine � is �xed, this will put some bounds on a.

Constrution of w. Consider w

1

= 1�

x

2

a

2

. Clearly w

1

(0) = 1. Now smoothen w

1

at

its roots �a to get w. Sine w

0

(x) =

�2x

a

2

, xw

0

(x) � 0.

1
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Constrution of �. Consider �

1

(x) = � �

�x

2

a

2

. Now smoothen �

1

at its roots �a to

get �. Clearly �(0) = �, and �(x) = 0 for x =2 (�a; a). We want 2x + �

0

(x) > for x > 0,

that is, 2x � 2x

�

a

2

> 0 for x > 0 and 2x� 2x

�

a

2

< 0 for x < 0. So, hoose a

2

> �. Then �

has the required properties. See Fig. 8

Now de�ne

h(x; y) = x

2

� y

2

+ �(x)w(y):

Then h(0; 0) = � and h(x; y) = x

2

� y

2

for (x; y) =2 ([�a; a℄� [�a; a℄). Partial derivatives of

h are

h

x

= 2x+ �

0

(x)w(y) & h

y

= �2y + �(x)w

0

(y):

Hene (0; 0) is a ritial point of h. Let (x; y) 6= 0. Sine 0 � w � 1,

h

x

= 2x+ �

0

(x)w(y) > 2x+ �

0

(x) > 0 if x > 0;

h

x

= 2x+ �

0

(x)w(y) < 2x+ �

0

(x) < 0 if x < 0:

13



Hene if x 6= 0, h

x

6= 0. If x = 0, then

h

y

= �2y + �(x)w

0

(y) < 0 if y > 0, as w

0

(y) < 0

h

y

= �2y + �(x)w

0

(y) > 0 if y < 0, as w

0

(y) > 0:

Hene (0; 0) is the only ritial point of h. Also

h

xx

= 2 + �

00

(x)w(y), h

yy

= �2 + �(x)w

00

(y), and h

xy

= �

0

(x)w

0

(y):

The Hessian

H(h)(0; 0) =

�

2 + �

00

(0) 0

0 �2 + �w

00

(0)

�

:

Using the onstrution of w and � it is easy to show that index of (0; 0) is 1.

For � < 0, take h(x; y) = x

2

� y

2

� w(x)�(y) and proeed as before.

Remark 4. In Lemma 9, Lemma 10 and Lemma 11 we may pass ritial levels. (See Fig. 6

and Fig. 7.)

De�nition 8. Let f : M ! R be a Morse funtion. Let X

i

; Y

j

and Z

k

be ritial points

of f of indies 0; 1 and 2 respetively. We say that f is an ordered Morse funtion if

f(X

i

) < f(Y

j

) < f(Z

k

) for all i; j; k and if it separates ritial points, that is, f(x) 6= f(y)

for any two distint ritial points x and y.

Theorem 12. On any surfae M there exists an ordered Morse funtion.

Proof. Let f be a Morse funtion on M . Let a; b 2 R; a < b be real numbers suh that

all the ritial points of index 1 of f lie in f

�1

(a; b). By Lemma 9 we an �nd a Morse

funtion suh that all the ritial values of index 0 are less than a. Similarly by Lemma 10

we an �nd a Morse funtion suh that all the ritial values of index 2 are greater than b.

Similarly we an separates ritial points.

4 Crossing Critial Levels of Index 0 or 2

Let a and b be regular values of f suh that a < b. Let W (a; b) ontain a ritial point say

p of f . Then Theorem 8 need not be true. In this setion we see what happens when we

ross a ritial level.

Theorem 13. Let f : M ! R be a Morse funtion on M and p 2M , a ritial point of f .

Let f(p) = . Let a and b be regular values suh that W (a; b) does not ontain any ritial

point other than p. Then the following hold:

� If p is a ritial point of index 0, then M(b) is di�eomorphi to a disjoint union of

M(a) with a dis D whih is a anonial neighbourhood of p. Also V (b) is di�eomor-

phi to a disjoint union of V (a) with a irle whih is the boundary of D.

14



� If p is of index 2, then M(b) is di�eomorphi to M(a) with a dis D attahed along

one of the omponents of V (a) and the attahing map is injetive as map from the

boundary of D to V (a). Also V (a) is di�eomorphi to a disjoint union of V (b) with

a irle whih is the boundary of D.

Proof. It is enough to prove the lemma for regular values �; � suh that a < � <  < � < b.

This follows from theorem 8. Choose an � > 0 suh that W (� 2�; + 2�) does not ontain

any ritial point of f other than p. Hene U(�) and U(2�) are anonial neighbourhoods

of p. For onveniene let us assume that a = � � and b = + �.

Let p be of index 0. In this ase M(b) \ U(�) = U(�), di�eomorphi to a dis. Let

us denote U(�) by D. V (b) \ U(�) is the boundary of the dis D. Sine p is of index

0 and U(�), a anonial neighbourhood of p, f(x) � f(p) =  for all x 2 U(�). Hene

M(a) \ U(�) = ; = V (a) \ U(�). See Fig. 9.

Choose a smooth non negative funtion � : M ! R suh that � vanishes in U(�) and

is equal to 1 outside U

0

= U(2�). Also onsider a smooth funtion � : M ! R suh that �

vanishes outside W (� 2�; + 2�) and is 1 in W (� �; + �). Now de�ne a vetor �eld

Y (x) =

(

�(x)�(x)

kgrad(f(x))k

2

grad(f(x)) x 2 W (� 2�; + 2�) n U(�) ;

0 otherwise.
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Figure 9: Crossing a loal minimum

Then Y is transversal to level urves of f .
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Let � be the one-parameter group of di�eomorphism assoiated with the vetor �eld

Y . We laim that the map �

b�a

maps M(a) to M(b) n D. For x 2 M , de�ne g(t) :=

f Æ �

t

(x). Then g

0

(t) = �(�

t

(x))�(�

t

(x)) � 1. Using Mean Value Theorem we an show

that �

b�a

(M(a)) � M(b). (Reall arguments in Theorem 8.) Sine Y (x) = 0 for x 2 U(�),

�

t

(x) = x for all t 2 R and x 2 U(�). That is, the integral urves starting in U(�) are

onstant. Hene, if x =2 U(�); �

t

(x) =2 U(�) for all t 2 R. Thus �

b�a

maps M(a) into

M(b) nD.

We now show that �

b�a

is onto as a map fromM(a) toM(b)nD. Let x 2M(b)nD. Sine

�

b�a

is a di�eomorphism on M , there exists y 2 M suh that �

b�a

(y) = x. We laim that

f(y) � a. If f(y) > a, then we laim that f(�

b�a

(y)) > b. Let f(y) > a and f(�

b�a

(x)) � b.

Sine g is inreasing, a < f(�

b�a

(y)) � b. But then f(�

b�a

(y)) = b� a+ f(y) > b. This is

a ontradition. This proves that �

b�a

is onto as a map fromM(a) to M(b)nD. Also �

b�a

is identity on D. Hene �

b�a

: M(a)

`

D!M(b) nD [D =M(b) is a di�eomorphism.

Lastly we laim that M(b) is di�eomorphi to disjoint union of M(a) and D. Sine

M(a) is ompat, �

b�a

(M(a)) = M(b) n D is ompat and hene losed in M(b). D is

ompat implies M(b) nD is open in M(b). Hene D is a omponent of M(b). This proves

that M(b) is homeomorphi to disjoint union of M(a) and a dis D. The last part of the

�rst assertion follows from Theorem 6.

0

0
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Figure 10: Crossing a loal maximum

Let index of p be 2. For onveniene let us assume that  = 0; a = �� and b = �. De�ne

g := �f . Then p is a ritial point of g of index 0. Hene by the �rst part of the theorem

f

M(�) nD is di�eomorphi to

f

M (��), where

f

M(��) = fx 2M : �f(x) � ��g = fx 2M : f(x) � �g = M

0

(�);

f

M(�) = fx 2M : �f(x) � �g = fx 2M : f(x) � ��g = M

0

(��);
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and D is a anonial neighbourhood U(�) of p. See Fig. 10.

Hene intM

0

(��) is di�eomorphi to int (M

0

(�)

`

D) via the map �

b�a

(theorem 6).

Sine �

b�a

is a di�eomorphism on M , (intM

0

(��))



= M(��) and (int (M

0

(�)

`

D))



=

M(�) n intD are smooth manifolds. M(��) is di�eomorphi to M(�) n intD. Hene M(�)

is di�eomorphi to M(��) [ D where D is attahed to M(��) via an injetion on �D to

V (��). The last part of the seond assertion follows from theorem 6.

Remark 5. Analogue of theorem 13 is true in the ase M is of dimension n and p is a

ritial point of index 0 or n. In this ase dis D is of dimension n.

Proposition 14. Let f be an ordered Morse funtion on a surfae M . Suppose that f has

no ritial points of index 1. Then M is homeomorphi to a sphere.

Proof. Let X

1

; X

2

; : : : ; X

m

be ritial points of index 0 and Z

1

; Z

2

; : : : ; Z

n

be ritial points

of index 2. First of all we laim that n = m.

Let a be a regular value of f suh that f(X

i

) < a < f(Z

j

) for all i and j. Then using

indution on number of ritial points of index 0 we an show thatM(a) is a disjoint union

of m diss, say, fD

i

g

1�i�m

and its boundary is a disjoint union of m irles. Similarly M

0

(a)

is disjoint union of n diss, say, fD

0

i

g

1�i�n

and its boundary is disjoint union of n irles.

Sine V (a) is the ommon boundary of M(a) and M(

0

a); m = n.

Let n = 1. Sine f has one ritial point of index 0 and one ritial point of index 2,

M(a) is a dis say D and M

0

(a) is also a dis say D

0

. M is obtained by attahing D

0

to D

along their boundaries. Hene M is homeomorphi to a sphere.

Lastly we laim that n = 1. Let a be as above. Then M is obtained by attahing n

diss fD

0

i

g

1�i�n

(homeomorphi to M

0

(a)) to n diss fD

i

g

1�i�n

(homeomorphi to M(a))

along their boundaries. Sine the attahing map is injetive, D

0

i

is attahed to some D

j(i)

resulting in a sphere. Hene M is homeomorphi to n disjoint spheres. Thus if n > 1, then

M will be disonneted. This proves that n = 1.

Theorem 15. Any losed 1-manifold is homeomorphi to a irle S

1

.

Proof. Let M be a losed 1-manifold and f be an ordered Morse funtion on M . Let

X

1

; X

2

; : : : ; X

m

be ritial points of index 0 and Y

1

; Y

2

; : : : ; Y

n

be ritial points of index

1. Let a be a regular value of f suh that f(X

i

) < a < f(Y

j

) for all i and j. Then M(a) is

a disjoint union of m ars fI

j

g

1�j�m

and M

0

(a) is disjoint union of n ars fJ

k

g

1�k�n

. This

follows from the analogue of theorem 13 (the ase when the index is zero, see the remark 5).

The boundary ofM(a) onsists of 2m points and the boundary of M

0

(a) onsists on 2n

points. Sine V (a) is the ommon boundary of M(a) and M

0

(a), m = n.

We proeed by indution on n. If n = 1, thenM is homeomorphi to a irle. This an be

seen in the same way as Proposition 14. Let the result be true for any k < n. Let X

1

be suh

the f(X

1

) > f(X

i

) for all 2 � i � n. Let the ar I be the omponent ofM(a) ontaining X

1

.

Let A and B be boundary points of I . Let the ar J be the omponent ofM

0

(a) ontaining

B as one of the boundary point. Let J be a anonial neighbourhood of a ritial point say
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Y

1

of index 1. We an �nd a Morse funtion g onM having the same ritial points with the

same indies as f and is suh that g(X

i

) < a < g(Y

1

) < g(Y

j

) for all i and j 6= 1. Let a

1

; b

1

be regular values of g suh that g(X

i

) < a

1

< g(X

1

) < g(Y

1

) < b

1

< g(Y

j

) for all i 6= 1 and

j 6= 1. Let K be the omponent of g

�1

[a

1

; b

1

℄ ontaining X

1

and Y

1

. We now modify the

funtion g to a Morse funtion h whih agrees with f outside a oordinate neighbourhood

of K and suh that h has no ritial points in that neighbourhood K. See Fig. 11. Then

h has only n � 1 ritial points of index 0. Hene by indution M is homeomorphi to a

irle.

Remark 6. If f is a smooth funtion on a surfae M and a is a regular value of f , then

by Theorem 7 and Theorem 15, V (a) is a disjoint union of irles. Hene the boundary of

any ompat surfae is homeomorphi to a disjoint union of irles.

5 Crossing a Critial Level of Index 1

Theorem 16. Let f : M ! R be a Morse funtion on a surfae M . Let p be a ritial

point of f of index 1. Let a; b with a < b be regular values of f suh that W (a; b) ontains

no ritial points of f other that p. Then M(b) is homeomorphi to M(a) with a retangle

attahed to two disjoint segments of V (a) along pair of opposite sides of the retangle.

Proof. Choose � suh thatW (�3�; +3�) does not ontain any ritial point of f other than

p. For onveniene let a = �2� and b = +2�. Let (�;W ) be a anonial parameterization

entered at p. Let U(2�) = V � W be a model neighbourhood of (0; 0). See Fig. 12. Let

�(V ) = U . Let I

0

= B

0

C

0

and J

0

= F

0

G

0

be as in the Fig. 12. Let I = BC = �(I

0

) and

J = FG = �(J

0

). Then I; J � V (a). Let K = V (a) n (I [ J). De�ne T = W (a; b) n U .

Note that T need not be onneted. We laim that T is di�eomorphi to K � [a; b℄.
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We hoose a ompat tubular neighbourhood T

1

of T as follows: Let V

1

� W be a

neighbourhood of (0; 0) bounded by the urves

X

2

� Y

2

= a� � �;X

2

� Y

2

= b� + �; and XY = b� � �;XY = a� + �:

See Fig. 12. Let U

1

= �(V

1

). Now de�ne T

1

:= W (a� �; b+ �) n U

1

.

0
0
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2

for the proof of theorem 16
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Consider a smooth non negative map � : M ! R suh that � is identially 1 in T and

it vanishes outside T

1

. De�ne a vetor �eld Y on M as

Y (x) =

(

�(x)

kgrad(f(x))k

2

grad(f(x)) x 2 T

1

0 x =2 T

1

Let ' be the one-parameter group of di�eomorphisms generated by the vetor �eld Y .
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De�ne a map �: K� [a; b℄! T as �(x; t) = '

t�a

(x). We laim that this is the required

di�eomorphism.

First of all let us show that �(x; t) 2 T for all x 2 K and t 2 [a; b℄. De�ne a map

g : R! R as g(t) = f Æ'

t�a

(x). Sine g

0

(t) = �('

t�a

(x)), we have 0 � g

0

(t) � 1. Note that

g(a) = a. By Mean Value Theorem g(t)� g(a)� t�a. Hene g(t) � g(a)+ t�a � b. Sine

g is inreasing, g(t) � g(a) = a for all t 2 [a; b℄. Hene '

t�a

(x) 2 W (a; b) for all t 2 [a; b℄

and for all x 2 K. Next we laim that �(x; t) =2 intU for all t 2 [a; b℄ and x 2 K. Let

A

0

B

0

; E

0

F

0

; C

0

D

0

; G

0

H

0

be as in the Fig. 12. Sine (�;W ) be a anonial parameterization,

their images AB;EF;CD;GH are integral urves of the vetor �eld Y . See Fig. 13. Assume

for some x 2 K and t 2 [a; b℄; '

t�a

(x) 2 intU . Then '

t�a

(x) will interset one of the above

integral urves AB;EF;CD;GH as they are the ommon boundary of T and U . Hene it

is one of these urves and annot lie in the intU , a ontradition to our assumption. Hene

'

t�a

(x) 2 T for all t 2 [a; b℄; x 2 K.

� is one-one follows from the fat that g(t) is linear for t 2 [a; b℄ and '

t�a

is a di�eo-

morphism as a map from M to M .

Next we show that � is onto. Let y 2 T . Then the urve t 7! '

t

(y) is an integral urve

starting at y. De�ne a map h : R ! R de�ned as h(t) = f Æ '

t

(y). Then h is smooth,

h

0

(t) � 0 and h

0

(t) = 1, if '

t

(y) 2 T . Note that h(0) = f(y) � a. We laim that there

exists t

0

� 0 suh that h(t

0

) = a. If h(0) = a, then y 2 K and �(y; a) = y. Let h(0) > a.

Assume h(t) > a for all t < 0. Sine h is inreasing h(t) � h(0) � b for all t < 0. Hene

'

t

(y) 2 W (a; b) for all t < 0. Also for y 2 T , t 7! '

t

(y) is the integral urve starting at y

in T . By previous argument '

t

(y) =2 intU for all t < 0. Hene h is linear, whih implies

that h(t) = t + f(y) > a for all t < 0, a ontradition. Hene there exists t

0

< 0 suh that

h(t

0

) = a. Sine h is inreasing for all t 2 [t

0

; 0℄; h(t

0

) � h(t) � h(0). Hene h(t) is linear

for t 2 [t

0

; 0℄. This implies that a = h(t

0

) = t

0

+ f(y) � t

0

+ b and hene a � t

0

2 [a; b℄.

h(t

0

) = f Æ '

t

0

(y) = a implies that '

t

0

(y) 2 V (a). If '

t

0

(y) 2 V (a) nK, then '

t

(y) has to

interset one of the integral urves. We reah a ontradition by above arguments. Hene

'

t

0

(y) 2 K. Also

�('

t

0

(y); a� t

0

) = '

a�t

0

�a

Æ '

t

0

(y) = '

0

(y) = y:

This proves that � is a di�eomorphism.

Divide U into three parts P;Q and R (see Fig. 13). Eah of them is homeomorphi to a

retangle. Let us de�ne a homeomorphism �

1

: I� [a; b℄! P suh that �

1

(B� t) = �(B; t)

and �

1

(C � t) = �(C; t). Similarly de�ne a homeomorphism �

2

: J � [a; b℄! Q suh that

�

2

(G� t) = �(G; t) and �

2

(F � t) = �(F; t). Observe that T [ P [Q = W (a; b) nR. Also

K [ I [ J = V (a) and hene M(a) [ T [ P [ Q = M(b) nR. See Fig. 14. De�ne a map

	: V (a)� [a; b℄! T [ P [Q as:

	(x; t) =

8

>

<

>

:

�(x; t); x 2 K

�

1

(x; t); x 2 I

�

2

(x; t); x 2 J

	 is well de�ned and is a homeomorphism. Hene � is homeomorphi to M(a) [ (V (a)�

[a; b℄) along a homeomorphism from V (a) to V (a) � a. Note that by Remark 6, V (a) is
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Figure 14: Attahing a retangle

homeomorphi to disjoint union of irles and V (a) � [a; b℄ is homeomorphi to disjoint

union of ylinders.

Now M(a) [ T [ P [Q is homeomorphi to M(a) with ylinders attahed in the above

manner whih is homeomorphi to M(a). This implies that M(b) nR is homeomorphi to

M(a). Now M(b) is obtained by attahing the retangle R to M(a) along opposite sides

ED and AH .

Analysis of rossing ritial Point of index 1

Let p be a ritial point of index 1 of a Morse funtion f on M . Let a; b; a < b be regular

values of f suh that f

�1

[a; b℄ ontains no ritial points of f other than p. Then we have

shown that M(b) is homeomorphi to M(a) with a retangle R attahed to two disjoint

segments I and J of V (a) along opposite sides of the retangle. Let us analyze the di�erent

ways of attahing the retangle R to V (a) and the omponent of W (a; b) ontaining p.

Case 1. Let I and J lie in 2 di�erent omponents of V (a). See Fig. 15.

In this ase the number of omponents of V (b) � the number of omponents of V (a) =

�1. That is, the boundary omponents have redued by one after passing this level.

Case 2. Let I and J lie in the same omponent of V (a). We attah the retangle R
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Figure 15: Case 1

straight. See the Fig. 16.

In this ase the number of omponents of V (b) � the number of omponents of V (a) = 1.

That is, number of omponents inreases by one after passing this ritial level.
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Figure 16: Case 2

Thus in the two ases the omponent of W (a; b) ontaining p is homeomorphi to a dis

with two holes.

Case 3. If I and J lie in the same omponent of V (a) and the retangle R is attahed

with a twist. See the Fig. 17.
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Figure 17: Case 3

In this ase the number of omponents do not hange . The omponent of W (a; b)

ontaining p is homeomorphi to a M�obius band without a dis. In this ase we have a

homeomorphi opy of a M�obius band inside M .

Remark 7. We an attah the retangle R with more than 2 twists but this redues to the

earlier ases. (Exerise.)
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De�nition 9. Let f be a Morse funtion on a surfae M . Let a and b be regular values of

f with a < b. Let W (a; b) ontain only one ritial point say p of index 1. Let the number

of omponents of V (a) and V (b) be m and n respetively. Then we say that

1. p is of type I of the �rst kind if m� n = 1.

2. p is of type I of the seond kind if m� n = �1.

3. p is of type II if m = n.

See Fig. 18

Figure 18: Critial points of index 1 and their types

Corollary 17. Let f be an ordered Morse funtion on M . Let a; b; a < b be regular values

of f suh that W (a; b) ontains p ritial points of index 0 and p ritial points of index 1

of the type I of the �rst kind. Then M(a) is homeomorphi to M(b).

PSfrag replaements

a

a

1

a

2

a

3

X

1

X

2

X

3

X

4

Y

3

Y

1

Y

2

b

D

1

D

2

Figure 19: Illustration for Corollary 17
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Proof. Sine f is an ordered Morse funtion, M(a) ontains only ritial points of index 0.

Let the number of ritial points of index 0 in M(a) be q. Then M(a) is disjoint union of

q diss. We have to show that M(b) is also homeomorphi to disjoint union of q diss. Let

fX

i

g

1�i�p+q

be the ritial points of index 0 and fY

j

g

1�j�p

, the ritial points of index 1

of type I of the �rst kind in M(b). Let a

1

; a

2

; : : : ; a

p�1

; a

p

be regular values of f suh that

f(X

i

) < a < f(X

j

) < a

1

< f(Y

1

) < a

2

< f(Y

2

) < a

3

< � � �< a

p

< f(Y

p

) < b

for all 1 � i � q and q + 1 � j � p+ q.

Then M(a

1

) is homeomorphi to the disjoint union of p + q diss, say, fD

i

g

1�i�p+q

.

Sine Y

1

is a ritial point of type I of the �rst kind, there exist two diss say D

1

and D

2

in M(a

1

) whih are attahed to eah other by a retangle resulting in a dis again. See

Fig. 19. Hene M(a

2

) is a disjoint union of p + q � 1 diss. Proeeding in this fashion we

redue one dis when we pass a ritial Y

j

. Hene M(b) is the disjoint union of p+q�p = q

diss. This proves that M(a) is homeomorphi to M(b).

Example 9. Let us illustrate the passing the ritial levels in Example 7. Take the unit

dis model of P

2

. See Fig. 20.

 
. 
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Figure 20: Dis Model for P

2

Here X; Y; Z are ritial points of index 0; 1; 2 respetively. (Projet S

2

� R

3

onto unit

dis in R

2

and we obtain Fig. 20 and Fig. 21 and the required ritial points of the funtion.)

P;Q;R are the anonial neighbourhoods of X; Y; Z respetively.

Now Q is attahed to P along segments I and J in a twisted manner as in the Fig. 22.

Now R is attahed to P [ Q along the boundary AFCD giving P

2

. Here Y is a ritial

point of type II. See Fig. 22.

Proposition 18. Let f : M ! R be an ordered Morse funtion. Let f have only one ritial

point of index 0; 1 and 2 eah. Then M is homeomorphi to a projetive plane.

Proof. Let X , Y and Z be ritial points of index 0; 1 and 2 respetively. Let a and b are

regular values of f suh that f(X) < a < f(Y ) < b < f(Z). Then M(a) and M

0

(b) are
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Figure 22: Projetive plane minus a dis after passing the minimum and the saddle point

diss. Sine V (a) and V (b) have only one omponent eah, Y has to be of type II. Hene

by ase 3 of analysis, M(b) is a M�obius band. M is obtained by attahing a dis to the

M�obius band M(b), hene M(a) is homeomorphi to a projetive plane.

Proposition 19. Let f have only one ritial point of index 0, only one ritial point of

index 2 and two ritial points of index 1 of type I. Then M is homeomorphi to a torus.

Proof. Let X be the ritial point of f of index 0, Y

1

; Y

2

, ritial points of index 1 and

Z, the ritial point of index 2. Let a and b be regular values of f whih separate ritial

points of index 0, 1 and 2. That is, f(X) < a < f(Y

i

) < b < f(Z). Then M(a) and M

0

(b)

are diss D and D

0

respetively. Let  be a regular value of f whih separates Y

1

and Y

2

.

Without loss of generality assume that f(Y

1

) <  < f(Y

2

).

By Theorem 16, M() is obtained by attahing a retangle to M(a). When we pass a

ritial point of index 1 of type I of the �rst kind we attah a retangle to disjoint segments

I and J belonging to di�erent omponents of V (a). Sine V (a) has only one omponent, Y

1

is of �rst kind. That is, M() is homeomorphi to a ylinder. NowM(b) has one boundary

omponent and is obtained by attahing a retangle to M(). This fores Y

2

to be of the

seond kind. Thus M(b) is homeomorphi to a retangle attahed to a ylinder along two

disjoint segments in di�erent omponents of the boundary of the ylinder. (See Fig. 23.)

Hene M(b) is homeomorphi to a torus but for a dis. M is obtained by attahing a dis

to M(b), is homeomorphi to a torus.
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Figure 23: Critial points on a torus

6 Conneted Sums and All that

De�nition 10. A ompat surfae M (with or without boundary) is said to be non ori-

entable if it ontains a homeomorphi opy of a M�obius band.

Proposition 20. The M�obius strip and the projetive plane are non orientable.

De�nition 11. Let M

1

;M

2

be losed surfaes and M

0

i

for i = 1; 2 be the spae obtained

by removing a dis from M

i

. Then the boundary of M

0

i

is a irle. The onneted sum of

M

1

and M

2

is the spae obtained attahing M

0

1

to M

0

2

via a homeomorphism from �M

0

1

to

�M

0

2

. We will denote this by M

1

#M

2

.

Remark 8. The onneted sum is independent of the diss removed and the homeomor-

phism on the boundary.

Let T

n

denote the onneted sum of n tori and P

n

denote the onneted sum of n

projetive planes. Let V

n

denote T

n

but for a dis and U

n

denote P

n

but for a dis. By

onvention T

1

is a torus and P

1

= P

2

is a projetive plane.

Let M and N be surfaes with same number of boundary omponents. When we say

that M is attahed to N along the boundary we mean that they are attahed via a home-

omorphism from �M to �N .

Let us admit the following fats about the onneted sum of two surfaes. For more

details refer [4℄ or [6℄.

Observation 1. P

2

is a dis attahed to a M�obius band along the boundary.

Observation 2. Let M be a losed surfae. Then M # P

2

is homeomorphi to the spae

obtained by removing a disk from M and attahing a M�obius band along the boundary.
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Observation 3. P

q

is homeomorphi to the spae obtained by removing q disjoint diss

from S

2

and attahing q M�obius bands along the boundary.

Observation 4. T

q

is homeomorphi to the spae obtained by removing 2q disjoint diss

from S

2

and attahing q handles (ylinders) along the boundary.

Proposition 21. The onneted sum of T

m

and P

n

is homeomorphi to P

2m+n

.

Proof. First of all we laim that the onneted sum of T

1

and P

2

is homeomorphi to P

3

.

We denote homeomorphism by '. Let us assume this laim and prove the result. To prove

the result let us �rst prove that T

m

# P

1

' P

2m+1

.

We will proeed by indution on m. The ase m = 1 follows from the laim above. Let

us assume the result for all k < m. Then

T

m

# P

1

' T

m�1

# T

1

# P

1

' T

m�1

# P

3

(�rst laim)

' T

m�1

# P

1

# P

2

' P

2m�2+1

# P

2

( by indution )

' P

2m+1

:

Now let us prove that T

m

# P

n

' P

2m+n

. We apply indution on n. The ase n = 1 follows

from above. Assume the result for k < n. Then

T

m

# P

n

' T

m

# P

n�1

# P

1

' P

2m+n�1

# P

1

(by indution)

' P

2m+n

:
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Figure 24: Conneted sum of P

1

and T

1

We now prove our laim. The idea is to ut 3 M�obius bands from T

1

# P

1

and then

glue the remaining part to get S

2

with 3 holes. See Fig. 24, Fig. 25 and Fig. 26.

Torus is homeomorphi to a retangle with AB identi�ed to DC and AD identi�ed to

BC. Also P

1

is homeomorphi to D

2

with antipodal points identi�ed. See Fig.24

In Fig. 25M

1

,M

2

andM

3

are the three M�obius bands whih are removed from T

1

# P

1

.

Quotienting the remaining region after identifying R

i

for 1 � i � 7 we obtain S

2

with three

holes. See Fig. 26.
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Figure 25: 3 M�obius bands on T

1

# P

1

Proposition 22. T

n

(respetively P

n

) is not homeomorphi to T

n

0

(respetively P

n

0

) for

n 6= n

0

. Also T

n

is not homeomorphi to P

m

for any positive integers n and m.

Proof. Refer [4℄ or [6℄.

Ex 1. Let V

0

1

denote torus without two disjoint diss. The spae obtained by attahing V

0

1

to V

n

along the boundary of V

n

is homeomorphi to V

n+1

.

Similarly, let U

0

1

denote a projetive plane without two disjoint diss. The spae obtained

by attahing U

0

1

to U

n

along the boundary of U

n

is homeomorphi to U

n+1

.

7 Classi�ation of Surfaes

Heneforth we assume thatM is a losed surfae and f : M ! R an ordered Morse funtion

on M . Let fX

i

g

1�i�n(0)

be ritial points of index 0, fY

i

g

1�i�n(1)

, ritial points of index

1 and fZ

i

g

1�i�n(2)

, ritial points of index 2. Let a and b be regular values of f suh that

f(X

i

) < a < f(Y

j

) < b < f(Z

k

) for all 1 � i � n(0); 1 � j � n(1) and 1 � k � n(2).

Lemma 23. Let the notations be as above. Then there exist two regular values ; d;  < d

and an ordered Morse funtion g having the same ritial points with the same indies as

f suh that:

� g

�1

(�1; ℄ ontains n(0)� 1 ritial points of index 1 and g

�1

(�1; ℄ is homeomor-

phi to a dis.

� g

�1

[d;1) ontains n(2)� 1 ritial points of index 1 and g

�1

[d;1) is homeomorphi

to a dis.

� g

�1

[; d℄ ontains n(1)� n(0)� n(2) + 2 ritial points of index 1.
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Figure 26: T

1

# P

1

without 3 M�obius bands

Proof. Sine all the ritial points of index 1 are below the level b, it is enough to improve

the funtion f below the level b. Also, seond assertion follows from the �rst by taking �f

in plae of f .

M(a) is disjoint union of n(0) diss, say, fD

i

g

1�i�n(0)

and M

0

(b) is disjoint union n(2)

diss say fD

0

j

g

1�j�n(2)

. That M(b) is onneted follows from the fat that M is obtained

by attahing M

0

(b) (disjoint union of diss) to M(b) along their boundaries.

First of all we prove the existene of the level 

If n(0) = 1, then take g = f and  = a.

If n(0) � 2, we proeed reursively. If all ritial points of index 1 are of type II,

then M(b) is disonneted. Hene there exists a ritial point of index 1 of type I. If all

ritial points of index 1 of type I are of the seond kind then again M(b) is disonneted.

Hene there exists j 2 f1; 2; : : : ; n(1)g suh that Y

j

is of type I of �rst kind. Without

loss of generality assume that j = 1. Now hoose an ordered Morse funtion g

1

having

the same ritial points with same indies as f and a regular value a of g

1

suh that

g

1

(X

i

) < a < g

1

(Y

1

) < a

1

< g

1

(Y

j

) for all 1 � i � n(0) and j 6= 1. By de�nition 9,

V (a

1

) has one less omponents than V (a). If n(0)� 1 = 1, then we are done. Otherwise

proeeding in similar way we get another ordered Morse funtion g

2

, a level a

2

and a ritial

point Y

2

of type I of �rst kind suh that g

2

(X

i

) < a < g

2

(Y

1

) < a

1

< g

2

(Y

2

) < a

2

< g

2

(Y

j

)

for all 1 � i � n(0) and j 6= 1; 2. Then the number of omponents of V (a

2

) is n(0) � 2.

Reursively we get an ordered Morse funtion g

n(0)�1

, a level a

n(0)�1

suh the g

n(0)�1

(X

i

) <

a < g

n(0)�1

(Y

j

) < a

n(0)�1

for all 1 � i � n(0) and 1 � j � n(0)� 1. De�ne  := a

n(0)�1

and

g := g

n(0)�1

. This proves the �rst part of the �rst assertion of the lemma.

g

�1

(�1; ℄ is homeomorphi to a dis follows from Corollary 17.
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Corollary 24. Let the notations be as in the Lemma 23. Then the number of ritial points

of type I between the levels  and d is even, half of whih are of the �rst kind and half are

of the seond kind and outside these levels all ritial points are of type I.

Theorem 25 (Classi�ation). Let f : M ! R be an ordered Morse funtion as in the

laim of Lemma 23. Let f have q ritial points of index 1 in W (; d). Then M is homeo-

morphi to P

q

or T

p

, where q = 2p.

Proof. Case 1. Let us �rst assume that all ritial points of index 1 in W (; d) are of type

II. In this ase we laim that M is homeomorphi to P

q

.

Let us proeed by indution on the number of ritial points in W (; a) where a >  is

a regular value of f . We laim that if W (; a) ontains n ritial points of index 1 of type

II then M(a) is homeomorphi to U

n

.

Let a 2 R be a regular value of f suh that W (; a) ontains only one ritial point of

index 1. Then M(a) is homeomorphi to a M�obius band, (Proposition 18), whih is same

as U

1

.

Let us assume the result for k = q � 1. Let d be a regular value of f suh that W (; d)

ontains all the q ritial points of index 1. We laim that M(d) is homeomorphi to U

q

.

Choose a regular value d

1

of f suh that W (; d

1

) ontains q � 1 ritial points of f of

index 1. Then by indution hypothesis M(d

1

) is homeomorphi to U

q�1

. Now M(d) is

homeomorphi to U

q

follows from Exerise 1. Hene M homeomorphi to P

q

.

Case 2. Let all ritial points of index 1 inW (; d) be of type I. Sine the number of rit-

ial points of index 1 of type I in W (; d) is even, q = 2p for some integer p. (Corollary 24.)

In this ase we laim that M is homeomorphi to T

p

.

We modify the funtion f in W (; d) to an ordered Morse funtion having same number

of ritial points as f with the same indies and suh that every ritial point of index 1

of type I of seond kind is followed by a ritial point of index 1 of type I of the �rst kind.

(Theorem 16 and Corollary 24.) We assume that this is done.

Sine M

0

(d) is a dis, it is enough to prove that M(d) is homeomorphi to V (p). Let us

proeed by indution on the number of ritial points in W (; a) where a >  is a regular

value of f . We laim that if W (; a) ontains n pairs of ritial points of index 1 then M(a)

is homeomorphi to V

n

.

Let a be a regular value of f suh that W (; a) ontains a pair of ritial points of index

1 of type I. Then, by Proposition 23,M(a) is homeomorphi to V

1

. Let us assume the result

for k = p� 1. Let d be a regular value of f suh that W (; d) ontains all p pairs of ritial

points of index 1 of type I. We show thatM(d) is homeomorphi to V

p

. Let d

1

be a regular

value of f suh that W (; d

1

) ontains p� 1 pairs of ritial points of index 1 of type I of f .

By indution hypothesis M(d

1

) is homeomorphi to V

p�1

. Hene M(d) is homeomorphi

to V

p

. ( Exerise 1.) Thus M is homeomorphi to T

p

.

Case 3. Let f have ritial points of index 1 of type I as well as of type II in W (; d).

In this ase we laim that M is homeomorphi P

q

.
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There exists an integer k; 2k < q suh that f has 2k ritial points of index 1 of type I

in W (; d). (Corollary 24.) The remaining ritial points of f of index 1 are of type II. We

modify f in W (; d) to an ordered Morse funtion g suh that if Y; Y

0

2 W (; d) are ritial

points of index 1 of type I and type II respetively, then g(Y ) < g(Y

0

). Further assume that

every ritial point of g of index 1 of type I of the seond kind is followed by a ritial point

of type I of the �rst kind in W (; d). Let a be a regular value of g whih separates ritial

points of type I and type II in W (; d). By ase 1, M(a) is homeomorphi V

k

. Similarly, by

ase 2, M

0

(a) is homeomorphi to U

q�2k

. (Replae g by �g.) Hene M , whih is obtained

by attahing M

0

(a) to M(a), is homeomorphi to T

k

# P

q�2k

' P

q

.(Proposition 21.)

Theorem 26. LetM be a ompat surfae with boundary. Let k be the number of boundary

omponents of M . Then M is homeomorphi to either T

n

with k holes or P

m

with k holes

for some integers m and n.

Proof. Sine the boundary of a surfae is a losed 1-manifold, eah boundary omponent is

a irle. Attah k diss along the boundary omponents. The resulting surfae is a losed

surfae. By Theorem 25, the resulting surfae is either T

n

or P

m

.
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