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Introduction

In this article we classify all compact surfaces up to homeomorphism using Morse theory.
The single most important tool is the gradient like flow associated with a Morse function.
While it is well-known (and worked out in detail in [4] and [7]) how the homotopy type
changes as when one passes a critical point, the change in homeomorphism type is perhaps
not so well-known. Even in the books where it is done, technical details are inadequate
and a beginning graduate student may have difficulty in filling them. The highlights of
this exposition are the two theorems (Theorem 13 and theorem 16) which tell us how the
homeomorphism type changes as we pass a critical point of index 0, 1 and 2. Once we prove
these theorems the classification follows easily.

We have taken most of the ideas from [2]. We have modified and supplied details for
most of the proofs and changed the style of presentation to make the exposition rigorous
and lucid.

Section 1 deals with basic definitions and Morse Theorem. In Section 2 we introduce the
gradient flow and use it to prove that the diffeomorphism type of a manifold does not change
between the two levels which does not contain a critical point. This is the first application
of the gradient flow and all the details have been painstakingly worked out. Section 3
includes modification of Morse functions and the proofs are an excellent illustration of the
use of bump functions. Section 4 deals with one of the two important theorems regarding
crossing of critical levels of index 0 and 2. In Section 5 we prove theorems regarding
passing of critical level of index 1. For better understanding of the results proved, we have
included classification of closed 1-manifolds and concrete examples such as sphere, torus
and projective plane in Sections 4 and 5. Section 6 includes connected sums. We have not
dealt with the technicalities of unambiguity and associativity of connected sums. In the last
section we finish the classification using the results from earlier sections. The noteworthy
point of the classification is that the orientable as well as non orientable cases are treated
simultaneously.

Since we have aimed the article at fresh graduate students, we have supplied all details
for most of the proofs. We also illustrate the theorems using examples and give simple
applications of the theorem proved. We have included pictures wherever necessary to assist
the geometric understanding of ideas and the results. We hope that this article will introduce
the readers to some of the basic techniques and ideas of differential topology.



1 Critical Points and Morse Lemma

We assume all surfaces to be compact, connected, without boundary (closed) unless stated
otherwise.

Definition 1. Let M be a smooth manifold and f: M — R, a smooth function on M. A
point p € M is said to be a critical point of f if D f(p) is singular on T,,(M). The image
of p under f, that is, f(p) is called a critical value of f. Any real number which is not a
critical value is called a regular value of f.

Example 1. If fis a constant function on M then all points of M are critical points.

Example 2. Let M = S? C R? and f(z,y,2) = z. Then N = (0,0,1) and S = (0,0, —1)
are the two critical points of f.

Example 3. If M is a compact manifold then there exist at least two critical points for
any nonconstant function f on M, namely the maximum and minimum of f.

Example 4. Let M = Tj- the 2-dimensional torus and f be the height function on M.
Then there are four critical points X1, X5, X3, X4. See Fig. 1.
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Figure 1: Critical Points on the torus and the sphere

Let M be a smooth manifold of dimension n. Let ¢ : U — M be a parameterizations,
where U C R™ is an open set containing 0. If ¢(0) = p, then we say that ¢ is centered at p.

Definition 2. Let M be a smooth manifold of dimension n and f: M — R, a smooth
function on M. Let (¢,U) be a parameterization centered at p. Define ¢ := f o ¢. The
Hessian of f with respect to ¢ is a matrix defined as

d%g

Holf) = ([ 09) = (5,5

), 1<i4,5<mn.



Let M be a surface. Let (¢,U) and (¢, V) be two parameterization centered at p. Let
(z,y) and (u,v) be coordinates w.r.t. ¢ and 1 respectively. Let 8(u,v) = (a(u,v), y(u,v))
be the corresponding change of coordinates. Define h(u,v) := g o §(u,v). Then h = fo
and the partial derivatives of h are as follows:

oh
% = 2%y + Gylu,
oh
% = §zTy+ GyYv,s
82h 2 2
oz JoeTu” + 202y Tulu + GyyYu” + Jeluu + GyYuu,
82h 2 2
oz Joz®o” + 200yTolo + JyyYo” + GoTow + Gyl
9%h
Judv = raluTy + GoyTulv T GoTuv + GyoeTolu T GyyYulv + GyYuv-

If p is a critical point of f then g, = 0 = g, and hence the Hessians of f with respect to
¢ and 1 are related as follows :

Hy(f) = J'(8) 0 Hy(f) 0 J (6) (1)
where J(6) denotes the Jacobian of 6.
Definition 3. Let f be a smooth function on a surface M. A critical point p of f is said
to be non degenerate if Hy(f)(p) is non singular for any parameterization ¢ centered at p.
It follows from Eq. 1 that this definition is independent of the parameterization.

Example 5. All critical points in Example 1 are degenerate. All critical points in Example
2 and 4 are non degenerate.

Definition 4. The index of a non degenerate critical point p of smooth function f on a
surface M is the dimension of the maximal subspace of T, M on which H(f) is negative
definite.

The index of a critical point is independent of the parameterization follows from Sylvester’s
Law.
Remark 1. Concepts of non degeneracy and index also hold for any smooth manifold.

Example 6. In Example 4 X is a critical point of index 0, X3 and X3 are critical points
of index 1 and X}, is of index 2.

Theorem 1 (Morse, 1932). Let M be a surface and f : M — R, a smooth function on
M. Let p € M be a non degenerate critical point of f. Then there exists a parameterization
(¢, U) centered at p and coordinates (X,Y') such that

fod(X,Y)=f(p)+¢(X,Y), 0<i<2,
where 1 is the index of p and g;’s are defined as follows:

gO(va) :X2+Y2; gl(va) = X?—Y? and 92(X7Y) =-X? Y2



Define a map g := fo¢: U — R where ¢ is a parameterization centered at p. Then g is
smooth and (0,0) is a non degenerate critical point of g. It is enough to prove the following
form of the above theorem.

Theorem 2. Let U C R? be a neighborhood of (0,0) and f: U — R be a smooth function.
Assume that (0,0) is a non degenerate critical point of f of index i for 0 < ¢ < 2. Then
there exists a diffeomorphism ¢: V — ¢(V) C U, where V is an open set containing (0, 0)
in R?, ¢(0,0) = (0,0) and a system of coordinates (X,Y) on U such that

fod(X,Y)= f(0,0)+ g:(X,Y).

Proof. By Taylor series expansion f near origin is of the form:

f(x,y) = £(0,0) = Rz, y)a? + 25 (x, y)ay + T(z, y)y* (2)

where R, S and T are smooth functions defined as:
R(z,y) = /01(1 — 1) fuu (ta, ty)dt, R(0,0) =,
S(a,y) = /01(1 ) fay(te, ty)dt,  S(0,0)= s
T(z,y) = /01(1 — 1) fyy (tz, ty)dt, T(0,0) =

Note that R(0,0) = 1 f..(0,0),5(0,0) = } f.,(0,0) and T(0,0) = % £,,(0,0). In classical
notation we say that (0,0) is a non degenerate critical point of fif rt — s* # 0.

Case 1. Let rt — s > 0 and r > 0. Since R is continuous, there exists a neighbourhood
U; C U of (0,0) in which R and RT — S? remain positive. So we can write Eq. 2 as:

S(z,y) 2 Bz, y)T(,y) = S?(x,y)

R(wvy)] Ty R(z,y)

f(z,y) = £(0,0) = R(z,y)[z +y

(3)
Define

X = X(ry)= R, y‘>[w+yR§ﬁ 2,

Y = Y(z,y) = y\/ zy)T S(zy)
Define : U; — R? as 0(z,y) = (X(2,y),Y(2,y)). Then 0(0,0) = (0,0) and Jacobian
J(0)(0,0) = Vrt —s* # 0. Hence by inverse mapping theorem 6 is invertible in some
neighbourhood V of (0,0). Define ¢(X,Y) =071 (X,Y) = (2(X,Y),y(X,Y)). Then Eq. 3

becomes:

Fod(X,Y) = f(0,0)+X*+Y? = f(0,0) + go(X,Y).
Since r is positive, ¢ is also positive and hence the index of (0,0) is 0.

Case 2. Let 7t — s > 0 and r < 0. Then we write Eq. 3 as:

f(@yy) = £(0,0) = —(=R(z,y)) [z + yzg Z))]Q —y? R, y)T_(Z(Z) ;)52(967 y)‘




Then define

X = X(@y)= V=Rl +ymed)
Y o= V()= gy RedlCa=Ses)

—R(l’,y)

Again proceeding as before we get
fod(X,Y)=f(0,0)— X>—Y?= f(0,0)+ g2(X,Y).

Since r is negative, t is negative and hence index of (0,0) is 2.

Case 3. Let 7t — s> < 0 and r > 0. Using similar arguments as before we get:
fod(X,Y) = f(0,0)+X*—Y?=f(0,0)+¢:(X,Y).

If r is negative, then we can write Eq. 3 as:

—~

o) = F(0.0) = ~(~Rlz. )+ v 3=

Then define

X = X($7 y) — y\/S2 (l’71/)_—]];((l’l;;/:l/))T(l’,y)7

Y o= Yoy = =Ryl +yzss]

Proceeding as above we get

fod(X,Y)=f(0,0)+X*>—Y?= f(0,0)+ ¢1(X,Y).
If ¢ is non zero then the same arguments go through.

Lastly suppose both of them are zero (for example the case of hyperbola f(z,y) = zy).
Consider a map ¢(z,y) = (u(z,y),v(x,y)), where u = 2 + y and v = 2 — y. Now define a

map g(u,v) = f(*2, “5¥). Then

1 1 1 1 1
Gu = §fx + §fy and Juu = fox + §fxy + nyy-

Hence ¢,,(0,0) = %fw(o7 0) = s # 0. Otherwise the rt — s*> = 0, a contradiction. Again
proceeding as above for the function g we get the required result. Check that in any case
the index of (0,0) is 1. O

Remark 2. The converse of the above theorem is also true.

Example 7. Let M = P? be the projective plane obtained by identifying antipodal points
of S%. Consider the map f: M — R defined by f[(z,y,2)] = 2% + 2y* + 32%. Check that
this is a smooth function on P2. [(1,0,0)],[(0,1,0)] and [(0,0, 1)] are the only critical points
with index 0,1 and 2 respectively.



Let us illustrate this example. Let Uy = {[(2,y,2)] : « # 0}, Uy = {[(z,y,2)] : y # 0}
and Us = {[(z,y, z)] : # # 0}. Define maps
[(1, u, v)]
N e
B2: R? = Uy as ¢o(u,v) = M and
VTt
0]
N
It is easy to check that (¢;,R?) for i = 1,2,3 are parameterizations and that (U;, ¢;”")
for ¢ = 1,2,3 form a chart on P2, We will find critical points and their indices using the
remark 2. Define a map g = fo¢1: R? 5 R as

1 2u? 302
9(u,v) = fodr(u,v) = 1+ u2 + v2 + 14+ u2 + v? + 1+ u2 + v2
Its is easy to check that g¢,, g, vanishes only at (u,v) = (0,0). Hence [(1,0,0)] is the only
critical point of f in U;. Define

o1 R? = U as o1(u,v) =

$3: R? = Us as ¢3(u,v) =

Ulu,v) := "t and V{u,v) := L
St ST
It is easy to check that these are coordinates in some neighbourhood of (0,0). Let 8 be the
inverse of (U, V). Then go 6(U,V) = 14+ U% + V2. Hence by remark 2 [(1,0,0)] is a non
degenerate critical point of index 0. Similarly one can check for the other critical points.
Remark 3. Morse Theorem is true for any smooth manifold.

Corollary 3. Non degenerate critical points of a smooth function are isolated.

The function g;,2 = 0,1, 2 defined in the theorem 1 are called the model functions.

Model neighbourhood of g¢;’s are neighbourhoods U(s),s > 0 of (0,0) in R? defined as
follows:
For i =0 and ¢ =2, U(s) is a disc of radius /s.
Us) ={(X,Y)eR?*: X* +Y? < s}
Forv=1,
U(s)={(X,Y)eR*: | X? - Y? <5 |XY]| < s).
This is an octagon which is homeomorphic to a rectangle. See Fig. 2.

Definition 5. Let f: M — R be a smooth function on a closed surface M. Let p be a non
degenerate critical point of f. Let (¢,U) be a parameterization centered at p such that f
in U is of the form

f(o(X,Y) = f(p) + 9:(X,Y)
where 7 is the index of p. Let V' C U be a model neighbourhood for ¢;. Then the neigh-
bourhood ¢(V') of p is called a canonical neighbourhood of p and (¢, V) is called a canonical
parameterization. See Fig. 3.

We will assume that boundary is included in canonical neighbourhoods.



Figure 3: Canonical Neighbourhoods

2 Morse Functions and the Gradient Flow

Definition 6. Let M be a smooth manifold. A smooth one-parameter group of diffeomor-
phisms on M is a smooth map ¢: R x M — M defined as (¢,2) — ¢(x) satisfying the
following properties:

o ¢g=idy
e Lor each ¢ € R the map ¢;: M — M as t — ¢(2) is a diffeomorphism.

o LForr,s €R,¢pqs(z) = ¢ 0 ¢s(2) for all x € M.

Since the map ¢ is smooth, for each z € R the map t — ¢(x) is a smooth curve in M.
Hence

d
%(@(ﬂf)) li=o= X (2) € T, M.

That is, the map X: M — TM defined as z — <(¢y(2)) |s=0 is a smooth vector field
on M. This vector field is said to be generated by the smooth one-parameter group of
diffeomorphism ¢ on M. Conversely, any smooth one-parameter group of diffeomorphism
arises this way on any compact manifold. More precisely:

Theorem 4. Let M be a smooth compact manifold. Let X € x(M) be a smooth vector

field on M. Then there exists a unique smooth one-parameter group of diffeomorphism
¢: Rx M — M which generates X. That is,

d
71 (9t(2)) lt=0= X (2) and ¢o(2) = z.



This theorem follows from a well known basic theorem in ODE.

Theorem 5. Let U C R™ be open. Let X: U — R"™ be a smooth map. Given xg € U there
exists an open neighbourhood Q2 of xo in U, an € > 0 and a smooth map F: (e,€) x Q - U
such that F(y,0) =y for all y € Q and L(F(t,2)|i=o= X (2).

If (6,V,G) is another solution satisfying conditions similar to above then F = G on
(n,m) X V where n := min{d, €}.
Proof. Refer to [1] or [5]. O
We will use one-parameter group of diffeomorphisms to prove many important results
in this article.

Definition 7. Let f be a smooth function on a surface M. Then f is said to be a Morse
function if all its critical points are non degenerate.

Example 8. 1. All model functions are Morse functions.

2. Height functions on the sphere S? and the torus are Morse functions.

3. The function defined in Example 7 is a Morse function.

There always exist Morse functions on any closed manifold. (We will not get into the
technicalities of this result. Interested readers can refer [7].)

Let f be a smooth function on any surface M. Let ¢ and b be real numbers such that
a < b. We will use the following notations:

M) = feeM:f@)<a = [ oo
M'(a) = {zeM: f(x)>a} = [YHa, 0),
Vi) = {eeMifr)=a} = fa),
W(a,b) = {zeM:a< f(z)<b} = f[a,b].

These sets are illustrated in Fig. 4.

Theorem 6. Let M and N be n dimensional smooth manifolds with boundary. Let f: M —
N be a diffeomorphism. Them f maps interior of M onto interior of N and the boundary
of M onto the boundary of N.

Theorem 7. Let M be a compact surface and f be a smooth function on M. Let a and
b be regular values of f. Then M(a) and W (a,b) are compact surfaces with V(a) as the
boundary of M(a) and disjoint union of V(a) and (b) as the boundary of W(a,b). Also
V(a) is a closed 1-manifold.

The proofs of theorem 6 and theorem 7 are simple applications of Implicit Function
Theorem and Inverse Mapping Theorem.

Any closed manifold M can be embedded in RY for some large N. Hence for each
x € M, the tangent space T,M inherits an inner product from R,
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Figure 4: The sets M (a), M'(a), W(a,b) and V(a)

Theorem 8. Let M be a surface and f: M — R, a smooth function on M. Assume that a
and b are regular values of f with a < b such that W(a, b) does not contain any critical point
of f. Then M(b) is diffeomorphic to M(a), V(b) is diffeomorphic to V(a) and W (a,b) is
diffeomorphic to V(a) x [a,b].

Proof. The idea of the proof is to push M(a) to M (b) using the one-parameter group of
diffeomorphisms. Since we want V' (a) to be mapped diffeomorphically to V (), the integral
curves of the vector field should be transversal to the level curves of f. In particular the
modified gradient vector field of f may do the job. The details are given below.

Let € > 0 be small enough such that f~(a —¢€,b+¢€) does not contain any critical points
of f. Let a: M — R be a non negative smooth function such that a is 1 on W(a,b) and it
is 0 on the complement of W (a — ¢,b+ €). See Fig. 5. Define a vector field

_alm) -
Y(2) = {”97°ad<f<x>>n?gmd(f@) rEW(a—ebte),

0 otherwise.

This is a smooth vector field transversal to the level curves of f in W(a,b). Let ¢ be
the one-parameter group of diffeomorphisms associated with the vector field Y. For each
x € M consider the map ¢t — f(¢¢(2)) = ¢(¢). This is a smooth function from R to R. Its
derivative

d d
V0 = Df(91(2)) 1 oe(2) = Df((2))Y (de(2)) = aler(2)).
That is, if ¢¢(z) € W(a,b) then £4(t) = 1. Hence ¢ is linear as long as ¢;(z) lies in

9
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Figure 5: M (b) is diffeomorphic to M (a)

W (a,b). This means that ¢(t) =t + A for some constant A. But (0) = f(¢o(z)) = f().
Hence 9 (t) =t + f(z) for all  such that ¢(z) € W(a,b).

We claim that ¢p_, maps M (a) diffeomorphically onto M (b). Let us fix 2 € M(a). By
Mean-Value Theorem
|f(¢b—a($)) _ f(¢0($))| _ |¢(b — a) — ¢(0)
b—a

< sup |P'()] < 1.

P t€[07b_a]| ()]

This implies that | f(¢p—o(2)) — f(2)| < b—a. Thatis, f(¢p—s(2)) < b—a+f(z) <b—a+ta=
b. Thus ¢y_, maps M (a) into M (b).

To prove that ¢,_, is onto as a map from M (a) to M(b), it is enough to prove that
if f(z) > a then f(¢p_o(x)) > b. Let us assume this and prove that ¢,_, is onto. Let
x € M(b). Since ¢y_, is a diffeomorphism of M, there exists y € M such that ¢y_,(y) = =.
If f(y) > a, then by assumption f(¢p_o(y)) = f(x) > b. Which is a contradiction to the
fact that € M(b). Hence f(y) < a. This proves that ¢,_, is onto as a map from M(a)
to M (b). Also ¢p—, is one-one and hence ¢,_, is a diffeomorphism as a map from M (a) to

M(b).

Now let us prove the claim. Let f(¢p—q(2)) < b for f(z) > a. Since ¢'(t) > 0, ¢
is increasing. That is, ¥(b — a) > 1(0). This implies that for all @ € M, f(pp_q(x)) >
f(éo(z)) = f(z) > a. Thus a < f(¢¢(z)) < bforall t € [0,b— a]. Hence fo ¢y (x) is linear
in [0,b— a]. Hence f(¢p_o(z)) =b—a+ f(2) > b—a+ a>b. This is a contradiction.

¢p—q maps V(a) diffeomorphically onto V (b) by theorem 6.

For the last part we define a map

§: V(a) x [a,b] = W(a,b) as §(z,t) = ¢r—,(2).

10
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Figure 6: Modification at a local minimum

We claim that 8 is a diffeomorphism. Since 4 is increasing along the integral curves,

= [(¢0()) < [($1-a(2)) < f(Pr-alx)) = .
Hence 6(x,t) € W(a,b). For y € W(a,b), define 8(y) = (da—s(,)(y), f(y)). Check that 6

and 3 are inverse of each other. O

3 Modification of a Morse Function

Let f be a Morse function on a surface M. The idea is to improve f to a new Morse function
g having the same critical points with same indices and which coincides with f outside some
canonical neighbourhood of a critical point. We need following lemmas at our disposal.

Lemma 9. Let f: M — R be a Morse function. Let p € M be a critical point of f of index
0. Assume that f(p) = c. Let a < ¢ be any real number. Then there exists a Morse function
g on M having the same critical points with same indices as f and which coincides with f
outside some canonical neighbourhood of p and is such that ¢(p) = a.

Proof. If a = ¢, then there is nothing to prove.

Let a < ¢. Let (¢, U) be a canonical parameterization centered at p. Let ¢(U) =
f(OV) =b. Let a: [¢,b] = R be a smooth map such that o/ > 0, a(¢) = a and a(z)
x near b. Now define g: M — R as:

o) — alf(z)), z€eV
g()_{f(w% P gV

See Fig. 6. It is easy to check that g is smooth. We claim that g has the required properties.

V.

11



First of all g(p) = a(f(p)) = a(c) = a. For € V,Dg(z) = o/(f(2))Df(x). Since the
derivative of « is positive, derivative of g in V is zero only when x = p. Thus p is the only
critical point of g in V. Also go ¢(X,Y) = a(f(p) + X2+ Y?) on U, the Hessian of g at 0

is given by e o
H(g)_< 0 za'(c)>'

Hence the index of pis 0. U

Lemma 10. Let f: M — R be a Morse function. Let p € M be a critical point of f of
index 2. Assume that f(p) = c¢. Let a > ¢ be any real number. Then there exists a Morse
function g on M having the same critical points with same indices as f and which coincides
with f outside some canonical neighbourhood of p and is such that g(p) = a.

Proof. Use similar arguments as above. O

Lemma 11. Let f: M — R be a Morse function. Let p € M be a critical point of f of
index 1. Assume that f(p) = c¢. Let a € R be any real number. Then there exists a Morse
function g on M having the same critical points with same indices as f and which coincides
with f outside some canonical neighbourhood V' of p and is such that g(p) = ¢ + a.

Proof. The idea is to change the model function ¢ suitably. We will show that for any
real number «, there exists a bounded neighbourhood say U; of (0,0) in R? and a Morse
function ~: R? — R such that h(z,y) = 2? — y* for (z,y) ¢ Uy, h(0,0) = o and (0,0) is the
only critical point of & and index of (0,0) is 1. Let us assume this claim and complete the
proof.

Figure 7: Modification at a saddle point

Choose a canonical parameterization (¢, U) such that U; C U. Now define g: M — R
as

o(e) = {f(p) +ho¢TH(z) zeSU)=V,
f(@) e g V.

12



Then g(p) = ¢+ h(0,0) = ¢+ . It is easy to see that g is smooth. Also critical points of g
in V are critical points of ho ¢~! in U. Hence p is the only critical point of ¢ in V and its
index is 1. See Fig. 7.

Now let us prove the claim made earlier. Let a > 0 be fixed. Let w: R — R be
a smooth non negative function such that w(0) = 1, w'(0) = 0,yw’(y) < Ofor all y and
w(y) = 0 for y ¢ (—a,a) for some positive number a. Also define a smooth non negative
function A: R — Rsuch that A(0) = a, A'(0) =0, A(z) = 0 for @ ¢ (—a, a) for some positive
number @ and such that

20 + N(z) >0 ifz >0,
20+ MN(z) <0 ifz <0.

Note that since « is fixed, this will put some bounds on a.

Construction of w. Consider wy =1 — i—i Clearly wy(0) = 1. Now smoothen wy at
its roots +a to get w. Since w'(z) = =2, zw'(z) < 0.

Figure 8: Graphs of w and A

Construction of A\. Consider A\j(z) = o — 02—22 Now smoothen A; at its roots £a to
get A. Clearly A(0) = o, and A(2) = 0 for 2 ¢ (—a,a). We want 22 + X' (z) > for 2 > 0,
that is, 2z — 225 > 0 for > 0 and 2z — 225 < 0 for # < 0. So, choose a? > «. Then X
has the required properties. See Fig. 8

Now define
h(z,y) =2 — y* + Mz)w(y).

Then 1(0,0) = a and h(z,y) = 2 — y? for (z,y) € ([—a,a] X [—a,a]). Partial derivatives of
I are

he =2z 4+ N (z)w(y) & hy = =2y + A(z)w'(y).
Hence (0,0) is a critical point of h. Let (x,y) # 0. Since 0 < w < 1,

hy =22+ N(2)w(y) > 20+ N(z) >0 ifz >0,
hy =22 4+ MN(2)w(y) <2+ MN(z) <0 ifz <O.

13



Hence if @ # 0, hy # 0. If = 0, then

hy = =2y + Aa)w'(y) <0 ify>0,as w(y) <0
hy = =2y + Aa)w'(y) >0 if y <0, as w'(y) > 0.

Hence (0,0) is the only critical point of h. Also
how = 24+ N (@)w(y), hyy = =2+ Ma)w”(y), and hyy = X (z)w'(y).

The Hessian ")
(24 )A"(0 0

Using the construction of w and A it is easy to show that index of (0,0) is 1.

For a < 0, take h(z,y) = 22 — y* — w(2)A(y) and proceed as before. O

Remark 4. In Lemma 9, Lemma 10 and Lemma 11 we may pass critical levels. (See Fig. 6

and Fig. 7.)

Definition 8. Let f: M — R be a Morse function. Let X;,Y; and Zj be critical points
of f of indices 0,1 and 2 respectively. We say that f is an ordered Morse function if
F(Xy) < f(Y;) < f(Zg) for all ¢, j, k and if it separates critical points, that is, f(z) # f(y)
for any two distinct critical points = and .

Theorem 12. On any surface M there exists an ordered Morse function.

Proof. Let f be a Morse function on M. Let a,b € R,a < b be real numbers such that
all the critical points of index 1 of f lie in f~!(a,b). By Lemma 9 we can find a Morse
function such that all the critical values of index 0 are less than . Similarly by Lemma 10
we can find a Morse function such that all the critical values of index 2 are greater than b.
Similarly we can separates critical points. O

4 Crossing Critical Levels of Index 0 or 2

Let a and b be regular values of f such that a < b. Let W (a,b) contain a critical point say
p of f. Then Theorem 8 need not be true. In this section we see what happens when we
cross a critical level.

Theorem 13. Let f: M — R be a Morse function on M and p € M, a critical point of f.
Let f(p) = c. Let a and b be reqular values such that W (a,b) does not contain any critical
point other than p. Then the following hold:

e If pis a critical point of index 0, then M (b) is diffeomorphic to a disjoint union of

M (a) with a disc D which is a canonical neighbourhood of p. Also V (b) is diffeomor-
phic to a disjoint union of V(a) with a circle which is the boundary of D.

14



o If pis of index 2, then M(b) is diffeomorphic to M (a) with a disc D attached along
one of the components of V(a) and the attaching map is injective as map from the
boundary of D to V(a). Also V(a) is diffeomorphic to a disjoint union of V (b) with
a circle which is the boundary of D.

Proof. 1t is enough to prove the lemma for regular values «, 5 such that a < oo < ¢ < 8 < b.
This follows from theorem 8. Choose an € > 0 such that W (c— 2¢, ¢+ 2¢) does not contain
any critical point of f other than p. Hence U(e) and U(2¢) are canonical neighbourhoods
of p. For convenience let us assume that ¢« = c— ¢ and b = ¢+ «.

Let p be of index 0. In this case M(b) N U(e) = U(e), diffeomorphic to a disc. Let
us denote U(e) by D. V(b) N Ule) is the boundary of the disc D. Since p is of index
0 and U(e), a canonical neighbourhood of p, f(z) > f(p) = ¢ for all 2 € U(e). Hence
M(a)NU(e) =0 =V (a)NUf(e). See Fig. 9.

Choose a smooth non negative function a: M — R such that « vanishes in U(e) and
is equal to 1 outside U’ = U(2¢). Also consider a smooth function 5: M — R such that
vanishes outside W{c — 2¢, ¢+ 2¢) and is 1 in W (c — €, c + €). Now define a vector field

lgrad(f(=))|F
0 otherwise.

Y(x) _ {Mgrad(f(x)) T € W(C— 2¢,c+ 26) \ U(g) ,

U(2¢)
/

c+ 2¢
c+ ¢ Sl
c— 2¢, ¢+ 2¢)

[
I

U (e)

Figure 9: Crossing a local minimum

Then Y is transversal to level curves of f.
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Let ¢ be the one-parameter group of diffeomorphism associated with the vector field
Y. We claim that the map ¢p_, maps M(a) to M(b)\ D. For 2 € M, define ¢(t) :=
foéi(x). Then ¢'(t) = algi(2))B(¢i(z)) < 1. Using Mean Value Theorem we can show
that ¢p—, (M (a)) C M(b). (Recall arguments in Theorem 8.) Since Y (2) = 0 for z € Ul(e),
Ot(x) = x for all t € R and = € U(e). That is, the integral curves starting in U(e) are
constant. Hence, if @ ¢ Ul(e), ¢4(z) ¢ Ule) for all t € R. Thus ¢p_, maps M(a) into
M)\ D.

We now show that ¢,_, is onto as a map fromM (a) to M (b)\ D. Let x € M (b)\ D. Since
¢p—q is a diffeomorphism on M, there exists y € M such that ¢p_,(y) = . We claim that
fy) <a. If f(y) > a, then we claim that f(¢dp—s(y)) > b. Let f(y) > a and f(dp—q(2)) < b.
Since ¢ is increasing, a < f(¢p—o(y)) < b. But then f(pp_q(y)) =b—a+ f(y) > b. This is
a contradiction. This proves that ¢_, is onto as a map from M (a) to M (b)\ D. Also ¢p_,
is identity on D. Hence ¢p_,: M(a) [[D — M (b)\ DU D = M (b) is a diffeomorphism.

Lastly we claim that M (b) is diffeomorphic to disjoint union of M (a) and D. Since
M (a) is compact, ¢p_q(M(a)) = M(b) \ D is compact and hence closed in M(b). D is
compact implies M (b) \ D is open in M (b). Hence D is a component of M (b). This proves
that M (b) is homeomorphic to disjoint union of M(a) and a disc D. The last part of the
first assertion follows from Theorem 6.

Figure 10: Crossing a local maximum

Let index of p be 2. For convenience let us assume that ¢ = 0,a = —e and b = €. Define
g := —f. Then p is a critical point of g of index 0. Hence by the first part of the theorem

M (€) \ D is diffeomorphic to M (—e), where

M(—e) = {2eM:—f(a)<—¢} = {aeM:f(x)>e = M{e),
M(e) = {2eM:—f(z)<e} = {zeM:f(z)>—-e = M(—e),

16



and D is a canonical neighbourhood U (e) of p. See Fig. 10.

Hence int M'(—¢) is diffeomorphic to int (M'(e) [] D) via the map ¢—, (theorem 6).
Since ¢p_g is a diffeomorphism on M, (int M'(—¢))° = M(—¢) and (int (M'(¢) [[ D))" =
M (e) \ int D are smooth manifolds. M (—e¢) is diffeomorphic to M (e) \ int D. Hence M (¢)
is diffeomorphic to M (—€) U D where D is attached to M(—¢) via an injection on 0D to
V(—¢€). The last part of the second assertion follows from theorem 6. O

Remark 5. Analogue of theorem 13 is true in the case M is of dimension n and p is a
critical point of index 0 or n. In this case disc D is of dimension n.

Proposition 14. Let f be an ordered Morse function on a surface M. Suppose that f has
no critical points of index 1. Then M is homeomorphic to a sphere.

Proof. Let X1, Xo, ..., X, be critical points of index 0 and 71, 75, ..., Z, be critical points
of index 2. First of all we claim that n = m.

Let a be a regular value of f such that f(X;) < a < f(Z;) for all ¢ and j. Then using
induction on number of critical points of index 0 we can show that M (a) is a disjoint union
of m discs, say, {D;}, ;<,, and its boundary is a disjoint union of m circles. Similarly M'(a)
is disjoint union of n discs, say, {D/}, ..., and its boundary is disjoint union of n circles.
Since V(a) is the common boundary of M (a) and M ("a), m = n.

Let n = 1. Since f has one critical point of index 0 and one critical point of index 2,
M (a) is a disc say D and M'(a) is also a disc say D’. M is obtained by attaching D’ to D
along their boundaries. Hence M is homeomorphic to a sphere.

Lastly we claim that n = 1. Let a be as above. Then M is obtained by attaching n
discs {D!}, ..., (homeomorphic to M'(a)) to n discs {D;},;«, (homeomorphic to M(a))
along their boundaries. Since the attaching map is injective, D! is attached to some D;y
resulting in a sphere. Hence M is homeomorphic to n disjoint spheres. Thus if » > 1, then
M will be disconnected. This proves that n = 1. O

Theorem 15. Any closed 1-manifold is homeomorphic to a circle S*.

Proof. Let M be a closed 1-manifold and f be an ordered Morse function on M. Let
X1, X5, ..., X, be critical points of index 0 and Y7, Y5,...,Y, be critical points of index
1. Let a be a regular value of f such that f(X;) < a < f(Y;) for all < and j. Then M (a) is
a disjoint union of m arcs {I;}1<j<n and M'(a) is disjoint union of n arcs {Ji}1<p<n. This
follows from the analogue of theorem 13 (the case when the index is zero, see the remark 5).

The boundary of M (a) consists of 2m points and the boundary of M’(a) consists on 2n
points. Since V' (a) is the common boundary of M (a) and M’(a), m = n.

We proceed by induction on n. If n = 1, then M is homeomorphic to a circle. This can be
seen in the same way as Proposition 14. Let the result be true for any k& < n. Let Xy be such
the f(Xq) > f(X;) forall 2 < i < n. Let the arc I be the component of M (a) containing Xj.
Let A and B be boundary points of I. Let the arc .J be the component of M’(a) containing
B as one of the boundary point. Let J be a canonical neighbourhood of a critical point say
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a1

Figure 11: Classification of one manifolds

Y7 of index 1. We can find a Morse function g on M having the same critical points with the
same indices as f and is such that ¢(X;) < a < g(Y1) < g(Y;) for all ¢ and j # 1. Let ay, by
be regular values of g such that g(X;) < a; < g(X;) < g(Y1) < by < g(¥;) forall i # 1 and
j # 1. Let K be the component of g~'[a;,b;] containing X; and Y;. We now modify the
function g to a Morse function h which agrees with f outside a coordinate neighbourhood
of K and such that h has no critical points in that neighbourhood K. See Fig. 11. Then
h has only n — 1 critical points of index 0. Hence by induction M is homeomorphic to a
circle. O

Remark 6. If f is a smooth function on a surface M and « is a regular value of f, then
by Theorem 7 and Theorem 15, V (a) is a disjoint union of circles. Hence the boundary of
any compact surface is homeomorphic to a disjoint union of circles.

5 Crossing a Critical Level of Index 1

Theorem 16. Let f: M — R be a Morse function on a surface M. Let p be a critical
point of f of index 1. Let a,b with a < b be regular values of f such that Wa,b) contains
no critical points of f other that p. Then M (b) is homeomorphic to M (a) with a rectangle
attached to two disjoint segments of V (a) along pair of opposite sides of the rectangle.

Proof. Choose € such that W (c—3e, c+3¢) does not contain any critical point of f other than
p. For convenience let @ = ¢—2¢ and b = ¢+ 2e. Let (¢, W) be a canonical parameterization
centered at p. Let U(2¢) =V C W be a model neighbourhood of (0,0). See Fig. 12. Let
o(V)=U. Let I" = B'C" and J' = F'G’ be as in the Fig. 12. Let I = BC' = ¢(I’) and
J = FG = ¢(J'). Then I,J C V(a). Let K = V(a)\ ({UJ). Define T' = W(a,b)\ U.
Note that 7" need not be connected. We claim that 7" is diffeomorphic to K x [a, b].
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We choose a compact tubular neighbourhood T} of T as follows: Let Vi C W be a
neighbourhood of (0,0) bounded by the curves

X2 Yi=a—c—eX?*-Y? =b—c+eand XY =b—c—e, XY =a—c+e.

See Fig. 12. Let Uy = ¢(V1). Now define 77 :=W(a —€,b+ ¢) \ U;.

Figure 13: Illustration in the surface for the proof of theorem 16

Consider a smooth non negative map a: M — R such that « is identically 1 in T and
it vanishes outside T;. Define a vector field Y on M as

_ol@)
Y(z) = Trad oy pdradf(2) @€
’ v ¢

Let ¢ be the one-parameter group of diffeomorphisms generated by the vector field Y.
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Define a map ®: K X [a,b] = T as ®(z,t) = ¢¢—4(x). We claim that this is the required
diffeomorphism.

First of all let us show that ®(z,t) € T for all # € K and t € [a,b]. Define a map
g:R = Ras g(t) = fop_q(z). Since ¢'(t) = a(pi_q(2)), we have 0 < ¢'(t) < 1. Note that
g(a) = a. By Mean Value Theorem ¢(t) — g(a) <t —a. Hence ¢(t) < g(a)+t—a < b. Since
g is increasing, ¢g(t) > ¢g(a) = a for all t € [a,b]. Hence ¢;_,(2) € W{(a,b) for all t € [a,b]
and for all # € K. Next we claim that ®(z,t) ¢ intU for all ¢ € [a,b] and z € K. Let
A'B" E'F',C'D',G'"H’ be as in the Fig. 12. Slnce (¢, W) be a canonical parameterization,
their images AB, 'F,C'D,GH are integral curves of the vector field Y. See Fig. 13. Assume
for some 2 € K and ¢t € [a,b], p1_q(z) € int U. Then ¢;_,(2) will intersect one of the above
integral curves AB, FF,C'D,GH as they are the common boundary of T" and U. Hence it
is one of these curves and cannot lie in the int U, a contradiction to our assumption. Hence
¢i—a(2) € T for all t € [a,b],z € K.

¢ is one-one follows from the fact that g(¢) is linear for t € [a, b] and ¢;_, is a diffeo-
morphism as a map from M to M.

Next we show that @ is onto. Let y € T'. Then the curve t — ¢¢(y) is an integral curve
starting at y. Define a map h: R — R defined as h(t) = f o ¢i(y). Then h is smooth,
R'(t) > 0 and P/(t) = 1, if ¢4(y) € T. Note that h(0) = f(y) > a. We claim that there
exists to < 0 such that h(ty) = a. If h(0) = a, then y € K and ®(y,a) =y. Let h(0) > a
Assume h(t) > a for all t < 0. Since h is increasing h(t) < h(0) < b for all ¢ < 0. Hence
vi(y) € W(a,b) for all t < 0. Also for y € T, t — ¢¢(y) is the integral curve starting at y
in 7. By previous argument ¢;(y) ¢ intU for all ¢ < 0. Hence h is linear, which implies
that h(t) =t + f(y) > a for all ¢ < 0, a contradiction. Hence there exists {y < 0 such that
h(to) = a. Since h is increasing for all ¢ € [tg, 0], h(tg) < h(t) < h(0). Hence h(t) is linear
for t € [to,0]. This implies that @ = h(to) = to + f(y) < to + b and hence a — ty € [a,b].
h(to) = f o ¢y (y) = a implies that ¢y (y) € V(a). If ¢y (y) € V(a) \ K, then ¢¢(y) has to
intersect one of the integral curves. We reach a contradiction by above arguments. Hence
@1, (y) € K. Also

(01 (y), @ = to) = Pate—a © Pt (y) = Po(y) = y.
This proves that ® is a diffeomorphism.

Divide U into three parts P, @ and R (see Fig. 13). Each of them is homeomorphic to a
rectangle. Let us define a homeomorphism ®: I x [a, b] — P such that &, (B xt) = ®&(B,t)
and @;(C' x t) = ®(C,¢). Similarly define a homeomorphism ®5: J X [a,b] — Q) such that
Oy (G xt) =P(G,t) and @o(F x t) = ©(F,t). Observe that TUPUQ = W(a,b)\ R. Also
KuluJ =V(a)and hence M(a) UTUPUQ = M(b)\ R. See Fig. 14. Define a map
U: V(a) X [a,b) = TUPUQ as:

¢(z,t), €K
U(x,t) = ®y(x,t), zel
Oy(z,t), x€J

VU is well defined and is a homeomorphism. Hence & is homeomorphic to M (a) U (V (a) x
[a, b]) along a homeomorphism from V(a) to V(a) X a. Note that by Remark 6, V (a) is
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Figure 14: Attaching a rectangle
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B
F
D
C

Q

homeomorphic to disjoint union of circles and V(a) x [a, b] is homeomorphic to disjoint
union of cylinders.

Now M(a) UT'U P UQ is homeomorphic to M (a) with cylinders attached in the above
manner which is homeomorphic to M (a). This implies that A (b) \ R is homeomorphic to
M (a). Now M (b) is obtained by attaching the rectangle R to M (a) along opposite sides
ED and AH. O

Analysis of crossing critical Point of index 1

Let p be a critical point of index 1 of a Morse function f on M. Let a,b,a < b be regular
values of f such that f~![a,b] contains no critical points of f other than p. Then we have
shown that A (b) is homeomorphic to M (a) with a rectangle R attached to two disjoint
segments I and J of V(a) along opposite sides of the rectangle. Let us analyze the different
ways of attaching the rectangle R to V' (a) and the component of W (a,b) containing p.

Case 1. Let I and J lie in 2 different components of V' (a). See Fig. 15.

In this case the number of components of V (b) — the number of components of V' (a) =
—1. That is, the boundary components have reduced by one after passing this level.

Case 2. Let [ and J lie in the same component of V(a). We attach the rectangle R
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% [N

Figure 15: Case 1

straight. See the Fig. 16.

In this case the number of components of V' (b) — the number of components of V' (a) = 1.
That is, number of components increases by one after passing this critical level.

R
i F
i I
—
Figure 16: Case 2

Thus in the two cases the component of W (a, b) containing p is homeomorphic to a disc
with two holes.

Case 3. If [ and J lie in the same component of V(a) and the rectangle R is attached
with a twist. See the Fig. 17.

R
| @G Z
Figure 17: Case 3

In this case the number of components do not change . The component of W(a,b)
containing p is homeomorphic to a M&bius band without a disc. In this case we have a
homeomorphic copy of a Mobius band inside M.

Remark 7. We can attach the rectangle R with more than 2 twists but this reduces to the
earlier cases. (Exercise.)
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Definition 9. Let f be a Morse function on a surface M. Let ¢ and b be regular values of
f with @ < b. Let W(a,b) contain only one critical point say p of index 1. Let the number
of components of V (a) and V (b) be m and n respectively. Then we say that

1. pis of type I of the first kind if m — n = 1.
2. pis of type I of the second kind if m —n = —1.

3. pis of type Il if m = n.

See Fig. 18

Figure 18: Critical points of index 1 and their types

Corollary 17. Let f be an ordered Morse function on M. Let a,b,a < b be reqular values
of f such that W(a,b) contains p critical points of index 0 and p critical points of index 1
of the type I of the first kind. Then M (a) is homeomorphic to M(b).

) \O > Y]
ay @
a . D,

Dy

Figure 19: Illustration for Corollary 17
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Proof. Since f is an ordered Morse function, M (a) contains only critical points of index 0.
Let the number of critical points of index 0 in M (a) be ¢. Then M (a) is disjoint union of
q discs. We have to show that M (b) is also homeomorphic to disjoint union of ¢ discs. Let
{Xi}i<i<p+q be the critical points of index 0 and {Y;}1<;<,, the critical points of index 1
of type I of the first kind in M(b). Let ay,aq, ..., ay_1,a, be regular values of f such that

JX) <a< f(X)) <ar < f(V1) <az < f(Y2) <az <+ <ap < f(Yp) <

forall 1<i<gand g+1<j<p+yq.

Then M(a;) is homeomorphic to the disjoint union of p + ¢ discs, say, {D;}i<i<ptq-
Since Y7 is a critical point of type I of the first kind, there exist two discs say D; and Dy
in M (a;) which are attached to each other by a rectangle resulting in a disc again. See
Fig. 19. Hence M (as3) is a disjoint union of p 4+ ¢ — 1 discs. Proceeding in this fashion we
reduce one disc when we pass a critical Y;. Hence M (b) is the disjoint union of p+¢—p =g¢
discs. This proves that M (a) is homeomorphic to M (b). O

Example 9. Let us illustrate the passing the critical levels in Example 7. Take the unit
disc model of P2 See Fig. 20.

Y
B
Ev/_e\
P
Y D C
Z Q
Q - X
X X R
A F
P
Y B>—F
Y

Figure 20: Disc Model for P2

Here X, Y, Z are critical points of index 0, 1,2 respectively. (Project S* C R® onto unit
disc in R? and we obtain Fig. 20 and Fig. 21 and the required critical points of the function.)
P,Q, R are the canonical neighbourhoods of X,Y, Z respectively.

Now () is attached to P along segments I and J in a twisted manner as in the Fig. 22.
Now R is attached to P U Q along the boundary AFCD giving P2 Here Y is a critical
point of type IlI. See Fig. 22.

Proposition 18. Let f: M — R be an ordered Morse function. Let f have only one critical
point of index 0,1 and 2 each. Then M is homeomorphic to a projective plane.

Proof. Let X, Y and Z be critical points of index 0,1 and 2 respectively. Let a and b are
regular values of f such that f(X) < a < f(Y) < b < f(Z). Then M(a) and M’'(b) are
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. A F
P Q R

Figure 22: Projective plane minus a disc after passing the minimum and the saddle point

discs. Since V(a) and V(b) have only one component each, Y has to be of type II. Hence
by case 3 of analysis, M (b) is a Mo6bius band. M is obtained by attaching a disc to the
Mobius band M (b), hence M (a) is homeomorphic to a projective plane. O

Proposition 19. Let f have only one critical point of index 0, only one critical point of
index 2 and two critical points of index 1 of type I. Then M is homeomorphic to a torus.

Proof. Let X be the critical point of f of index 0, Y7, Y3, critical points of index 1 and
Z, the critical point of index 2. Let @ and b be regular values of f which separate critical
points of index 0, 1 and 2. That is, f(X) < a < f(Yi) < b < f(Z). Then M(a) and M'(b)
are discs D and D’ respectively. Let ¢ be a regular value of f which separates Y7 and Y5.
Without loss of generality assume that f(Y1) < ¢ < f(Y2).

By Theorem 16, M (c) is obtained by attaching a rectangle to M (a). When we pass a
critical point of index 1 of type I of the first kind we attach a rectangle to disjoint segments
I and J belonging to different components of V' (a). Since V' (a) has only one component, Y;
is of first kind. That is, M (c) is homeomorphic to a cylinder. Now M (b) has one boundary
component and is obtained by attaching a rectangle to M (c). This forces Y, to be of the
second kind. Thus M (b) is homeomorphic to a rectangle attached to a cylinder along two
disjoint segments in different components of the boundary of the cylinder. (See Fig. 23.)
Hence M (b) is homeomorphic to a torus but for a disc. M is obtained by attaching a disc
to M (b), is homeomorphic to a torus. O
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Figure 23: Critical points on a torus

6 Connected Sums and All that

Definition 10. A compact surface M (with or without boundary) is said to be non ori-
entable if it contains a homeomorphic copy of a Mabius band.

Proposition 20. The Mébius strip and the projective plane are non orientable.

Definition 11. Let M, M; be closed surfaces and M/ for i = 1,2 be the space obtained
by removing a disc from M;. Then the boundary of M/ is a circle. The connected sum of

M and Mj is the space obtained attaching M| to M} via a homeomorphism from M to
dM). We will denote this by My # M.

Remark 8. The connected sum is independent of the discs removed and the homeomor-
phism on the boundary.

Let T, denote the connected sum of n tori and P, denote the connected sum of n
projective planes. Let V,, denote T, but for a disc and U, denote P, but for a disc. By
convention 7} is a torus and P; = P?is a projective plane.

Let M and N be surfaces with same number of boundary components. When we say
that M is attached to N along the boundary we mean that they are attached via a home-
omorphism from dM to dN.

Let us admit the following facts about the connected sum of two surfaces. For more
details refer [4] or [6].

Observation 1. P2 is a disc attached to a Mébius band along the boundary.

Observation 2. Let M be a closed surface. Then M # P? is homeomorphic to the space
obtained by removing a disk from M and attaching a Maobius band along the boundary.

26



Observation 3. F, is homeomorphic to the space obtained by removing q disjoint discs
from S? and attaching ¢ Mébius bands along the boundary.

Observation 4. T, is homeomorphic to the space obtained by removing 2q disjoint discs
from S?% and attaching q handles (cylinders) along the boundary.

Proposition 21. The connected sum of T,, and P, is homeomorphic to Py, .

Proof. First of all we claim that the connected sum of 7} and P? is homeomorphic to P.
We denote homeomorphism by ~. Let us assume this claim and prove the result. To prove
the result let us first prove that T, # Pi ~ Pay1.

We will proceed by induction on m. The case m = 1 follows from the claim above. Let
us assume the result for all & < m. Then

Tn# P =~ Thna#T#P
~ To_1# P; (first claim)
~ Tpa#P# P
~ Pypon # P ( by induction )
~ Pynti-

Now let us prove that T, # P, ~ Ps,4,,. We apply induction on n. The case n = 1 follows
from above. Assume the result for & < n. Then

Tm#Pn i Tm#Pn—l#Pl
Pyin—1 # P (by induction)

12

= P2m—|—n-
A . B A
{0
D C A 4
T; P T, # P

Figure 24: Connected sum of P, and T}

We now prove our claim. The idea is to cut 3 Mébius bands from Ty # P, and then
glue the remaining part to get S? with 3 holes. See Fig. 24, Fig. 25 and Fig. 26.

Torus is homeomorphic to a rectangle with AB identified to DC and AD identified to
BC. Also P; is homeomorphic to D? with antipodal points identified. See Fig.24

In Fig. 25 My, My and Mj5 are the three Mébius bands which are removed from Ty # P;.
Quotienting the remaining region after identifying R; for 1 < i < 7 we obtain S% with three
holes. See Fig. 26. O
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X A B, 1Dy

Figure 25: 3 Mobius bands on Ty # P

Proposition 22. T, (respectively P,) is not homeomorphic to T, (respectively P,/ ) for
n#n'. Also T, is not homeomorphic to P, for any positive integers n and m.

Proof. Refer [4] or [6]. O

Ex 1. Let V] denote torus without two disjoint discs. The space obtained by attaching V/
to V,, along the boundary of V,, is homeomorphic to V4.

Similarly, let U{ denote a projective plane without two disjoint discs. The space obtained
by attaching U7 to U,, along the boundary of U, is homeomorphic to Up,4;.

7 Classification of Surfaces

Henceforth we assume that M is a closed surface and f: M — R an ordered Morse function
on M. Let {X;}i<icn(o) be critical points of index 0, {Y:}1<;<n(1), critical points of index
1 and {Zi}lgign@)v critical points of index 2. Let @ and b be regular values of f such that
FXy) <a< f(Y;)<b< f(Zy) forall 1 <i<n(0),1<j<n(l)and 1 <k < n(2).

Lemma 23. Let the notations be as above. Then there exist two regular values ¢,d,c < d
and an ordered Morse function g having the same critical points with the same indices as

f such that:
o g1 (—00, c] contains n(0) — 1 critical points of index 1 and g~ (—o0, c] is homeomor-
phic to a disc.

e g !d, >0) contains n(2) — 1 critical points of index 1 and g~'[d, 00) is homeomorphic
to a disc.

e g7 '[c,d] contains n(1) — n(0) — n(2) + 2 critical points of index 1.
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Proof. Since all the critical points of index 1 are below the level b, it is enough to improve
the function f below the level b. Also, second assertion follows from the first by taking — f
in place of f.

M (a) is disjoint union of n(0) discs, say, {D;}1<i<n(0) and M'(b) is disjoint union n(2)
discs say {D;}lSan(Q). That M (b) is connected follows from the fact that M is obtained
by attaching M’(b) (disjoint union of discs) to M (b) along their boundaries.

First of all we prove the existence of the level ¢
If n(0) =1, then take ¢ = f and ¢ = a.

If n(0) > 2, we proceed recursively. If all critical points of index 1 are of type II,
then M (b) is disconnected. Hence there exists a critical point of index 1 of type I. If all
critical points of index 1 of type I are of the second kind then again M (b) is disconnected.
Hence there exists j € {1,2,...,n(1)} such that Y; is of type I of first kind. Without
loss of generality assume that j = 1. Now choose an ordered Morse function ¢; having
the same critical points with same indices as f and a regular value a of g; such that
g(Xi) <a< Y1) <a < gi(Yj) forall 1 < ¢ < n(0) and j # 1. By definition 9,
V(ay) has one less components than V(a). If n(0) — 1 = 1, then we are done. Otherwise
proceeding in similar way we get another ordered Morse function g, a level a; and a critical
point Y5 of type I of first kind such that go(X;) < a < g2(Y1) < a1 < ¢g2(Y2) < a2 < g2(Y))
forall 1 <7 < n(0) and j # 1,2. Then the number of components of V(az) is n(0) — 2.
Recursively we get an ordered Morse function g,,(0)_1, a level a,g)_; such the !]n(o)_1(Xz’) <
a < gn(0)—1(Yj) < apoy—y forall 1 <é < n(0) and 1 < j < n(0) — 1. Define ¢ := a,(g)—; and
9 := gn(0)—1- This proves the first part of the first assertion of the lemma.

g~ (—0o0, ¢] is homeomorphic to a disc follows from Corollary 17. U
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Corollary 24. Let the notations be as in the Lemma 25. Then the number of critical points
of type I between the levels ¢ and d is even, half of which are of the first kind and half are
of the second kind and outside these levels all critical points are of type I.

Theorem 25 (Classification). Let f: M — R be an ordered Morse function as in the
claim of Lemma 23. Let f have q critical points of index 1 in W (c,d). Then M is homeo-
morphic to P, or T,, where ¢ = 2p.

Proof. Case 1. Let us first assume that all critical points of index 1 in W (¢, d) are of type
II. In this case we claim that M is homeomorphic to F,.

Let us proceed by induction on the number of critical points in W (¢, a) where a > ¢ is
a regular value of f. We claim that if W (e, a) contains n critical points of index 1 of type
II then M (a) is homeomorphic to U,.

Let a € R be a regular value of f such that W (¢, a) contains only one critical point of
index 1. Then M(a) is homeomorphic to a Mdébius band, (Proposition 18), which is same
as Uy.

Let us assume the result for k = ¢ — 1. Let d be a regular value of f such that W{c, d)
contains all the ¢ critical points of index 1. We claim that M (d) is homeomorphic to U,.
Choose a regular value dy of f such that W(ec,dy) contains ¢ — 1 critical points of f of
index 1. Then by induction hypothesis M (dy) is homeomorphic to U,_;. Now M(d) is
homeomorphic to U, follows from Exercise 1. Hence M homeomorphic to F,.

Case 2. Let all critical points of index 1 in W (¢, d) be of type . Since the number of crit-
ical points of index 1 of type I in W (¢, d) is even, ¢ = 2p for some integer p. (Corollary 24.)
In this case we claim that M is homeomorphic to T,.

We modify the function f in W(¢, d) to an ordered Morse function having same number
of critical points as f with the same indices and such that every critical point of index 1
of type I of second kind is followed by a critical point of index 1 of type I of the first kind.
(Theorem 16 and Corollary 24.) We assume that this is done.

Since M'(d) is a disc, it is enough to prove that M (d) is homeomorphic to V (p). Let us
proceed by induction on the number of critical points in W (¢, a) where a > ¢ is a regular
value of f. We claim that if W (¢, a) contains n pairs of critical points of index 1 then M (a)
is homeomorphic to V.

Let a be a regular value of f such that W (e, a) contains a pair of critical points of index
1 of type 1. Then, by Proposition 23, M (a) is homeomorphic to V;. Let us assume the result
for k = p— 1. Let d be a regular value of f such that W (¢, d) contains all p pairs of critical
points of index 1 of type 1. We show that M (d) is homeomorphic to V,. Let d; be a regular
value of f such that W (¢, d;) contains p— 1 pairs of critical points of index 1 of type I of f.
By induction hypothesis M(d;) is homeomorphic to V,_y. Hence M(d) is homeomorphic
to V,. ( Exercise 1.) Thus M is homeomorphic to 7.

Case 3. Let f have critical points of index 1 of type I as well as of type Il in W (¢, d).
In this case we claim that M is homeomorphic F,.
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There exists an integer k, 2k < ¢ such that f has 2k critical points of index 1 of type |
in W{(e,d). (Corollary 24.) The remaining critical points of f of index 1 are of type II. We
modify fin W(e,d) to an ordered Morse function ¢ such that if YY" € W (e, d) are critical
points of index 1 of type I and type II respectively, then ¢(Y) < ¢(Y”). Further assume that
every critical point of ¢ of index 1 of type I of the second kind is followed by a critical point
of type I of the first kind in W(¢, d). Let a be a regular value of ¢ which separates critical
points of type I and type Il in W (¢, d). By case 1, M(a) is homeomorphic Vj. Similarly, by
case 2, M'(a) is homeomorphic to U,_z;. (Replace g by —g.) Hence M, which is obtained
by attaching M’(a) to M(a), is homeomorphic to Tj, # P,_g; ~ FP,.(Proposition 21.) O

Theorem 26. Let M be a compact surface with boundary. Let k be the number of boundary
components of M. Then M is homeomorphic to either T, with k holes or F,, with k holes
for some integers m and n.

Proof. Since the boundary of a surface is a closed 1-manifold, each boundary component is
a circle. Attach k discs along the boundary components. The resulting surface is a closed
surface. By Theorem 25, the resulting surface is either 7, or P,. O
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