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Introdu
tion

In this arti
le we 
lassify all 
ompa
t surfa
es up to homeomorphism using Morse theory.

The single most important tool is the gradient like 
ow asso
iated with a Morse fun
tion.

While it is well-known (and worked out in detail in [4℄ and [7℄) how the homotopy type


hanges as when one passes a 
riti
al point, the 
hange in homeomorphism type is perhaps

not so well-known. Even in the books where it is done, te
hni
al details are inadequate

and a beginning graduate student may have diÆ
ulty in �lling them. The highlights of

this exposition are the two theorems (Theorem 13 and theorem 16) whi
h tell us how the

homeomorphism type 
hanges as we pass a 
riti
al point of index 0, 1 and 2. On
e we prove

these theorems the 
lassi�
ation follows easily.

We have taken most of the ideas from [2℄. We have modi�ed and supplied details for

most of the proofs and 
hanged the style of presentation to make the exposition rigorous

and lu
id.

Se
tion 1 deals with basi
 de�nitions and Morse Theorem. In Se
tion 2 we introdu
e the

gradient 
ow and use it to prove that the di�eomorphism type of a manifold does not 
hange

between the two levels whi
h does not 
ontain a 
riti
al point. This is the �rst appli
ation

of the gradient 
ow and all the details have been painstakingly worked out. Se
tion 3

in
ludes modi�
ation of Morse fun
tions and the proofs are an ex
ellent illustration of the

use of bump fun
tions. Se
tion 4 deals with one of the two important theorems regarding


rossing of 
riti
al levels of index 0 and 2. In Se
tion 5 we prove theorems regarding

passing of 
riti
al level of index 1. For better understanding of the results proved, we have

in
luded 
lassi�
ation of 
losed 1-manifolds and 
on
rete examples su
h as sphere, torus

and proje
tive plane in Se
tions 4 and 5. Se
tion 6 in
ludes 
onne
ted sums. We have not

dealt with the te
hni
alities of unambiguity and asso
iativity of 
onne
ted sums. In the last

se
tion we �nish the 
lassi�
ation using the results from earlier se
tions. The noteworthy

point of the 
lassi�
ation is that the orientable as well as non orientable 
ases are treated

simultaneously.

Sin
e we have aimed the arti
le at fresh graduate students, we have supplied all details

for most of the proofs. We also illustrate the theorems using examples and give simple

appli
ations of the theorem proved. We have in
luded pi
tures wherever ne
essary to assist

the geometri
 understanding of ideas and the results. We hope that this arti
le will introdu
e

the readers to some of the basi
 te
hniques and ideas of di�erential topology.
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1 Criti
al Points and Morse Lemma

We assume all surfa
es to be 
ompa
t, 
onne
ted, without boundary (
losed) unless stated

otherwise.

De�nition 1. Let M be a smooth manifold and f : M ! R, a smooth fun
tion on M . A

point p 2 M is said to be a 
riti
al point of f if Df(p) is singular on T

p

(M). The image

of p under f , that is, f(p) is 
alled a 
riti
al value of f . Any real number whi
h is not a


riti
al value is 
alled a regular value of f .

Example 1. If f is a 
onstant fun
tion on M then all points of M are 
riti
al points.

Example 2. Let M = S

2

� R

3

and f(x; y; z) = z. Then N = (0; 0; 1) and S = (0; 0;�1)

are the two 
riti
al points of f .

Example 3. If M is a 
ompa
t manifold then there exist at least two 
riti
al points for

any non
onstant fun
tion f on M , namely the maximum and minimum of f .

Example 4. Let M = T

1

- the 2-dimensional torus and f be the height fun
tion on M .

Then there are four 
riti
al points X

1

; X

2

; X

3

; X

4

. See Fig. 1.
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Figure 1: Criti
al Points on the torus and the sphere

Let M be a smooth manifold of dimension n. Let � : U ! M be a parameterizations,

where U � R

n

is an open set 
ontaining 0. If �(0) = p, then we say that � is 
entered at p.

De�nition 2. Let M be a smooth manifold of dimension n and f : M ! R, a smooth

fun
tion on M . Let (�; U) be a parameterization 
entered at p. De�ne g := f Æ �. The

Hessian of f with respe
t to � is a matrix de�ned as

H

�

(f) = H(f Æ �) := (

�

2

g

�x

i

�x

j

); 1 � i; j � n:
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Let M be a surfa
e. Let (�; U) and ( ; V ) be two parameterization 
entered at p. Let

(x; y) and (u; v) be 
oordinates w.r.t. � and  respe
tively. Let �(u; v) = (x(u; v); y(u; v))

be the 
orresponding 
hange of 
oordinates. De�ne h(u; v) := g Æ �(u; v). Then h = f Æ  

and the partial derivatives of h are as follows:

�h

�u

= g

x

x

u

+ g

y

y

u

;

�h

�v

= g

x

x

v

+ g

y

y

v

;

�

2

h

�u

2

= g

xx

x

u

2

+ 2g

xy

x

u

y

u

+ g

yy

y

u

2

+ g

x

x

uu

+ g

y

y

uu

;

�

2

h

�v

2

= g

xx

x

v

2

+ 2g

xy

x

v

y

v

+ g

yy

y

v

2

+ g

x

x

vv

+ g

y

y

vv

;

�

2

h

�u�v

= g

xx

x

u

x

v

+ g

xy

x

u

y

v

+ g

x

x

uv

+ g

yx

x

v

y

u

+ g

yy

y

u

y

v

+ g

y

y

uv

:

If p is a 
riti
al point of f then g

x

= 0 = g

y

and hen
e the Hessians of f with respe
t to

� and  are related as follows :

H

 

(f) = J

t

(�) ÆH

�

(f) Æ J(�) (1)

where J(�) denotes the Ja
obian of �.

De�nition 3. Let f be a smooth fun
tion on a surfa
e M . A 
riti
al point p of f is said

to be non degenerate if H

�

(f)(p) is non singular for any parameterization � 
entered at p.

It follows from Eq. 1 that this de�nition is independent of the parameterization.

Example 5. All 
riti
al points in Example 1 are degenerate. All 
riti
al points in Example

2 and 4 are non degenerate.

De�nition 4. The index of a non degenerate 
riti
al point p of smooth fun
tion f on a

surfa
e M is the dimension of the maximal subspa
e of T

p

M on whi
h H(f) is negative

de�nite.

The index of a 
riti
al point is independent of the parameterization follows from Sylvester's

Law.

Remark 1. Con
epts of non degenera
y and index also hold for any smooth manifold.

Example 6. In Example 4 X

1

is a 
riti
al point of index 0, X

2

and X

3

are 
riti
al points

of index 1 and X

4

is of index 2.

Theorem 1 (Morse, 1932). Let M be a surfa
e and f : M ! R, a smooth fun
tion on

M . Let p 2M be a non degenerate 
riti
al point of f . Then there exists a parameterization

(�; U) 
entered at p and 
oordinates (X; Y ) su
h that

f Æ �(X; Y ) = f(p) + g

i

(X; Y ); 0 � i � 2;

where i is the index of p and g

i

's are de�ned as follows:

g

0

(X; Y ) = X

2

+ Y

2

, g

1

(X; Y ) = X

2

� Y

2

and g

2

(X; Y ) = �X

2

� Y

2

:
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De�ne a map g := f Æ� : U ! Rwhere � is a parameterization 
entered at p. Then g is

smooth and (0; 0) is a non degenerate 
riti
al point of g. It is enough to prove the following

form of the above theorem.

Theorem 2. Let U � R

2

be a neighborhood of (0; 0) and f : U ! R be a smooth fun
tion.

Assume that (0; 0) is a non degenerate 
riti
al point of f of index i for 0 � i � 2. Then

there exists a di�eomorphism � : V ! �(V ) � U , where V is an open set 
ontaining (0; 0)

in R

2

, �(0; 0) = (0; 0) and a system of 
oordinates (X; Y ) on U su
h that

f Æ �(X; Y ) = f(0; 0)+ g

i

(X; Y ):

Proof. By Taylor series expansion f near origin is of the form:

f(x; y)� f(0; 0) = R(x; y)x

2

+ 2S(x; y)xy+ T (x; y)y

2

(2)

where R; S and T are smooth fun
tions de�ned as:

R(x; y) =

Z

1

0

(1� t)f

xx

(tx; ty)dt; R(0; 0) = r;

S(x; y) =

Z

1

0

(1� t)f

xy

(tx; ty)dt; S(0; 0) = s;

T (x; y) =

Z

1

0

(1� t)f

yy

(tx; ty)dt; T (0; 0) = t:

Note that R(0; 0) =

1

2

f

xx

(0; 0); S(0; 0) =

1

2

f

xy

(0; 0) and T (0; 0) =

1

2

f

yy

(0; 0): In 
lassi
al

notation we say that (0; 0) is a non degenerate 
riti
al point of f if rt� s

2

6= 0.

Case 1. Let rt� s

2

> 0 and r > 0. Sin
e R is 
ontinuous, there exists a neighbourhood

U

1

� U of (0; 0) in whi
h R and RT � S

2

remain positive. So we 
an write Eq. 2 as:

f(x; y)� f(0; 0) = R(x; y)[x+ y

S(x; y)

R(x; y)

℄

2

+ y

2

R(x; y)T (x; y)� S

2

(x; y)

R(x; y)

: (3)

De�ne

X = X(x; y) :=

p

R(x; y)[x+ y

S(x;y)

R(x;y))

℄;

Y = Y (x; y) := y

q

R(x;y)T (x;y)�S

2

(x;y)

R(x;y)

:

De�ne � : U

1

! R

2

as �(x; y) = (X(x; y); Y (x; y)). Then �(0; 0) = (0; 0) and Ja
obian

J(�)(0; 0) =

p

rt � s

2

6= 0. Hen
e by inverse mapping theorem � is invertible in some

neighbourhood V of (0; 0). De�ne �(X; Y ) = �

�1

(X; Y ) = (x(X; Y ); y(X; Y )). Then Eq. 3

be
omes:

f Æ �(X; Y ) = f(0; 0)+X

2

+ Y

2

= f(0; 0)+ g

0

(X; Y ):

Sin
e r is positive, t is also positive and hen
e the index of (0; 0) is 0.

Case 2. Let rt� s

2

> 0 and r < 0. Then we write Eq. 3 as:

f(x; y)� f(0; 0) = �(�R(x; y))[x+ y

S(x; y)

R(x; y)

℄

2

� y

2

R(x; y)T (x; y)� S

2

(x; y)

�R(x; y)

:
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Then de�ne

X = X(x; y) :=

p

�R(x; y)[x+ y

S(x;y)

R(x;y))

℄;

Y = Y (x; y) := y

q

R(x;y)T (x;y)�S

2

(x;y)

�R(x;y)

:

Again pro
eeding as before we get

f Æ �(X; Y ) = f(0; 0)�X

2

� Y

2

= f(0; 0)+ g

2

(X; Y ):

Sin
e r is negative, t is negative and hen
e index of (0; 0) is 2.

Case 3. Let rt� s

2

< 0 and r > 0. Using similar arguments as before we get:

f Æ �(X; Y ) = f(0; 0)+X

2

� Y

2

= f(0; 0)+ g

1

(X; Y ):

If r is negative, then we 
an write Eq. 3 as:

f(x; y)� f(0; 0) = �(�R(x; y))[x+ y

S(x; y)

R(x; y)

℄

2

+ y

2

S

2

(x; y)� R(x; y)T (x; y)

�R(x; y)

:

Then de�ne

X = X(x; y) := y

q

S

2

(x;y)�R(x;y)T (x;y)

�R(x;y)

;

Y = Y (x; y) :=

p

�R(x; y)[x+ y

S(x;y)

R(x;y)

℄

Pro
eeding as above we get

f Æ �(X; Y ) = f(0; 0)+X

2

� Y

2

= f(0; 0)+ g

1

(X; Y ):

If t is non zero then the same arguments go through.

Lastly suppose both of them are zero (for example the 
ase of hyperbola f(x; y) = xy).

Consider a map �(x; y) = (u(x; y); v(x; y)), where u = x + y and v = x � y. Now de�ne a

map g(u; v) = f(

u+v

2

;

u�v

2

). Then

g

u

=

1

2

f

x

+

1

2

f

y

and g

uu

=

1

4

f

xx

+

1

2

f

xy

+

1

4

f

yy

:

Hen
e g

uu

(0; 0) =

1

2

f

xy

(0; 0) = s 6= 0. Otherwise the rt � s

2

= 0, a 
ontradi
tion. Again

pro
eeding as above for the fun
tion g we get the required result. Che
k that in any 
ase

the index of (0; 0) is 1.

Remark 2. The 
onverse of the above theorem is also true.

Example 7. Let M = P

2

be the proje
tive plane obtained by identifying antipodal points

of S

2

. Consider the map f : M ! R de�ned by f [(x; y; z)℄ = x

2

+ 2y

2

+ 3z

2

. Che
k that

this is a smooth fun
tion on P

2

. [(1; 0; 0)℄; [(0; 1; 0)℄ and [(0; 0; 1)℄ are the only 
riti
al points

with index 0; 1 and 2 respe
tively.
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Let us illustrate this example. Let U

1

= f[(x; y; z)℄ : x 6= 0g, U

2

= f[(x; y; z)℄ : y 6= 0g

and U

3

= f[(x; y; z)℄ : z 6= 0g. De�ne maps

�

1

: R

2

! U

1

as �

1

(u; v) =

[(1; u; v)℄

p

1 + u

2

+ v

2

;

�

2

: R

2

! U

2

as �

2

(u; v) =

[(u; 1; v)℄

p

1 + u

2

+ v

2

and

�

3

: R

2

! U

3

as �

3

(u; v) =

[(u; v; 1)℄

p

1 + u

2

+ v

2

:

It is easy to 
he
k that (�

i

;R

2

) for i = 1; 2; 3 are parameterizations and that (U

i

; �

i

�1

)

for i = 1; 2; 3 form a 
hart on P

2

. We will �nd 
riti
al points and their indi
es using the

remark 2. De�ne a map g = f Æ �

1

: R

2

! R as

g(u; v) = f Æ �

1

(u; v) =

1

1 + u

2

+ v

2

+

2u

2

1 + u

2

+ v

2

+

3v

2

1 + u

2

+ v

2

Its is easy to 
he
k that g

u

; g

v

vanishes only at (u; v) = (0; 0). Hen
e [(1; 0; 0)℄ is the only


riti
al point of f in U

1

. De�ne

U(u; v) :=

u

p

1 + u

2

+ v

2

and V (u; v) :=

v

p

2

p

1 + u

2

+ v

2

It is easy to 
he
k that these are 
oordinates in some neighbourhood of (0; 0). Let � be the

inverse of (U; V ). Then g Æ �(U; V ) = 1 + U

2

+ V

2

. Hen
e by remark 2 [(1; 0; 0)℄ is a non

degenerate 
riti
al point of index 0. Similarly one 
an 
he
k for the other 
riti
al points.

Remark 3. Morse Theorem is true for any smooth manifold.

Corollary 3. Non degenerate 
riti
al points of a smooth fun
tion are isolated.

The fun
tion g

i

; i = 0; 1; 2 de�ned in the theorem 1 are 
alled the model fun
tions.

Model neighbourhood of g

i

's are neighbourhoods U(s); s > 0 of (0; 0) in R

2

de�ned as

follows:

For i = 0 and i = 2, U(s) is a dis
 of radius

p

s.

U(s) = f(X; Y ) 2 R

2

: X

2

+ Y

2

� sg

For i = 1,

U(s) = f(X; Y ) 2 R

2

: jX

2

� Y

2

j � s; jXY j � sg:

This is an o
tagon whi
h is homeomorphi
 to a re
tangle. See Fig. 2.

De�nition 5. Let f : M ! R be a smooth fun
tion on a 
losed surfa
e M . Let p be a non

degenerate 
riti
al point of f . Let (�; U) be a parameterization 
entered at p su
h that f

in U is of the form

f(�(X; Y )) = f(p) + g

i

(X; Y )

where i is the index of p. Let V � U be a model neighbourhood for g

i

. Then the neigh-

bourhood �(V ) of p is 
alled a 
anoni
al neighbourhood of p and (�; V ) is 
alled a 
anoni
al

parameterization. See Fig. 3.

We will assume that boundary is in
luded in 
anoni
al neighbourhoods.
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Figure 3: Canoni
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2 Morse Fun
tions and the Gradient Flow

De�nition 6. Let M be a smooth manifold. A smooth one-parameter group of di�eomor-

phisms on M is a smooth map � : R�M ! M de�ned as (t; x) 7! �

t

(x) satisfying the

following properties:

� �

0

= id

M

� For ea
h t 2 R the map �

t

: M !M as t 7! �

t

(x) is a di�eomorphism.

� For r; s 2 R; �

r+s

(x) = �

r

Æ �

s

(x) for all x 2M .

Sin
e the map � is smooth, for ea
h x 2 R the map t 7! �

t

(x) is a smooth 
urve in M .

Hen
e

d

dt

(�

t

(x)) j

t=0

= X(x) 2 T

x

M:

That is, the map X : M ! TM de�ned as x 7!

d

dt

(�

t

(x)) j

t=0

is a smooth ve
tor �eld

on M . This ve
tor �eld is said to be generated by the smooth one-parameter group of

di�eomorphism � on M . Conversely, any smooth one-parameter group of di�eomorphism

arises this way on any 
ompa
t manifold. More pre
isely:

Theorem 4. Let M be a smooth 
ompa
t manifold. Let X 2 �(M) be a smooth ve
tor

�eld on M . Then there exists a unique smooth one-parameter group of di�eomorphism

� : R�M !M whi
h generates X. That is,

d

dt

(�

t

(x)) j

t=0

= X(x) and �

0

(x) = x:

7



This theorem follows from a well known basi
 theorem in ODE.

Theorem 5. Let U � R

n

be open. Let X : U ! R

n

be a smooth map. Given x

0

2 U there

exists an open neighbourhood 
 of x

0

in U , an � > 0 and a smooth map F : (�; �)� 
! U

su
h that F (y; 0) = y for all y 2 
 and

d

dt

(F (t; x) j

t=0

= X(x).

If (Æ; V;G) is another solution satisfying 
onditions similar to above then F = G on

(�; �)� V where � :=minfÆ; �g.

Proof. Refer to [1℄ or [5℄.

We will use one-parameter group of di�eomorphisms to prove many important results

in this arti
le.

De�nition 7. Let f be a smooth fun
tion on a surfa
e M . Then f is said to be a Morse

fun
tion if all its 
riti
al points are non degenerate.

Example 8. 1. All model fun
tions are Morse fun
tions.

2. Height fun
tions on the sphere S

2

and the torus are Morse fun
tions.

3. The fun
tion de�ned in Example 7 is a Morse fun
tion.

There always exist Morse fun
tions on any 
losed manifold. (We will not get into the

te
hni
alities of this result. Interested readers 
an refer [7℄.)

Let f be a smooth fun
tion on any surfa
e M . Let a and b be real numbers su
h that

a < b. We will use the following notations:

M(a) = fx 2M : f(x) � ag = f

�1

(�1; a℄;

M

0

(a) = fx 2M : f(x) � ag = f

�1

[a;1);

V (a) = fx 2M : f(x) = ag = f

�1

(a);

W (a; b) = fx 2M : a � f(x) � bg = f

�1

[a; b℄:

These sets are illustrated in Fig. 4.

Theorem 6. LetM and N be n dimensional smooth manifolds with boundary. Let f : M !

N be a di�eomorphism. Them f maps interior of M onto interior of N and the boundary

of M onto the boundary of N .

Theorem 7. Let M be a 
ompa
t surfa
e and f be a smooth fun
tion on M . Let a and

b be regular values of f . Then M(a) and W (a; b) are 
ompa
t surfa
es with V (a) as the

boundary of M(a) and disjoint union of V (a) and (b) as the boundary of W (a; b). Also

V (a) is a 
losed 1-manifold.

The proofs of theorem 6 and theorem 7 are simple appli
ations of Impli
it Fun
tion

Theorem and Inverse Mapping Theorem.

Any 
losed manifold M 
an be embedded in R

N

for some large N . Hen
e for ea
h

x 2M , the tangent spa
e T

x

M inherits an inner produ
t from R

N

.

8
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Theorem 8. Let M be a surfa
e and f : M ! R, a smooth fun
tion on M . Assume that a

and b are regular values of f with a < b su
h that W (a; b) does not 
ontain any 
riti
al point

of f . Then M(b) is di�eomorphi
 to M(a), V (b) is di�eomorphi
 to V (a) and W (a; b) is

di�eomorphi
 to V (a)� [a; b℄.

Proof. The idea of the proof is to push M(a) to M(b) using the one-parameter group of

di�eomorphisms. Sin
e we want V (a) to be mapped di�eomorphi
ally to V (b), the integral


urves of the ve
tor �eld should be transversal to the level 
urves of f . In parti
ular the

modi�ed gradient ve
tor �eld of f may do the job. The details are given below.

Let � > 0 be small enough su
h that f

�1

(a� �; b+ �) does not 
ontain any 
riti
al points

of f . Let � : M ! R be a non negative smooth fun
tion su
h that � is 1 on W (a; b) and it

is 0 on the 
omplement of W (a� �; b+ �). See Fig. 5. De�ne a ve
tor �eld

Y (x) =

(

�(x)

kgrad(f(x))k

2

grad(f(x)) x 2 W (a� �; b+ �);

0 otherwise.

This is a smooth ve
tor �eld transversal to the level 
urves of f in W (a; b). Let � be

the one-parameter group of di�eomorphisms asso
iated with the ve
tor �eld Y . For ea
h

x 2M 
onsider the map t 7! f(�

t

(x)) =  (t). This is a smooth fun
tion from R to R. Its

derivative

d

dt

 (t) = Df(�

t

(x))

d

dt

�

t

(x) = Df(�

t

(x))Y (�

t

(x)) = �(�

t

(x)):

That is, if �

t

(x) 2 W (a; b) then

d

dt

 (t) = 1. Hen
e  is linear as long as �

t

(x) lies in

9
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W (a; b). This means that  (t) = t+ A for some 
onstant A. But  (0) = f(�

0

(x)) = f(x).

Hen
e  (t) = t+ f(x) for all x su
h that �

t

(x) 2 W (a; b).

We 
laim that �

b�a

maps M(a) di�eomorphi
ally onto M(b). Let us �x x 2M(a). By

Mean-Value Theorem

j

f(�

b�a

(x))� f(�

0

(x))

b� a

j = j

 (b� a)�  (0)

b� a

j � sup

t2[0;b�a℄

j 

0

(t)j � 1:

This implies that jf(�

b�a

(x))�f(x)j � b�a. That is, f(�

b�a

(x)) � b�a+f(x) � b�a+a =

b. Thus �

b�a

maps M(a) into M(b).

To prove that �

b�a

is onto as a map from M(a) to M(b), it is enough to prove that

if f(x) > a then f(�

b�a

(x)) > b. Let us assume this and prove that �

b�a

is onto. Let

x 2M(b). Sin
e �

b�a

is a di�eomorphism of M , there exists y 2M su
h that �

b�a

(y) = x.

If f(y) > a, then by assumption f(�

b�a

(y)) = f(x) > b. Whi
h is a 
ontradi
tion to the

fa
t that x 2 M(b). Hen
e f(y) � a. This proves that �

b�a

is onto as a map from M(a)

to M(b). Also �

b�a

is one-one and hen
e �

b�a

is a di�eomorphism as a map from M(a) to

M(b).

Now let us prove the 
laim. Let f(�

b�a

(x)) � b for f(x) > a. Sin
e  

0

(t) � 0,  

is in
reasing. That is,  (b � a) �  (0). This implies that for all x 2 M; f(�

b�a

(x)) �

f(�

0

(x)) = f(x) > a. Thus a � f(�

t

(x)) � b for all t 2 [0; b� a℄. Hen
e f Æ �

t

(x) is linear

in [0; b� a℄. Hen
e f(�

b�a

(x)) = b� a+ f(x) > b� a+ a > b. This is a 
ontradi
tion.

�

b�a

maps V (a) di�eomorphi
ally onto V (b) by theorem 6.

For the last part we de�ne a map

� : V (a)� [a; b℄!W (a; b) as �(x; t) = �

t�a

(x):

10
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al minimum

We 
laim that � is a di�eomorphism. Sin
e  is in
reasing along the integral 
urves,

a = f(�

0

(x)) � f(�

t�a

(x)) � f(�

b�a

(x)) = b:

Hen
e �(x; t) 2 W (a; b). For y 2 W (a; b), de�ne �(y) = (�

a�f(y)

(y); f(y)). Che
k that �

and � are inverse of ea
h other.

3 Modi�
ation of a Morse Fun
tion

Let f be a Morse fun
tion on a surfa
eM . The idea is to improve f to a new Morse fun
tion

g having the same 
riti
al points with same indi
es and whi
h 
oin
ides with f outside some


anoni
al neighbourhood of a 
riti
al point. We need following lemmas at our disposal.

Lemma 9. Let f : M ! R be a Morse fun
tion. Let p 2M be a 
riti
al point of f of index

0. Assume that f(p) = 
. Let a � 
 be any real number. Then there exists a Morse fun
tion

g on M having the same 
riti
al points with same indi
es as f and whi
h 
oin
ides with f

outside some 
anoni
al neighbourhood of p and is su
h that g(p) = a.

Proof. If a = 
, then there is nothing to prove.

Let a < 
. Let (�; U) be a 
anoni
al parameterization 
entered at p. Let �(U) = V . Let

f(�V ) = b. Let � : [
; b℄! R be a smooth map su
h that �

0

> 0; �(
) = a and �(x) = x for

x near b. Now de�ne g : M ! R as:

g(x) =

(

�(f(x)); x 2 V

f(x); x =2 V

See Fig. 6. It is easy to 
he
k that g is smooth. We 
laim that g has the required properties.

11



First of all g(p) = �(f(p)) = �(
) = a. For x 2 V;Dg(x) = �

0

(f(x))Df(x). Sin
e the

derivative of � is positive, derivative of g in V is zero only when x = p. Thus p is the only


riti
al point of g in V . Also g Æ �(X; Y ) = �(f(p) +X

2

+ Y

2

) on U , the Hessian of g at 0

is given by

H(g) =

�

2�

0

(
) 0

0 2�

0

(
)

�

:

Hen
e the index of p is 0.

Lemma 10. Let f : M ! R be a Morse fun
tion. Let p 2 M be a 
riti
al point of f of

index 2. Assume that f(p) = 
. Let a � 
 be any real number. Then there exists a Morse

fun
tion g on M having the same 
riti
al points with same indi
es as f and whi
h 
oin
ides

with f outside some 
anoni
al neighbourhood of p and is su
h that g(p) = a.

Proof. Use similar arguments as above.

Lemma 11. Let f : M ! R be a Morse fun
tion. Let p 2 M be a 
riti
al point of f of

index 1. Assume that f(p) = 
. Let � 2 R be any real number. Then there exists a Morse

fun
tion g on M having the same 
riti
al points with same indi
es as f and whi
h 
oin
ides

with f outside some 
anoni
al neighbourhood V of p and is su
h that g(p) = 
+ �.

Proof. The idea is to 
hange the model fun
tion g

1

suitably. We will show that for any

real number �, there exists a bounded neighbourhood say U

1

of (0; 0) in R

2

and a Morse

fun
tion h : R

2

! R su
h that h(x; y) = x

2

� y

2

for (x; y) =2 U

1

, h(0; 0) = � and (0; 0) is the

only 
riti
al point of h and index of (0; 0) is 1. Let us assume this 
laim and 
omplete the

proof.

PSfrag repla
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Figure 7: Modi�
ation at a saddle point

Choose a 
anoni
al parameterization (�; U) su
h that U

1

� U . Now de�ne g : M ! R

as

g(x) =

(

f(p) + h Æ �

�1

(x) x 2 �(U) = V ;

f(x) x =2 V :
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Then g(p) = 
+ h(0; 0) = 
+ �. It is easy to see that g is smooth. Also 
riti
al points of g

in V are 
riti
al points of h Æ �

�1

in U . Hen
e p is the only 
riti
al point of g in V and its

index is 1. See Fig. 7.

Now let us prove the 
laim made earlier. Let � > 0 be �xed. Let w : R ! R be

a smooth non negative fun
tion su
h that w(0) = 1, w

0

(0) = 0; yw

0

(y) � 0for all y and

w(y) = 0 for y =2 (�a; a) for some positive number a. Also de�ne a smooth non negative

fun
tion � : R! R su
h that �(0) = �, �

0

(0) = 0, �(x) = 0 for x =2 (�a; a) for some positive

number a and su
h that

2x+ �

0

(x) > 0 if x > 0;

2x+ �

0

(x) < 0 if x < 0:

Note that sin
e � is �xed, this will put some bounds on a.

Constru
tion of w. Consider w

1

= 1�

x

2

a

2

. Clearly w

1

(0) = 1. Now smoothen w

1

at

its roots �a to get w. Sin
e w

0

(x) =

�2x

a

2

, xw

0

(x) � 0.

1

PSfrag repla
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Figure 8: Graphs of w and �

Constru
tion of �. Consider �

1

(x) = � �

�x

2

a

2

. Now smoothen �

1

at its roots �a to

get �. Clearly �(0) = �, and �(x) = 0 for x =2 (�a; a). We want 2x + �

0

(x) > for x > 0,

that is, 2x � 2x

�

a

2

> 0 for x > 0 and 2x� 2x

�

a

2

< 0 for x < 0. So, 
hoose a

2

> �. Then �

has the required properties. See Fig. 8

Now de�ne

h(x; y) = x

2

� y

2

+ �(x)w(y):

Then h(0; 0) = � and h(x; y) = x

2

� y

2

for (x; y) =2 ([�a; a℄� [�a; a℄). Partial derivatives of

h are

h

x

= 2x+ �

0

(x)w(y) & h

y

= �2y + �(x)w

0

(y):

Hen
e (0; 0) is a 
riti
al point of h. Let (x; y) 6= 0. Sin
e 0 � w � 1,

h

x

= 2x+ �

0

(x)w(y) > 2x+ �

0

(x) > 0 if x > 0;

h

x

= 2x+ �

0

(x)w(y) < 2x+ �

0

(x) < 0 if x < 0:

13



Hen
e if x 6= 0, h

x

6= 0. If x = 0, then

h

y

= �2y + �(x)w

0

(y) < 0 if y > 0, as w

0

(y) < 0

h

y

= �2y + �(x)w

0

(y) > 0 if y < 0, as w

0

(y) > 0:

Hen
e (0; 0) is the only 
riti
al point of h. Also

h

xx

= 2 + �

00

(x)w(y), h

yy

= �2 + �(x)w

00

(y), and h

xy

= �

0

(x)w

0

(y):

The Hessian

H(h)(0; 0) =

�

2 + �

00

(0) 0

0 �2 + �w

00

(0)

�

:

Using the 
onstru
tion of w and � it is easy to show that index of (0; 0) is 1.

For � < 0, take h(x; y) = x

2

� y

2

� w(x)�(y) and pro
eed as before.

Remark 4. In Lemma 9, Lemma 10 and Lemma 11 we may pass 
riti
al levels. (See Fig. 6

and Fig. 7.)

De�nition 8. Let f : M ! R be a Morse fun
tion. Let X

i

; Y

j

and Z

k

be 
riti
al points

of f of indi
es 0; 1 and 2 respe
tively. We say that f is an ordered Morse fun
tion if

f(X

i

) < f(Y

j

) < f(Z

k

) for all i; j; k and if it separates 
riti
al points, that is, f(x) 6= f(y)

for any two distin
t 
riti
al points x and y.

Theorem 12. On any surfa
e M there exists an ordered Morse fun
tion.

Proof. Let f be a Morse fun
tion on M . Let a; b 2 R; a < b be real numbers su
h that

all the 
riti
al points of index 1 of f lie in f

�1

(a; b). By Lemma 9 we 
an �nd a Morse

fun
tion su
h that all the 
riti
al values of index 0 are less than a. Similarly by Lemma 10

we 
an �nd a Morse fun
tion su
h that all the 
riti
al values of index 2 are greater than b.

Similarly we 
an separates 
riti
al points.

4 Crossing Criti
al Levels of Index 0 or 2

Let a and b be regular values of f su
h that a < b. Let W (a; b) 
ontain a 
riti
al point say

p of f . Then Theorem 8 need not be true. In this se
tion we see what happens when we


ross a 
riti
al level.

Theorem 13. Let f : M ! R be a Morse fun
tion on M and p 2M , a 
riti
al point of f .

Let f(p) = 
. Let a and b be regular values su
h that W (a; b) does not 
ontain any 
riti
al

point other than p. Then the following hold:

� If p is a 
riti
al point of index 0, then M(b) is di�eomorphi
 to a disjoint union of

M(a) with a dis
 D whi
h is a 
anoni
al neighbourhood of p. Also V (b) is di�eomor-

phi
 to a disjoint union of V (a) with a 
ir
le whi
h is the boundary of D.
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� If p is of index 2, then M(b) is di�eomorphi
 to M(a) with a dis
 D atta
hed along

one of the 
omponents of V (a) and the atta
hing map is inje
tive as map from the

boundary of D to V (a). Also V (a) is di�eomorphi
 to a disjoint union of V (b) with

a 
ir
le whi
h is the boundary of D.

Proof. It is enough to prove the lemma for regular values �; � su
h that a < � < 
 < � < b.

This follows from theorem 8. Choose an � > 0 su
h that W (
� 2�; 
+ 2�) does not 
ontain

any 
riti
al point of f other than p. Hen
e U(�) and U(2�) are 
anoni
al neighbourhoods

of p. For 
onvenien
e let us assume that a = 
� � and b = 
+ �.

Let p be of index 0. In this 
ase M(b) \ U(�) = U(�), di�eomorphi
 to a dis
. Let

us denote U(�) by D. V (b) \ U(�) is the boundary of the dis
 D. Sin
e p is of index

0 and U(�), a 
anoni
al neighbourhood of p, f(x) � f(p) = 
 for all x 2 U(�). Hen
e

M(a) \ U(�) = ; = V (a) \ U(�). See Fig. 9.

Choose a smooth non negative fun
tion � : M ! R su
h that � vanishes in U(�) and

is equal to 1 outside U

0

= U(2�). Also 
onsider a smooth fun
tion � : M ! R su
h that �

vanishes outside W (
� 2�; 
+ 2�) and is 1 in W (
� �; 
+ �). Now de�ne a ve
tor �eld

Y (x) =

(

�(x)�(x)

kgrad(f(x))k

2

grad(f(x)) x 2 W (
� 2�; 
+ 2�) n U(�) ;

0 otherwise.
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Figure 9: Crossing a lo
al minimum

Then Y is transversal to level 
urves of f .
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Let � be the one-parameter group of di�eomorphism asso
iated with the ve
tor �eld

Y . We 
laim that the map �

b�a

maps M(a) to M(b) n D. For x 2 M , de�ne g(t) :=

f Æ �

t

(x). Then g

0

(t) = �(�

t

(x))�(�

t

(x)) � 1. Using Mean Value Theorem we 
an show

that �

b�a

(M(a)) � M(b). (Re
all arguments in Theorem 8.) Sin
e Y (x) = 0 for x 2 U(�),

�

t

(x) = x for all t 2 R and x 2 U(�). That is, the integral 
urves starting in U(�) are


onstant. Hen
e, if x =2 U(�); �

t

(x) =2 U(�) for all t 2 R. Thus �

b�a

maps M(a) into

M(b) nD.

We now show that �

b�a

is onto as a map fromM(a) toM(b)nD. Let x 2M(b)nD. Sin
e

�

b�a

is a di�eomorphism on M , there exists y 2 M su
h that �

b�a

(y) = x. We 
laim that

f(y) � a. If f(y) > a, then we 
laim that f(�

b�a

(y)) > b. Let f(y) > a and f(�

b�a

(x)) � b.

Sin
e g is in
reasing, a < f(�

b�a

(y)) � b. But then f(�

b�a

(y)) = b� a+ f(y) > b. This is

a 
ontradi
tion. This proves that �

b�a

is onto as a map fromM(a) to M(b)nD. Also �

b�a

is identity on D. Hen
e �

b�a

: M(a)

`

D!M(b) nD [D =M(b) is a di�eomorphism.

Lastly we 
laim that M(b) is di�eomorphi
 to disjoint union of M(a) and D. Sin
e

M(a) is 
ompa
t, �

b�a

(M(a)) = M(b) n D is 
ompa
t and hen
e 
losed in M(b). D is


ompa
t implies M(b) nD is open in M(b). Hen
e D is a 
omponent of M(b). This proves

that M(b) is homeomorphi
 to disjoint union of M(a) and a dis
 D. The last part of the

�rst assertion follows from Theorem 6.

0

0
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Let index of p be 2. For 
onvenien
e let us assume that 
 = 0; a = �� and b = �. De�ne

g := �f . Then p is a 
riti
al point of g of index 0. Hen
e by the �rst part of the theorem

f

M(�) nD is di�eomorphi
 to

f

M (��), where

f

M(��) = fx 2M : �f(x) � ��g = fx 2M : f(x) � �g = M

0

(�);

f

M(�) = fx 2M : �f(x) � �g = fx 2M : f(x) � ��g = M

0

(��);
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and D is a 
anoni
al neighbourhood U(�) of p. See Fig. 10.

Hen
e intM

0

(��) is di�eomorphi
 to int (M

0

(�)

`

D) via the map �

b�a

(theorem 6).

Sin
e �

b�a

is a di�eomorphism on M , (intM

0

(��))




= M(��) and (int (M

0

(�)

`

D))




=

M(�) n intD are smooth manifolds. M(��) is di�eomorphi
 to M(�) n intD. Hen
e M(�)

is di�eomorphi
 to M(��) [ D where D is atta
hed to M(��) via an inje
tion on �D to

V (��). The last part of the se
ond assertion follows from theorem 6.

Remark 5. Analogue of theorem 13 is true in the 
ase M is of dimension n and p is a


riti
al point of index 0 or n. In this 
ase dis
 D is of dimension n.

Proposition 14. Let f be an ordered Morse fun
tion on a surfa
e M . Suppose that f has

no 
riti
al points of index 1. Then M is homeomorphi
 to a sphere.

Proof. Let X

1

; X

2

; : : : ; X

m

be 
riti
al points of index 0 and Z

1

; Z

2

; : : : ; Z

n

be 
riti
al points

of index 2. First of all we 
laim that n = m.

Let a be a regular value of f su
h that f(X

i

) < a < f(Z

j

) for all i and j. Then using

indu
tion on number of 
riti
al points of index 0 we 
an show thatM(a) is a disjoint union

of m dis
s, say, fD

i

g

1�i�m

and its boundary is a disjoint union of m 
ir
les. Similarly M

0

(a)

is disjoint union of n dis
s, say, fD

0

i

g

1�i�n

and its boundary is disjoint union of n 
ir
les.

Sin
e V (a) is the 
ommon boundary of M(a) and M(

0

a); m = n.

Let n = 1. Sin
e f has one 
riti
al point of index 0 and one 
riti
al point of index 2,

M(a) is a dis
 say D and M

0

(a) is also a dis
 say D

0

. M is obtained by atta
hing D

0

to D

along their boundaries. Hen
e M is homeomorphi
 to a sphere.

Lastly we 
laim that n = 1. Let a be as above. Then M is obtained by atta
hing n

dis
s fD

0

i

g

1�i�n

(homeomorphi
 to M

0

(a)) to n dis
s fD

i

g

1�i�n

(homeomorphi
 to M(a))

along their boundaries. Sin
e the atta
hing map is inje
tive, D

0

i

is atta
hed to some D

j(i)

resulting in a sphere. Hen
e M is homeomorphi
 to n disjoint spheres. Thus if n > 1, then

M will be dis
onne
ted. This proves that n = 1.

Theorem 15. Any 
losed 1-manifold is homeomorphi
 to a 
ir
le S

1

.

Proof. Let M be a 
losed 1-manifold and f be an ordered Morse fun
tion on M . Let

X

1

; X

2

; : : : ; X

m

be 
riti
al points of index 0 and Y

1

; Y

2

; : : : ; Y

n

be 
riti
al points of index

1. Let a be a regular value of f su
h that f(X

i

) < a < f(Y

j

) for all i and j. Then M(a) is

a disjoint union of m ar
s fI

j

g

1�j�m

and M

0

(a) is disjoint union of n ar
s fJ

k

g

1�k�n

. This

follows from the analogue of theorem 13 (the 
ase when the index is zero, see the remark 5).

The boundary ofM(a) 
onsists of 2m points and the boundary of M

0

(a) 
onsists on 2n

points. Sin
e V (a) is the 
ommon boundary of M(a) and M

0

(a), m = n.

We pro
eed by indu
tion on n. If n = 1, thenM is homeomorphi
 to a 
ir
le. This 
an be

seen in the same way as Proposition 14. Let the result be true for any k < n. Let X

1

be su
h

the f(X

1

) > f(X

i

) for all 2 � i � n. Let the ar
 I be the 
omponent ofM(a) 
ontaining X

1

.

Let A and B be boundary points of I . Let the ar
 J be the 
omponent ofM

0

(a) 
ontaining

B as one of the boundary point. Let J be a 
anoni
al neighbourhood of a 
riti
al point say

17
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ation of one manifolds

Y

1

of index 1. We 
an �nd a Morse fun
tion g onM having the same 
riti
al points with the

same indi
es as f and is su
h that g(X

i

) < a < g(Y

1

) < g(Y

j

) for all i and j 6= 1. Let a

1

; b

1

be regular values of g su
h that g(X

i

) < a

1

< g(X

1

) < g(Y

1

) < b

1

< g(Y

j

) for all i 6= 1 and

j 6= 1. Let K be the 
omponent of g

�1

[a

1

; b

1

℄ 
ontaining X

1

and Y

1

. We now modify the

fun
tion g to a Morse fun
tion h whi
h agrees with f outside a 
oordinate neighbourhood

of K and su
h that h has no 
riti
al points in that neighbourhood K. See Fig. 11. Then

h has only n � 1 
riti
al points of index 0. Hen
e by indu
tion M is homeomorphi
 to a


ir
le.

Remark 6. If f is a smooth fun
tion on a surfa
e M and a is a regular value of f , then

by Theorem 7 and Theorem 15, V (a) is a disjoint union of 
ir
les. Hen
e the boundary of

any 
ompa
t surfa
e is homeomorphi
 to a disjoint union of 
ir
les.

5 Crossing a Criti
al Level of Index 1

Theorem 16. Let f : M ! R be a Morse fun
tion on a surfa
e M . Let p be a 
riti
al

point of f of index 1. Let a; b with a < b be regular values of f su
h that W (a; b) 
ontains

no 
riti
al points of f other that p. Then M(b) is homeomorphi
 to M(a) with a re
tangle

atta
hed to two disjoint segments of V (a) along pair of opposite sides of the re
tangle.

Proof. Choose � su
h thatW (
�3�; 
+3�) does not 
ontain any 
riti
al point of f other than

p. For 
onvenien
e let a = 
�2� and b = 
+2�. Let (�;W ) be a 
anoni
al parameterization


entered at p. Let U(2�) = V � W be a model neighbourhood of (0; 0). See Fig. 12. Let

�(V ) = U . Let I

0

= B

0

C

0

and J

0

= F

0

G

0

be as in the Fig. 12. Let I = BC = �(I

0

) and

J = FG = �(J

0

). Then I; J � V (a). Let K = V (a) n (I [ J). De�ne T = W (a; b) n U .

Note that T need not be 
onne
ted. We 
laim that T is di�eomorphi
 to K � [a; b℄.

18



We 
hoose a 
ompa
t tubular neighbourhood T

1

of T as follows: Let V

1

� W be a

neighbourhood of (0; 0) bounded by the 
urves

X

2

� Y

2

= a� 
� �;X

2

� Y

2

= b� 
+ �; and XY = b� 
� �;XY = a� 
+ �:

See Fig. 12. Let U

1

= �(V

1

). Now de�ne T

1

:= W (a� �; b+ �) n U

1

.

0
0
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for the proof of theorem 16
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Consider a smooth non negative map � : M ! R su
h that � is identi
ally 1 in T and

it vanishes outside T

1

. De�ne a ve
tor �eld Y on M as

Y (x) =

(

�(x)

kgrad(f(x))k

2

grad(f(x)) x 2 T

1

0 x =2 T

1

Let ' be the one-parameter group of di�eomorphisms generated by the ve
tor �eld Y .
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De�ne a map �: K� [a; b℄! T as �(x; t) = '

t�a

(x). We 
laim that this is the required

di�eomorphism.

First of all let us show that �(x; t) 2 T for all x 2 K and t 2 [a; b℄. De�ne a map

g : R! R as g(t) = f Æ'

t�a

(x). Sin
e g

0

(t) = �('

t�a

(x)), we have 0 � g

0

(t) � 1. Note that

g(a) = a. By Mean Value Theorem g(t)� g(a)� t�a. Hen
e g(t) � g(a)+ t�a � b. Sin
e

g is in
reasing, g(t) � g(a) = a for all t 2 [a; b℄. Hen
e '

t�a

(x) 2 W (a; b) for all t 2 [a; b℄

and for all x 2 K. Next we 
laim that �(x; t) =2 intU for all t 2 [a; b℄ and x 2 K. Let

A

0

B

0

; E

0

F

0

; C

0

D

0

; G

0

H

0

be as in the Fig. 12. Sin
e (�;W ) be a 
anoni
al parameterization,

their images AB;EF;CD;GH are integral 
urves of the ve
tor �eld Y . See Fig. 13. Assume

for some x 2 K and t 2 [a; b℄; '

t�a

(x) 2 intU . Then '

t�a

(x) will interse
t one of the above

integral 
urves AB;EF;CD;GH as they are the 
ommon boundary of T and U . Hen
e it

is one of these 
urves and 
annot lie in the intU , a 
ontradi
tion to our assumption. Hen
e

'

t�a

(x) 2 T for all t 2 [a; b℄; x 2 K.

� is one-one follows from the fa
t that g(t) is linear for t 2 [a; b℄ and '

t�a

is a di�eo-

morphism as a map from M to M .

Next we show that � is onto. Let y 2 T . Then the 
urve t 7! '

t

(y) is an integral 
urve

starting at y. De�ne a map h : R ! R de�ned as h(t) = f Æ '

t

(y). Then h is smooth,

h

0

(t) � 0 and h

0

(t) = 1, if '

t

(y) 2 T . Note that h(0) = f(y) � a. We 
laim that there

exists t

0

� 0 su
h that h(t

0

) = a. If h(0) = a, then y 2 K and �(y; a) = y. Let h(0) > a.

Assume h(t) > a for all t < 0. Sin
e h is in
reasing h(t) � h(0) � b for all t < 0. Hen
e

'

t

(y) 2 W (a; b) for all t < 0. Also for y 2 T , t 7! '

t

(y) is the integral 
urve starting at y

in T . By previous argument '

t

(y) =2 intU for all t < 0. Hen
e h is linear, whi
h implies

that h(t) = t + f(y) > a for all t < 0, a 
ontradi
tion. Hen
e there exists t

0

< 0 su
h that

h(t

0

) = a. Sin
e h is in
reasing for all t 2 [t

0

; 0℄; h(t

0

) � h(t) � h(0). Hen
e h(t) is linear

for t 2 [t

0

; 0℄. This implies that a = h(t

0

) = t

0

+ f(y) � t

0

+ b and hen
e a � t

0

2 [a; b℄.

h(t

0

) = f Æ '

t

0

(y) = a implies that '

t

0

(y) 2 V (a). If '

t

0

(y) 2 V (a) nK, then '

t

(y) has to

interse
t one of the integral 
urves. We rea
h a 
ontradi
tion by above arguments. Hen
e

'

t

0

(y) 2 K. Also

�('

t

0

(y); a� t

0

) = '

a�t

0

�a

Æ '

t

0

(y) = '

0

(y) = y:

This proves that � is a di�eomorphism.

Divide U into three parts P;Q and R (see Fig. 13). Ea
h of them is homeomorphi
 to a

re
tangle. Let us de�ne a homeomorphism �

1

: I� [a; b℄! P su
h that �

1

(B� t) = �(B; t)

and �

1

(C � t) = �(C; t). Similarly de�ne a homeomorphism �

2

: J � [a; b℄! Q su
h that

�

2

(G� t) = �(G; t) and �

2

(F � t) = �(F; t). Observe that T [ P [Q = W (a; b) nR. Also

K [ I [ J = V (a) and hen
e M(a) [ T [ P [ Q = M(b) nR. See Fig. 14. De�ne a map

	: V (a)� [a; b℄! T [ P [Q as:

	(x; t) =

8

>

<

>

:

�(x; t); x 2 K

�

1

(x; t); x 2 I

�

2

(x; t); x 2 J

	 is well de�ned and is a homeomorphism. Hen
e � is homeomorphi
 to M(a) [ (V (a)�

[a; b℄) along a homeomorphism from V (a) to V (a) � a. Note that by Remark 6, V (a) is
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Figure 14: Atta
hing a re
tangle

homeomorphi
 to disjoint union of 
ir
les and V (a) � [a; b℄ is homeomorphi
 to disjoint

union of 
ylinders.

Now M(a) [ T [ P [Q is homeomorphi
 to M(a) with 
ylinders atta
hed in the above

manner whi
h is homeomorphi
 to M(a). This implies that M(b) nR is homeomorphi
 to

M(a). Now M(b) is obtained by atta
hing the re
tangle R to M(a) along opposite sides

ED and AH .

Analysis of 
rossing 
riti
al Point of index 1

Let p be a 
riti
al point of index 1 of a Morse fun
tion f on M . Let a; b; a < b be regular

values of f su
h that f

�1

[a; b℄ 
ontains no 
riti
al points of f other than p. Then we have

shown that M(b) is homeomorphi
 to M(a) with a re
tangle R atta
hed to two disjoint

segments I and J of V (a) along opposite sides of the re
tangle. Let us analyze the di�erent

ways of atta
hing the re
tangle R to V (a) and the 
omponent of W (a; b) 
ontaining p.

Case 1. Let I and J lie in 2 di�erent 
omponents of V (a). See Fig. 15.

In this 
ase the number of 
omponents of V (b) � the number of 
omponents of V (a) =

�1. That is, the boundary 
omponents have redu
ed by one after passing this level.

Case 2. Let I and J lie in the same 
omponent of V (a). We atta
h the re
tangle R
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straight. See the Fig. 16.

In this 
ase the number of 
omponents of V (b) � the number of 
omponents of V (a) = 1.

That is, number of 
omponents in
reases by one after passing this 
riti
al level.
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Figure 16: Case 2

Thus in the two 
ases the 
omponent of W (a; b) 
ontaining p is homeomorphi
 to a dis


with two holes.

Case 3. If I and J lie in the same 
omponent of V (a) and the re
tangle R is atta
hed

with a twist. See the Fig. 17.
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Figure 17: Case 3

In this 
ase the number of 
omponents do not 
hange . The 
omponent of W (a; b)


ontaining p is homeomorphi
 to a M�obius band without a dis
. In this 
ase we have a

homeomorphi
 
opy of a M�obius band inside M .

Remark 7. We 
an atta
h the re
tangle R with more than 2 twists but this redu
es to the

earlier 
ases. (Exer
ise.)
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De�nition 9. Let f be a Morse fun
tion on a surfa
e M . Let a and b be regular values of

f with a < b. Let W (a; b) 
ontain only one 
riti
al point say p of index 1. Let the number

of 
omponents of V (a) and V (b) be m and n respe
tively. Then we say that

1. p is of type I of the �rst kind if m� n = 1.

2. p is of type I of the se
ond kind if m� n = �1.

3. p is of type II if m = n.

See Fig. 18

Figure 18: Criti
al points of index 1 and their types

Corollary 17. Let f be an ordered Morse fun
tion on M . Let a; b; a < b be regular values

of f su
h that W (a; b) 
ontains p 
riti
al points of index 0 and p 
riti
al points of index 1

of the type I of the �rst kind. Then M(a) is homeomorphi
 to M(b).
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Proof. Sin
e f is an ordered Morse fun
tion, M(a) 
ontains only 
riti
al points of index 0.

Let the number of 
riti
al points of index 0 in M(a) be q. Then M(a) is disjoint union of

q dis
s. We have to show that M(b) is also homeomorphi
 to disjoint union of q dis
s. Let

fX

i

g

1�i�p+q

be the 
riti
al points of index 0 and fY

j

g

1�j�p

, the 
riti
al points of index 1

of type I of the �rst kind in M(b). Let a

1

; a

2

; : : : ; a

p�1

; a

p

be regular values of f su
h that

f(X

i

) < a < f(X

j

) < a

1

< f(Y

1

) < a

2

< f(Y

2

) < a

3

< � � �< a

p

< f(Y

p

) < b

for all 1 � i � q and q + 1 � j � p+ q.

Then M(a

1

) is homeomorphi
 to the disjoint union of p + q dis
s, say, fD

i

g

1�i�p+q

.

Sin
e Y

1

is a 
riti
al point of type I of the �rst kind, there exist two dis
s say D

1

and D

2

in M(a

1

) whi
h are atta
hed to ea
h other by a re
tangle resulting in a dis
 again. See

Fig. 19. Hen
e M(a

2

) is a disjoint union of p + q � 1 dis
s. Pro
eeding in this fashion we

redu
e one dis
 when we pass a 
riti
al Y

j

. Hen
e M(b) is the disjoint union of p+q�p = q

dis
s. This proves that M(a) is homeomorphi
 to M(b).

Example 9. Let us illustrate the passing the 
riti
al levels in Example 7. Take the unit

dis
 model of P

2

. See Fig. 20.

 
. 
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 Model for P

2

Here X; Y; Z are 
riti
al points of index 0; 1; 2 respe
tively. (Proje
t S

2

� R

3

onto unit

dis
 in R

2

and we obtain Fig. 20 and Fig. 21 and the required 
riti
al points of the fun
tion.)

P;Q;R are the 
anoni
al neighbourhoods of X; Y; Z respe
tively.

Now Q is atta
hed to P along segments I and J in a twisted manner as in the Fig. 22.

Now R is atta
hed to P [ Q along the boundary AFCD giving P

2

. Here Y is a 
riti
al

point of type II. See Fig. 22.

Proposition 18. Let f : M ! R be an ordered Morse fun
tion. Let f have only one 
riti
al

point of index 0; 1 and 2 ea
h. Then M is homeomorphi
 to a proje
tive plane.

Proof. Let X , Y and Z be 
riti
al points of index 0; 1 and 2 respe
tively. Let a and b are

regular values of f su
h that f(X) < a < f(Y ) < b < f(Z). Then M(a) and M

0

(b) are
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Figure 21: Canoni
al neighbourhoods of 
riti
al points
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Figure 22: Proje
tive plane minus a dis
 after passing the minimum and the saddle point

dis
s. Sin
e V (a) and V (b) have only one 
omponent ea
h, Y has to be of type II. Hen
e

by 
ase 3 of analysis, M(b) is a M�obius band. M is obtained by atta
hing a dis
 to the

M�obius band M(b), hen
e M(a) is homeomorphi
 to a proje
tive plane.

Proposition 19. Let f have only one 
riti
al point of index 0, only one 
riti
al point of

index 2 and two 
riti
al points of index 1 of type I. Then M is homeomorphi
 to a torus.

Proof. Let X be the 
riti
al point of f of index 0, Y

1

; Y

2

, 
riti
al points of index 1 and

Z, the 
riti
al point of index 2. Let a and b be regular values of f whi
h separate 
riti
al

points of index 0, 1 and 2. That is, f(X) < a < f(Y

i

) < b < f(Z). Then M(a) and M

0

(b)

are dis
s D and D

0

respe
tively. Let 
 be a regular value of f whi
h separates Y

1

and Y

2

.

Without loss of generality assume that f(Y

1

) < 
 < f(Y

2

).

By Theorem 16, M(
) is obtained by atta
hing a re
tangle to M(a). When we pass a


riti
al point of index 1 of type I of the �rst kind we atta
h a re
tangle to disjoint segments

I and J belonging to di�erent 
omponents of V (a). Sin
e V (a) has only one 
omponent, Y

1

is of �rst kind. That is, M(
) is homeomorphi
 to a 
ylinder. NowM(b) has one boundary


omponent and is obtained by atta
hing a re
tangle to M(
). This for
es Y

2

to be of the

se
ond kind. Thus M(b) is homeomorphi
 to a re
tangle atta
hed to a 
ylinder along two

disjoint segments in di�erent 
omponents of the boundary of the 
ylinder. (See Fig. 23.)

Hen
e M(b) is homeomorphi
 to a torus but for a dis
. M is obtained by atta
hing a dis


to M(b), is homeomorphi
 to a torus.
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al points on a torus

6 Conne
ted Sums and All that

De�nition 10. A 
ompa
t surfa
e M (with or without boundary) is said to be non ori-

entable if it 
ontains a homeomorphi
 
opy of a M�obius band.

Proposition 20. The M�obius strip and the proje
tive plane are non orientable.

De�nition 11. Let M

1

;M

2

be 
losed surfa
es and M

0

i

for i = 1; 2 be the spa
e obtained

by removing a dis
 from M

i

. Then the boundary of M

0

i

is a 
ir
le. The 
onne
ted sum of

M

1

and M

2

is the spa
e obtained atta
hing M

0

1

to M

0

2

via a homeomorphism from �M

0

1

to

�M

0

2

. We will denote this by M

1

#M

2

.

Remark 8. The 
onne
ted sum is independent of the dis
s removed and the homeomor-

phism on the boundary.

Let T

n

denote the 
onne
ted sum of n tori and P

n

denote the 
onne
ted sum of n

proje
tive planes. Let V

n

denote T

n

but for a dis
 and U

n

denote P

n

but for a dis
. By


onvention T

1

is a torus and P

1

= P

2

is a proje
tive plane.

Let M and N be surfa
es with same number of boundary 
omponents. When we say

that M is atta
hed to N along the boundary we mean that they are atta
hed via a home-

omorphism from �M to �N .

Let us admit the following fa
ts about the 
onne
ted sum of two surfa
es. For more

details refer [4℄ or [6℄.

Observation 1. P

2

is a dis
 atta
hed to a M�obius band along the boundary.

Observation 2. Let M be a 
losed surfa
e. Then M # P

2

is homeomorphi
 to the spa
e

obtained by removing a disk from M and atta
hing a M�obius band along the boundary.
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Observation 3. P

q

is homeomorphi
 to the spa
e obtained by removing q disjoint dis
s

from S

2

and atta
hing q M�obius bands along the boundary.

Observation 4. T

q

is homeomorphi
 to the spa
e obtained by removing 2q disjoint dis
s

from S

2

and atta
hing q handles (
ylinders) along the boundary.

Proposition 21. The 
onne
ted sum of T

m

and P

n

is homeomorphi
 to P

2m+n

.

Proof. First of all we 
laim that the 
onne
ted sum of T

1

and P

2

is homeomorphi
 to P

3

.

We denote homeomorphism by '. Let us assume this 
laim and prove the result. To prove

the result let us �rst prove that T

m

# P

1

' P

2m+1

.

We will pro
eed by indu
tion on m. The 
ase m = 1 follows from the 
laim above. Let

us assume the result for all k < m. Then

T

m

# P

1

' T

m�1

# T

1

# P

1

' T

m�1

# P

3

(�rst 
laim)

' T

m�1

# P

1

# P

2

' P

2m�2+1

# P

2

( by indu
tion )

' P

2m+1

:

Now let us prove that T

m

# P

n

' P

2m+n

. We apply indu
tion on n. The 
ase n = 1 follows

from above. Assume the result for k < n. Then

T

m

# P

n

' T

m

# P

n�1

# P

1

' P

2m+n�1

# P

1

(by indu
tion)

' P

2m+n

:
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Figure 24: Conne
ted sum of P

1

and T

1

We now prove our 
laim. The idea is to 
ut 3 M�obius bands from T

1

# P

1

and then

glue the remaining part to get S

2

with 3 holes. See Fig. 24, Fig. 25 and Fig. 26.

Torus is homeomorphi
 to a re
tangle with AB identi�ed to DC and AD identi�ed to

BC. Also P

1

is homeomorphi
 to D

2

with antipodal points identi�ed. See Fig.24

In Fig. 25M

1

,M

2

andM

3

are the three M�obius bands whi
h are removed from T

1

# P

1

.

Quotienting the remaining region after identifying R

i

for 1 � i � 7 we obtain S

2

with three

holes. See Fig. 26.
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Proposition 22. T

n

(respe
tively P

n

) is not homeomorphi
 to T

n

0

(respe
tively P

n

0

) for

n 6= n

0

. Also T

n

is not homeomorphi
 to P

m

for any positive integers n and m.

Proof. Refer [4℄ or [6℄.

Ex 1. Let V

0

1

denote torus without two disjoint dis
s. The spa
e obtained by atta
hing V

0

1

to V

n

along the boundary of V

n

is homeomorphi
 to V

n+1

.

Similarly, let U

0

1

denote a proje
tive plane without two disjoint dis
s. The spa
e obtained

by atta
hing U

0

1

to U

n

along the boundary of U

n

is homeomorphi
 to U

n+1

.

7 Classi�
ation of Surfa
es

Hen
eforth we assume thatM is a 
losed surfa
e and f : M ! R an ordered Morse fun
tion

on M . Let fX

i

g

1�i�n(0)

be 
riti
al points of index 0, fY

i

g

1�i�n(1)

, 
riti
al points of index

1 and fZ

i

g

1�i�n(2)

, 
riti
al points of index 2. Let a and b be regular values of f su
h that

f(X

i

) < a < f(Y

j

) < b < f(Z

k

) for all 1 � i � n(0); 1 � j � n(1) and 1 � k � n(2).

Lemma 23. Let the notations be as above. Then there exist two regular values 
; d; 
 < d

and an ordered Morse fun
tion g having the same 
riti
al points with the same indi
es as

f su
h that:

� g

�1

(�1; 
℄ 
ontains n(0)� 1 
riti
al points of index 1 and g

�1

(�1; 
℄ is homeomor-

phi
 to a dis
.

� g

�1

[d;1) 
ontains n(2)� 1 
riti
al points of index 1 and g

�1

[d;1) is homeomorphi


to a dis
.

� g

�1

[
; d℄ 
ontains n(1)� n(0)� n(2) + 2 
riti
al points of index 1.
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Figure 26: T

1

# P

1

without 3 M�obius bands

Proof. Sin
e all the 
riti
al points of index 1 are below the level b, it is enough to improve

the fun
tion f below the level b. Also, se
ond assertion follows from the �rst by taking �f

in pla
e of f .

M(a) is disjoint union of n(0) dis
s, say, fD

i

g

1�i�n(0)

and M

0

(b) is disjoint union n(2)

dis
s say fD

0

j

g

1�j�n(2)

. That M(b) is 
onne
ted follows from the fa
t that M is obtained

by atta
hing M

0

(b) (disjoint union of dis
s) to M(b) along their boundaries.

First of all we prove the existen
e of the level 


If n(0) = 1, then take g = f and 
 = a.

If n(0) � 2, we pro
eed re
ursively. If all 
riti
al points of index 1 are of type II,

then M(b) is dis
onne
ted. Hen
e there exists a 
riti
al point of index 1 of type I. If all


riti
al points of index 1 of type I are of the se
ond kind then again M(b) is dis
onne
ted.

Hen
e there exists j 2 f1; 2; : : : ; n(1)g su
h that Y

j

is of type I of �rst kind. Without

loss of generality assume that j = 1. Now 
hoose an ordered Morse fun
tion g

1

having

the same 
riti
al points with same indi
es as f and a regular value a of g

1

su
h that

g

1

(X

i

) < a < g

1

(Y

1

) < a

1

< g

1

(Y

j

) for all 1 � i � n(0) and j 6= 1. By de�nition 9,

V (a

1

) has one less 
omponents than V (a). If n(0)� 1 = 1, then we are done. Otherwise

pro
eeding in similar way we get another ordered Morse fun
tion g

2

, a level a

2

and a 
riti
al

point Y

2

of type I of �rst kind su
h that g

2

(X

i

) < a < g

2

(Y

1

) < a

1

< g

2

(Y

2

) < a

2

< g

2

(Y

j

)

for all 1 � i � n(0) and j 6= 1; 2. Then the number of 
omponents of V (a

2

) is n(0) � 2.

Re
ursively we get an ordered Morse fun
tion g

n(0)�1

, a level a

n(0)�1

su
h the g

n(0)�1

(X

i

) <

a < g

n(0)�1

(Y

j

) < a

n(0)�1

for all 1 � i � n(0) and 1 � j � n(0)� 1. De�ne 
 := a

n(0)�1

and

g := g

n(0)�1

. This proves the �rst part of the �rst assertion of the lemma.

g

�1

(�1; 
℄ is homeomorphi
 to a dis
 follows from Corollary 17.
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Corollary 24. Let the notations be as in the Lemma 23. Then the number of 
riti
al points

of type I between the levels 
 and d is even, half of whi
h are of the �rst kind and half are

of the se
ond kind and outside these levels all 
riti
al points are of type I.

Theorem 25 (Classi�
ation). Let f : M ! R be an ordered Morse fun
tion as in the


laim of Lemma 23. Let f have q 
riti
al points of index 1 in W (
; d). Then M is homeo-

morphi
 to P

q

or T

p

, where q = 2p.

Proof. Case 1. Let us �rst assume that all 
riti
al points of index 1 in W (
; d) are of type

II. In this 
ase we 
laim that M is homeomorphi
 to P

q

.

Let us pro
eed by indu
tion on the number of 
riti
al points in W (
; a) where a > 
 is

a regular value of f . We 
laim that if W (
; a) 
ontains n 
riti
al points of index 1 of type

II then M(a) is homeomorphi
 to U

n

.

Let a 2 R be a regular value of f su
h that W (
; a) 
ontains only one 
riti
al point of

index 1. Then M(a) is homeomorphi
 to a M�obius band, (Proposition 18), whi
h is same

as U

1

.

Let us assume the result for k = q � 1. Let d be a regular value of f su
h that W (
; d)


ontains all the q 
riti
al points of index 1. We 
laim that M(d) is homeomorphi
 to U

q

.

Choose a regular value d

1

of f su
h that W (
; d

1

) 
ontains q � 1 
riti
al points of f of

index 1. Then by indu
tion hypothesis M(d

1

) is homeomorphi
 to U

q�1

. Now M(d) is

homeomorphi
 to U

q

follows from Exer
ise 1. Hen
e M homeomorphi
 to P

q

.

Case 2. Let all 
riti
al points of index 1 inW (
; d) be of type I. Sin
e the number of 
rit-

i
al points of index 1 of type I in W (
; d) is even, q = 2p for some integer p. (Corollary 24.)

In this 
ase we 
laim that M is homeomorphi
 to T

p

.

We modify the fun
tion f in W (
; d) to an ordered Morse fun
tion having same number

of 
riti
al points as f with the same indi
es and su
h that every 
riti
al point of index 1

of type I of se
ond kind is followed by a 
riti
al point of index 1 of type I of the �rst kind.

(Theorem 16 and Corollary 24.) We assume that this is done.

Sin
e M

0

(d) is a dis
, it is enough to prove that M(d) is homeomorphi
 to V (p). Let us

pro
eed by indu
tion on the number of 
riti
al points in W (
; a) where a > 
 is a regular

value of f . We 
laim that if W (
; a) 
ontains n pairs of 
riti
al points of index 1 then M(a)

is homeomorphi
 to V

n

.

Let a be a regular value of f su
h that W (
; a) 
ontains a pair of 
riti
al points of index

1 of type I. Then, by Proposition 23,M(a) is homeomorphi
 to V

1

. Let us assume the result

for k = p� 1. Let d be a regular value of f su
h that W (
; d) 
ontains all p pairs of 
riti
al

points of index 1 of type I. We show thatM(d) is homeomorphi
 to V

p

. Let d

1

be a regular

value of f su
h that W (
; d

1

) 
ontains p� 1 pairs of 
riti
al points of index 1 of type I of f .

By indu
tion hypothesis M(d

1

) is homeomorphi
 to V

p�1

. Hen
e M(d) is homeomorphi


to V

p

. ( Exer
ise 1.) Thus M is homeomorphi
 to T

p

.

Case 3. Let f have 
riti
al points of index 1 of type I as well as of type II in W (
; d).

In this 
ase we 
laim that M is homeomorphi
 P

q

.
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There exists an integer k; 2k < q su
h that f has 2k 
riti
al points of index 1 of type I

in W (
; d). (Corollary 24.) The remaining 
riti
al points of f of index 1 are of type II. We

modify f in W (
; d) to an ordered Morse fun
tion g su
h that if Y; Y

0

2 W (
; d) are 
riti
al

points of index 1 of type I and type II respe
tively, then g(Y ) < g(Y

0

). Further assume that

every 
riti
al point of g of index 1 of type I of the se
ond kind is followed by a 
riti
al point

of type I of the �rst kind in W (
; d). Let a be a regular value of g whi
h separates 
riti
al

points of type I and type II in W (
; d). By 
ase 1, M(a) is homeomorphi
 V

k

. Similarly, by


ase 2, M

0

(a) is homeomorphi
 to U

q�2k

. (Repla
e g by �g.) Hen
e M , whi
h is obtained

by atta
hing M

0

(a) to M(a), is homeomorphi
 to T

k

# P

q�2k

' P

q

.(Proposition 21.)

Theorem 26. LetM be a 
ompa
t surfa
e with boundary. Let k be the number of boundary


omponents of M . Then M is homeomorphi
 to either T

n

with k holes or P

m

with k holes

for some integers m and n.

Proof. Sin
e the boundary of a surfa
e is a 
losed 1-manifold, ea
h boundary 
omponent is

a 
ir
le. Atta
h k dis
s along the boundary 
omponents. The resulting surfa
e is a 
losed

surfa
e. By Theorem 25, the resulting surfa
e is either T

n

or P

m

.
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