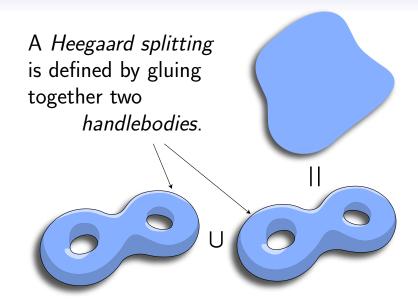
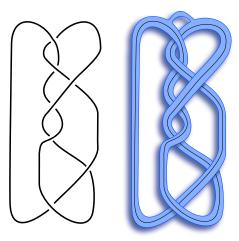
The structure of high distance Heegaard splittings

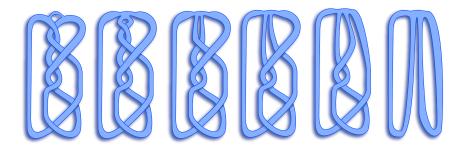
Jesse Johnson Oklahoma State University



A 2-bridge knot complement and a genus two surface.

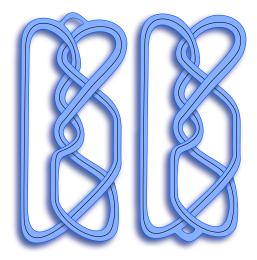


Inside the surface is a compression body

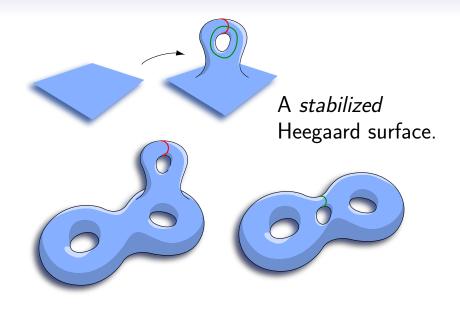


Outside the surface is a handlebody

Two different Heegaard surfaces



(Four more not shown.)



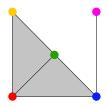
Question: Given a three-manifold, what are all its unstabilized Heegaard splittings?

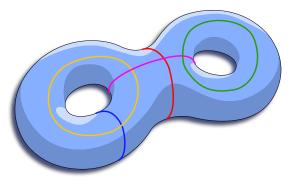
Answered for:

- 1. S^3 (Waldhausen)
- 2. T³ (Boileau–Otal)
- 3. Lens spaces (Bonahon–Otal)
- 4. (most) Seifert fibered spaces (Moriah–Schultens, Bachman–Derby-Talbot, J.)
- 5. Two-bridge knot complements (Morimoto–Sakuma, Kobayashi)

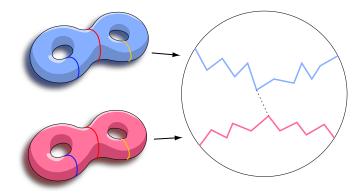
The complex of curves $C(\Sigma)$:

vertices: essential simple closed curves edges: pairs of disjoint curves simplices: sets of disjoint curves

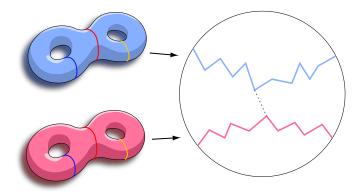




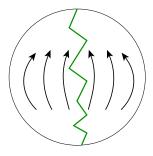
Handlebody sets - loops bounding disks



(Hempel) distance $d(\Sigma)$ - between handlebody sets **Theorem** (Masur-Minsky): $C(\Sigma)$ is δ -hyperbolic. Handlebody sets are quasi-convex.

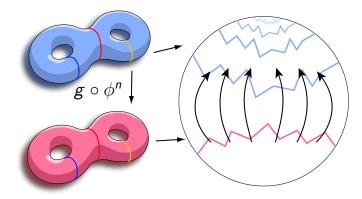


A surface self-homeo ϕ acts on $\mathcal{C}(\Sigma)$.

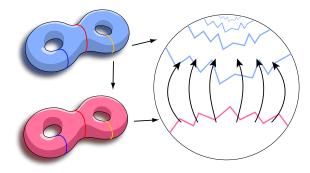


Theorem (Thurston): If ϕ has infinite order and no fixed loops then ϕ is *pseudo-Anosov*.

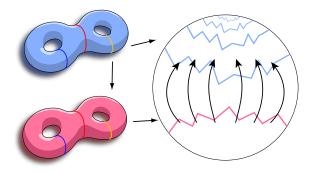
Theorem (Hempel): Composing the gluing map with (pseudo-Anosov) ϕ^n produces high distance Heegaard splittings.



Theorem (Hartshorn): Evey incompressible surface in M has genus at least $\frac{1}{2}d(\Sigma)$.



Theorem (Scharlemann-Tomova): If $\frac{1}{2}d(\Sigma) > genus(\Sigma)$ then the only unstabilized Heegaard surface in Mof genus less than $\frac{1}{2}d(\Sigma)$ is Σ .

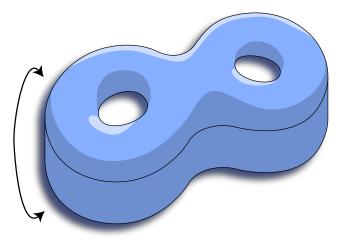


Theorem: Hartshorn's bound is Sharp.

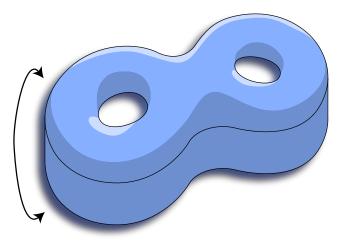
Theorem: For any integers $d \ge 6$ (even), $g \ge 2$, There is a three-manifold M with a genus g, distance d Heegaard splitting and an unstabilized genus $\frac{1}{2}d + (g - 1)$ Heegaard splitting.

(Off from Scharlemann-Tomova bound by g - 1.)

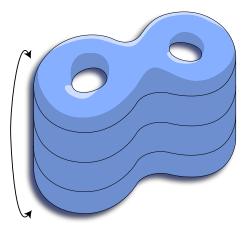
Surface bundle $B(\phi)$: $\Sigma \times [0,1]/((x,0) \sim (\phi(x),1)).$



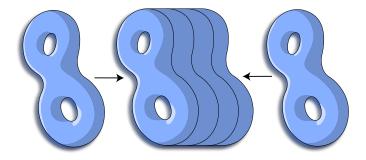
Theorem (Thurston): If ϕ is pseudo-Anosov then $B(\phi)$ is hyperbolic.



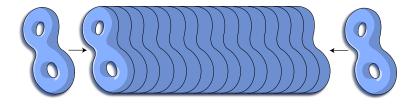
Note: $B(\phi^n)$ is a cyclic cover of $B(\phi)$.



A quasi-geometric Heegaard splitting

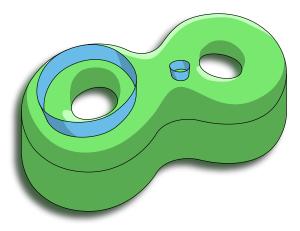


For large n, a better approximation



Namazi-Souto: Can construct a metric with ϵ -pinched curvature.

Lemma: Every incompressible surface F intersects every cross section Σ_t essentially.



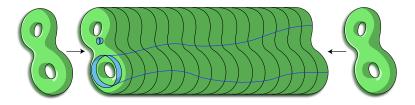
Choose F to be harmonic so that the induced sectional curvature is less than that of M.

Theorem (Gauss-Bonnet): For bounded curvature, area is proportional to Euler characteristic.

Note: Cross sections have bounded injectivity radius.

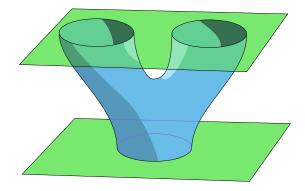
So, length of $F \cap \Sigma_t$ is bounded below.

(Hass-Thompson-Thurston): Integrate over length of product \Rightarrow large area.

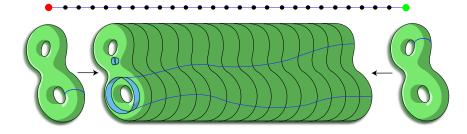


Corollary: Any incomressible surface has high genus.

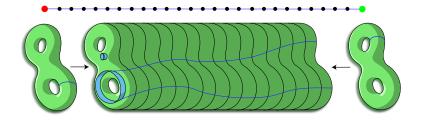
Theorem (Hartshorn): Every incompressible surface in *M* has genus at least $\frac{1}{2}d(\Sigma)$.



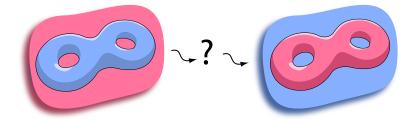
Saddles determine a path in $\mathcal{C}(\Sigma)$.



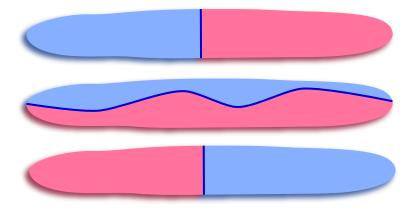
Theorem (Scharlemann-Tomova): Every unstabilized Heegaard surface in Mis Σ or has genus at least $\frac{1}{2}d(\Sigma)$.



Flippable - an isotopy of the surface interchanges the handlebodies

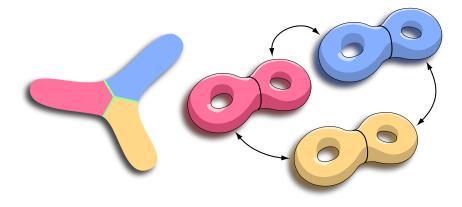


Theorem (Hass-Thompson-Thurston): High distance Heegaard splittings are not flippable.

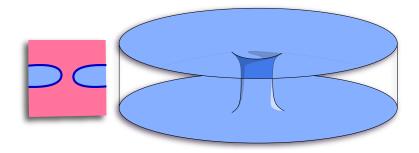


Three handlebody decomposition -

Three handlebodies glued alternately along subsurfaces.

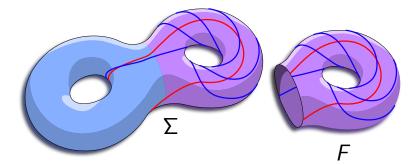


Connect a pair of handlebodies

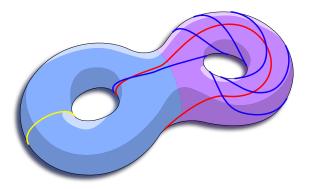


A three-handlebody decomposition defines three different Heegaard splittings (all distance two)

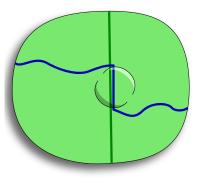
Subsurface projection $d_F(\ell_1, \ell_2)$.



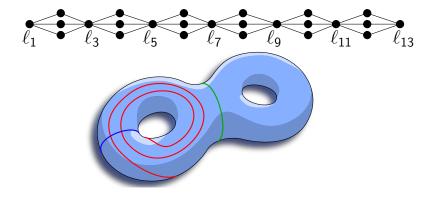
Lemma (Ivanov/Masur-Minsky/Schleimer?): If $d_F(\ell_1, \ell_2) > n$ then every path from ℓ_1 to ℓ_2 of length *n* passes through a loop disjoint from *F*.



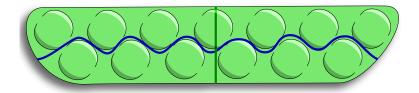
Theorem (J.-Minsky-Moriah): If Σ has a distance d subsurface F then every Heegaard splitting of genus less than $\frac{1}{2}d$ has a subsurface parallel to F.

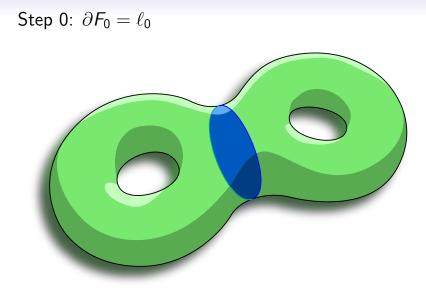


(Ido-Jang-Kobayashi): Flexible geodesics: $d_{F_j}(\ell_i, \ell_k)$ sufficiently large.

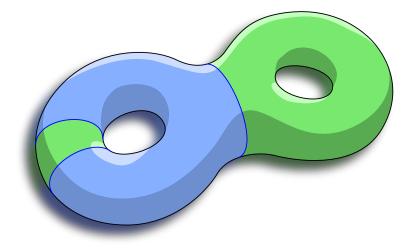


The hyperbolic picture

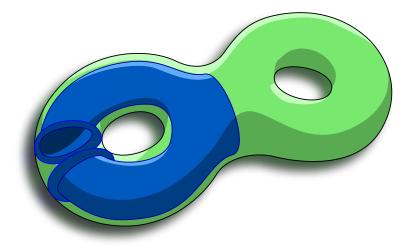




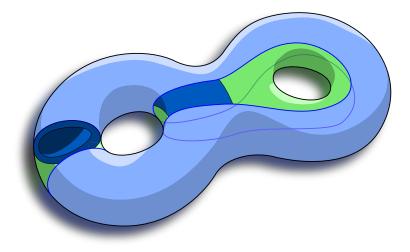
Step 1: $\partial F'_1 = \ell_0 \cup \partial N(\ell_1)$



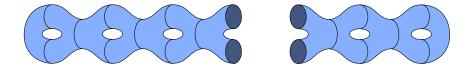
Step 2: $F_1 = F_0 \cup F'_1 \cup \{vertical annuli\}$

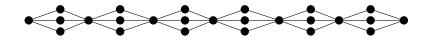


Step 3: $\partial F'_2 = \partial N(\ell_1) \cup \ell_2$

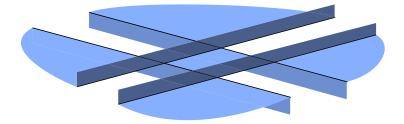


Build from both sides

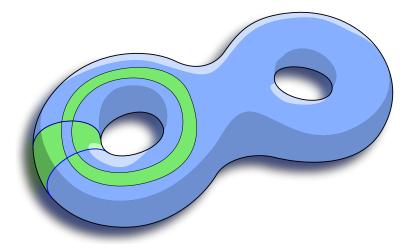




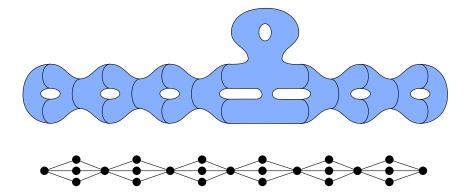
The junction



In the original surface



The full surface:



Theorem: For any integers $d \ge 6$ (even), $g \ge 2$, There is a three-manifold M with a genus g, distance d Heegaard splitting and an unstabilized genus $\frac{1}{2}d + (g - 1)$ Heegaard splitting.

