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A Heegaard splitting
is defined by gluing
together two

handlebodies.



A 2-bridge knot complement
and a genus two surface.



Inside the surface is a compression body

Outside the surface is a handlebody



Two different Heegaard surfaces

(Four more not shown.)



A stabilized
Heegaard surface.



Question: Given a three-manifold, what are

all its unstabilized Heegaard splittings?

Answered for:

1. S3 (Waldhausen)

2. T 3 (Boileau–Otal)

3. Lens spaces (Bonahon–Otal)

4. (most) Seifert fibered spaces
(Moriah–Schultens, Bachman–Derby-Talbot, J.)

5. Two-bridge knot complements
(Morimoto–Sakuma, Kobayashi)



The complex of curves C(Σ):
vertices: essential simple closed curves

edges: pairs of disjoint curves

simplices: sets of disjoint curves



Handlebody sets - loops bounding disks

(Hempel) distance d(Σ)
- between handlebody sets



Theorem (Masur-Minsky): C(Σ) is δ-hyperbolic.
Handlebody sets are quasi-convex.



A surface self-homeo φ acts on C(Σ).

Theorem (Thurston): If φ has infinite order and
no fixed loops then φ is pseudo-Anosov.



Theorem (Hempel): Composing the gluing
map with (pseudo-Anosov) φn produces
high distance Heegaard splittings.

g ◦ φn



Theorem (Hartshorn):
Evey incompressible surface in M has genus
at least 1

2d(Σ).



Theorem (Scharlemann-Tomova):
If 1

2d(Σ) > genus(Σ) then
the only unstabilized Heegaard surface in M
of genus less than 1

2d(Σ) is Σ.



Theorem: Hartshorn’s bound is Sharp.

Theorem: For any integers d ≥ 6 (even), g ≥ 2,
There is a three-manifold M with a genus g ,
distance d Heegaard splitting and an unstabilized
genus 1

2d + (g − 1) Heegaard splitting.

(Off from Scharlemann-Tomova bound by g − 1.)



Surface bundle B(φ):
Σ× [0, 1]/((x , 0) ∼ (φ(x), 1)).



Theorem (Thurston): If φ is pseudo-Anosov then
B(φ) is hyperbolic.



Note: B(φn) is a cyclic cover of B(φ).



A quasi-geometric Heegaard splitting



For large n, a better approximation

Namazi-Souto: Can construct a metric with
ε-pinched curvature.



Lemma: Every incompressible surface
F intersects every cross section Σt essentially.



Choose F to be harmonic so that the induced
sectional curvature is less than that of M .

Theorem (Gauss-Bonnet): For bounded curvature,
area is proportional to Euler characteristic.



Note: Cross sections have bounded
injectivity radius.

So, length of F ∩ Σt is bounded below.



(Hass-Thompson-Thurston):
Integrate over length of product ⇒ large area.

Corollary: Any incomressible surface has
high genus.



Theorem (Hartshorn): Every incompressible
surface in M has genus at least 1

2d(Σ).



Saddles determine a path in C(Σ).



Theorem (Scharlemann-Tomova):
Every unstabilized Heegaard surface in M
is Σ or has genus at least 1

2d(Σ).



Flippable - an isotopy of the surface interchanges the handlebodies

?



Theorem (Hass-Thompson-Thurston):
High distance Heegaard splittings
are not flippable.



Three handlebody decomposition -
Three handlebodies glued alternately along subsurfaces.



Connect a pair of handlebodies



A three-handlebody decomposition
defines three different
Heegaard splittings
(all distance two)



Subsurface projection dF (`1, `2).

Σ
F



Lemma (Ivanov/Masur-Minsky/Schleimer?):
If dF (`1, `2) > n then every path from `1 to `2
of length n passes through a loop
disjoint from F .



Theorem (J.-Minsky-Moriah): If Σ has a distance
d subsurface F then every Heegaard splitting of
genus less than 1

2d has a subsurface parallel to F .



(Ido-Jang-Kobayashi): Flexible geodesics:
dFj

(`i , `k) sufficiently large.

`1 `3 `5 `7 `9 `11 `13



The hyperbolic picture



Step 0: ∂F0 = `0



Step 1: ∂F ′1 = `0 ∪ ∂N(`1)



Step 2: F1 = F0 ∪ F ′1 ∪ {vertical annuli}



Step 3: ∂F ′2 = ∂N(`1) ∪ `2



Build from both sides



The junction



In the original surface



The full surface:



Theorem: For any integers d ≥ 6 (even), g ≥ 2,
There is a three-manifold M with a genus g ,
distance d Heegaard splitting and an unstabilized
genus 1

2d + (g − 1) Heegaard splitting.


