
CHAPTER 10

Seifert manifolds

In the previous chapter we have proved various general theorems on three-
manifolds, and it is now time to construct examples. A rich and important
source is a family of manifolds built by Seifert in the 1930s, which generalises
circle bundles over surfaces by admitting some “singular” fibres. The three-
manifolds that admit such kind of fibration are now called Seifert manifolds.

In this chapter we introduce and completely classify (up to diffeomor-
phisms) the Seifert manifolds. In Chapter 12 we will then show how to ge-
ometrise them, by assigning a nice Riemannian metric to each. We will show,
for instance, that all the elliptic and flat three-manifolds are in fact particular
kinds of Seifert manifolds.

10.1. Lens spaces

We introduce some of the simplest 3-manifolds, the lens spaces. These
manifolds (and many more) are easily described using an important three-
dimensional construction, called Dehn filling.

10.1.1. Dehn filling. If a 3-manifold M has a spherical boundary com-
ponent, we can cap it off with a ball. If M has a toric boundary component,
there is no canonical way to cap it off: the simplest object that we can attach
to it is a solid torus D× S1, but the resulting manifold depends on the gluing
map. This operation is called a Dehn filling and we now study it in detail.

Let M be a 3-manifold and T ⊂ ∂M be a boundary torus component.

Definition 10.1.1. A Dehn filling of M along T is the operation of gluing
a solid torus D × S1 to M via a diffeomorphism ϕ : ∂D × S1 → T .

The closed curve ∂D × {x} is glued to some simple closed curve γ ⊂ T ,
see Fig. 10.1. The result of this operation is a new manifold Mfill, which has
one boundary component less than M.

Lemma 10.1.2. The manifold Mfill depends only on the isotopy class of
the unoriented curve γ.

Proof. Decompose S1 into two closed segments S1 = I∪J with coinciding
endpoints. The attaching of D×S1 may be seen as the attaching of a 2-handle
D × I along ∂D × I, followed by the attaching of a 3-handle D × J along its
full boundary.
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300 10. SEIFERT MANIFOLDS

Figure 10.1. The Dehn filling Mfill of a 3-manifold M is determined by
the unoriented simple closed curve γ ⊂ T to which a meridian ∂D of the
solid torus is attached.

If we change γ by an isotopy, the attaching map of the 2-handle changes
by an isotopy and hence gives the same manifold. The attaching map of the
3-handle is irrelevant by Proposition 9.2.1. �

We say that the Dehn filling kills the curve γ, since this is what really
happens on fundamental groups, as we now see.

The normaliser of an element g ∈ G in a group G is the smallest normal
subgroup N(g)�G containing g. The normaliser depends only on the conjugacy
class of g±1, hence the subgroup N(γ) � π1(M) makes sense without fixing a
basepoint or an orientation for γ.

Proposition 10.1.3. We have

π1(M
fill) = π1(M)/N(γ).

Proof. The Dehn filling decomposes into the attachment of a 2-handle
over γ and of a 3-handle. By Van Kampen, the first operation kills N(γ), and
the second leaves the fundamental group unaffected. �

Let a slope on a torus T be the isotopy class γ of an unoriented homo-
topically non-trivial simple closed curve. The set of slopes on T was indicated
by S in Chapter 7. If we fix a basis (m, l) for H1(T,Z) = π1(T ), every slope
may be written as γ = ±(pm + ql) for some coprime pair (p, q). Therefore
we get a 1-1 correspondence

S ←→ Q ∪ {∞}

by sending γ to p
q . If T is a boundary component of M, every number pq

determines a Dehn filling of M that kills the corresponding slope γ.



10.1. LENS SPACES 301

Different values of pq typically produce non-diffeomorphic manifolds Mfill:
this is not always true - a notable exception is described in the next section -
but it holds in “generic” cases.

10.1.2. Lens spaces. The simplest manifold that can be Dehn-filled is
the solid torus M = D × S1 itself. The oriented meridian m = S1 × {y} and
longitude l = {x} × S1 form a basis for H1(∂M,Z).

Definition 10.1.4. The lens space L(p, q) is the result of a Dehn filling of
M = D × S1 that kills the slope qm + pl .

A lens space is a three-manifold that decomposes into two solid tori. We
have already encountered lens spaces in the more geometric setting of Section
3.4.10, and we will soon prove that the two definitions are coherent. Since
L(p, q) = L(−p,−q) we usually suppose p � 0.

Exercise 10.1.5. We have π1
�
L(p, q)

�
= Z/pZ.

Proposition 10.1.6. We have L(0, 1) = S2 × S1 and L(1, 0) = S3.

Proof. The lens space L(0, 1) is obtained by killing m, that is by mirroring
D× S1 along its boundary. The lens space L(1, 0) is S3 because the comple-
ment of a standard solid torus in S3 is another solid torus, with the roles of m
and l exchanged (exercise). �

Exercise 10.1.7. Every Dehn filling of one component of the product T ×
[0, 1] is diffeomorphic to D × S1. Therefore by Dehn-filling both components
of T × [0, 1] we get a lens space.

The solid torus D × S1 has a non-trivial self-diffeomorphism

(x, e iθ) �−→ (xe iθ, e iθ)

called a twist along the disc D × {y}. The solid torus can also be mirrored
via the map

(x, e iθ) �−→ (x, e−iθ).

Exercise 10.1.8. We have L(p, q) ∼= L(p, q�) if q� ≡ ±q±1 (mod p).

Hint. Twist, mirror, and exchange the two solid tori giving L(p, q). �

Remark 10.1.9. The meridian m of the solid torus M = D × S1 may be
defined intrinsically as the unique slope in ∂M that is homotopically trivial in
M. The longitude l is not intrinsically determined: a twist sends l to m + l .
The solid torus contains infinitely many non-isotopic longitudes, and there is
no intrinsic way to choose one of them.
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10.1.3. Equivalence of the two definitions. When p > 0, we have de-
fined the lens space L(p, q) in two different ways: as the (q, p)-Dehn filling
of the solid torus, and as an elliptic manifold in Section 3.4.10. In the latter
description we set

ω = e
2πi
p , f (z, w) = (ωz,ωqw)

and define L(p, q) as S3/Γ where Γ = �f � is generated by f . We now show
that the two definitions produce the same manifolds.

Proposition 10.1.10. The manifold S3/�f � is the (q, p)-Dehn filling of the
solid torus.

Proof. The isometry f preserves the central torus

T =
�
(z, w)

�� |z | = |w | =
√
2
2

�

that divides S3 into two solid tori

N1 =
�
(z, w)

�� |z | �
√
2
2 , |w | =

�
1− |z |2

�
,

N2 =
�
(z, w)

�� |w | �
√
2
2 , |z | =

�
1− |w |2

�
.

Identify T with S1 × S1 = R2/Z2 in the obvious way, so that H1(T ) = Z×Z.
The meridians of N1 and N2 are (1, 0) and (0, 1). The isometry f act on T as
a translation of vector v =

�
1
p ,
q
p

�
. The quotient T/�f � is again a torus, with

fundamental domain the parallelogram generated by v and w = (0, 1).
The quotients N1/�f �, and N2/�f � are again solid tori. Therefore S3/�f �

is also a union of two solid tori. Their meridians are the projections of the
horizontal and vertical lines in R2 to T/�f � = R2/�v,w�. In the basis (v , w)
these meridians are pv−qw and w respectively. Therefore S3/�f � is a (−q, p)-
Dehn filling on the solid torus, which is diffeomorphic to the (q, p)-Dehn filling
by mirroring the solid torus. �

Corollary 10.1.11. We have L(1, 0) = S3 and L(2, 1) = RP3.

Proof. We have f = id and f = −id, correspondingly. �

10.1.4. Classification of lens spaces. Which lens spaces are diffeomor-
phic? It is not so easy to answer this question, because many lens spaces like
L(5, 1) and L(5, 2) have the same homotopy and homology groups, while there
is no evident diffeomorphism between them. A complete answer was given by
Reidemeister in 1935, who could distinguish lens spaces using a new invari-
ant, now known as the Reidemeister torsion. More topological proofs were
discovered in th 1980s by Bonahon and Hodgson. We follow here Hatcher
[26].

Theorem 10.1.12. The lens spaces L(p, q) and L(p�, q�) are diffeomorphic
⇐⇒ p = p� and q� ≡ ±q±1 (mod p).


























