CHAPTER 10

Seifert manifolds

In the previous chapter we have proved various general theorems on three-
manifolds, and it is now time to construct examples. A rich and important
source is a family of manifolds built by Seifert in the 1930s, which generalises
circle bundles over surfaces by admitting some “singular” fibres. The three-
manifolds that admit such kind of fibration are now called Seifert manifolds.

In this chapter we introduce and completely classify (up to diffeomor-
phisms) the Seifert manifolds. In Chapter 12 we will then show how to ge-
ometrise them, by assigning a nice Riemannian metric to each. We will show,
for instance, that all the elliptic and flat three-manifolds are in fact particular
kinds of Seifert manifolds.

10.1. Lens spaces

We introduce some of the simplest 3-manifolds, the lens spaces. These
manifolds (and many more) are easily described using an important three-
dimensional construction, called Dehn filling.

10.1.1. Dehn filling. If a 3-manifold M has a spherical boundary com-
ponent, we can cap it off with a ball. If M has a toric boundary component,
there is no canonical way to cap it off: the simplest object that we can attach
to it is a solid torus D x ST, but the resulting manifold depends on the gluing
map. This operation is called a Dehn filling and we now study it in detail.

Let M be a 3-manifold and T C OM be a boundary torus component.

Definition 10.1.1. A Dehn filling of M along T is the operation of gluing
a solid torus D x S' to M via a diffeomorphism ¢: 0D x St — T.

The closed curve 0D x {x} is glued to some simple closed curve v C T,
see Fig. 10.1. The result of this operation is a new manifold Mf!' which has
one boundary component less than M.

Lemma 10.1.2. The manifold M depends only on the isotopy class of
the unoriented curve -y.

Proof. Decompose S! into two closed segments S' = /UJ with coinciding
endpoints. The attaching of D x S! may be seen as the attaching of a 2-handle
D x | along 0D x [, followed by the attaching of a 3-handle D x J along its
full boundary.
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300 10. SEIFERT MANIFOLDS

Figure 10.1. The Dehn filling M™ of a 3-manifold M is determined by
the unoriented simple closed curve v C T to which a meridian 8D of the
solid torus is attached.

If we change v by an isotopy, the attaching map of the 2-handle changes
by an isotopy and hence gives the same manifold. The attaching map of the
3-handle is irrelevant by Proposition 9.2.1. [l

We say that the Dehn filling kills the curve 7y, since this is what really
happens on fundamental groups, as we now see.

The normaliser of an element g € G in a group G is the smallest normal
subgroup N(g)<G containing g. The normaliser depends only on the conjugacy
class of g*1, hence the subgroup N(v) < (M) makes sense without fixing a
basepoint or an orientation for .

Proposition 10.1.3. We have
T (MM = 11 (M)/ iy

Proof. The Dehn filling decomposes into the attachment of a 2-handle
over vy and of a 3-handle. By Van Kampen, the first operation kills N(vy), and
the second leaves the fundamental group unaffected. O

Let a slope on a torus T be the isotopy class -y of an unoriented homo-
topically non-trivial simple closed curve. The set of slopes on T was indicated
by . in Chapter 7. If we fix a basis (m, ) for Hi(T,Z) = w1 (T), every slope
may be written as v = +(pm + g/) for some coprime pair (p, q). Therefore
we get a 1-1 correspondence

S +— QU {o0}

by sending vy to g. If T is a boundary component of M, every number g
determines a Dehn filling of M that kills the corresponding slope -y.
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Different values of g typically produce non-diffeomorphic manifolds Mfil!;
this is not always true - a notable exception is described in the next section -
but it holds in “generic” cases.

10.1.2. Lens spaces. The simplest manifold that can be Dehn-filled is
the solid torus M = D x S? itself. The oriented meridian m = S* x {y} and
longitude | = {x} x S* form a basis for H1(8M, Z).

Definition 10.1.4. The lens space L(p, q) is the result of a Dehn filling of
M = D x S that kills the slope gm + pl.

A lens space is a three-manifold that decomposes into two solid tori. We
have already encountered lens spaces in the more geometric setting of Section
3.4.10, and we will soon prove that the two definitions are coherent. Since
L(p,q) = L(—p, —q) we usually suppose p > 0.

Exercise 10.1.5. We have 71 (L(p, q)) = Z/ pz.
Proposition 10.1.6. We have L(0,1) = S? x S! and L(1,0) = S3.

Proof. The lens space L(0, 1) is obtained by killing m, that is by mirroring
D x St along its boundary. The lens space L(1,0) is S because the comple-
ment of a standard solid torus in S3 is another solid torus, with the roles of m
and / exchanged (exercise). O

Exercise 10.1.7. Every Dehn filling of one component of the product T x
[0, 1] is diffeomorphic to D x S*. Therefore by Dehn-filling both components
of T x [0, 1] we get a lens space.

The solid torus D x S! has a non-trivial self-diffeomorphism
(x, e'%) —s (xe%, )

called a twist along the disc D x {y}. The solid torus can also be mirrored
via the map

(x, %) — (x, 7).
Exercise 10.1.8. We have L(p, q) = L(p, q) if ¢ = £q¢*! (mod p).
Hint. Twist, mirror, and exchange the two solid tori giving L(p, q). O

Remark 10.1.9. The meridian m of the solid torus M = D x S! may be
defined intrinsically as the unique slope in @M that is homotopically trivial in
M. The longitude [ is not intrinsically determined: a twist sends / to m+ /.
The solid torus contains infinitely many non-isotopic longitudes, and there is
no intrinsic way to choose one of them.
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10.1.3. Equivalence of the two definitions. \When p > 0, we have de-
fined the lens space L(p, g) in two different ways: as the (g, p)-Dehn filling
of the solid torus, and as an elliptic manifold in Section 3.4.10. In the latter
description we set

W= eQTm, f(z,w) = (wz,wiw)
and define L(p, q) as S/ where [ = (f) is generated by f. We now show
that the two definitions produce the same manifolds.

Proposition 10.1.10. The manifold S3/ ¢ is the (q, p)-Dehn filling of the
solid torus.

Proof. The isometry f preserves the central torus
T={@w]lzl=wl =2}
that divides S into two solid tori
N ={zw) ||zl <2, Iwl=V1-[zlP},
N2 ={(z.w) | Iw] <2, |zl = V1-w?}.

Identify T with S x S' = R?/,> in the obvious way, so that H1(T) = Z x Z.
The meridians of N and N2 are (1,0) and (0, 1). The isometry f act on T as
a translation of vector v = (% %). The quotient T/ is again a torus, with
fundamental domain the parallelogram generated by v and w = (0, 1).

The quotients N/ (s, and N?/ s are again solid tori. Therefore S3/ s,
is also a union of two solid tori. Their meridians are the projections of the
horizontal and vertical lines in R? to T/ry = R?/,. . In the basis (v, w)
these meridians are pv—qgw and w respectively. Therefore 53/<f> isa(—q,p)-
Dehn filling on the solid torus, which is diffeomorphic to the (g, p)-Dehn filling

by mirroring the solid torus. ([
Corollary 10.1.11. We have L(1,0) = S3 and L(2,1) = RP3.
Proof. We have f =id and f = —id, correspondingly. O

10.1.4. Classification of lens spaces. Which lens spaces are diffeomor-
phic? It is not so easy to answer this question, because many lens spaces like
L(5,1) and L(5, 2) have the same homotopy and homology groups, while there
is no evident diffeomorphism between them. A complete answer was given by
Reidemeister in 1935, who could distinguish lens spaces using a new invari-
ant, now known as the Reidemeister torsion. More topological proofs were
discovered in th 1980s by Bonahon and Hodgson. We follow here Hatcher
[26].

Theorem 10.1.12. The lens spaces L(p, q) and L(p’, q") are diffeomorphic
<= p=yp and ¢ =+q*" (modp).
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Definition 2. The system of closed curves uy, ..., ug and vy, ..., vg on the sphere
with g handles N is said to constitute a Heegaard diagram if the two following
conditons are satisfied:

1) the curves uj,...,uy are pairwise nonintersecting and the complement to

their union is connected;

2) the curves vy, ..., v, are pairwise nonintersecting and the complement to their

union is connected.

Let us verify that Definitions 1 and 2 are equivalent. It is clear that the meridi-
ans of a handlebody are pairwise nonintersecting and do not disconnect its surface.
Hence we need only prove that any Heegaard diagram in the sense of Definition 2
corresponds to the Heegaard splitting of some manifold.

First we claim that if the sphere N with g handles is cut along g nonintersecting
circles that do not split N, a sphere S? from which 2¢g disks have been deleted is
obtained. Suppose that instead we get a surface H with kA handles and 2g deleted
disks. The removal of one disk decreases the Euler characteristic' by 1. Hence the
Euler characteristic of H is (2 —2h) — 2g. On the other hand, cutting along a circle
does not change the Euler characteristic, so that 2 —2h —2g = 2—2g, whence h = 0
as claimed.

Now take two copies of the surface N. Cut one copy along the circles u;
(Fig.10.4,c) and the other along v; (Fig.10.4,d). In both cases we get a sphere with
2g holes (Fig.10.4,b and e). These spheres may be homeomorphically deformed so
that the boundary circles correspond to the canonical meridians of the handlebodies
with g handles (Fig.10.4,a and f). Now it is easy to construct two handlebodies with
g handles M3} and M3 together with homeomorphisms of their boundaries onto N
taking the meridians of M} and M3 onto the circles u; and v; on N respectively.
This gives the required Heegaard splitting. (1

D U1
U1 1d
ug “g@

FIGURE 10.4. Heegaard sphttmg corresponding to Heegaard di-
agram

§11. Lens spaces

So far, we have demonstrated only a few examples of 3-manifolds presented
by Heegaard splittings or diagrams. In this section we consider an infinite series
of 3-manifolds that may be conveniently presented in this way: the classical lens
spaces.

11.1. The only 3-manifold that can be obtained by gluing two 3-disks by a
homeomorphism of their boundaries is the 3-sphere S3. From two solid tori, as we

IThe reader not familiar with this notion is referred to 12.6 or 21.2 below.
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have seen above, besides the sphere S3 (see 8.4), one can get projective space RP3
(Problem 8.4). But $3 and RP3 are not the only 3-manifolds obtainable by gluing
two solid tori by a homeomorphism of their boundaries. We shall begin by giving
a geometrical definition of such manifolds, based on a discrete group action on S3,
and only then discuss their Heegaard presentation.

Suppose p and ¢ are coprime positive integers, and p > 3. On the unit sphere
S3 ¢ C? consider the action (without fixed points) of the group Z/pZ with generator
o by setting

0(z,w) = (exp(2mi/p)z, exp(2mig/p)w).
Take the quotient of S3 by this action of Z/pZ, i.e., identify each point z € S3
with the points oz, ...,0P~1z. Since the action has no fixed points, it is easy to see

that the quotient space is a 3-manifold; it is called a lens space and is denoted by
L(p,q).

11.2. Let us show that the quotient under the action of Z/pZ of each of the two
solid tori |z|> < 1/2 and |w|? < 1/2 is a solid torus, so that the lens space L(p,q)
can be glued from two solid tori. Consider the following cellular decomposition of
the sphere S3:

0) zero-dimensional cells (0, exp(2mik/p));

1) one-dimensional cells (0, exp(27i6)), k/p < 0 < (k +1)/p;

2) two-dimensional cells (pexp(27ik/p),w), 0 < p < 1, |w| = /1 — p?;

3) three-dimensional cells (pexp(27if),w), 0 < p < 1; k/p < 8 < (k+1)/p,

|lw|=+v1-p2% k=0,1,...,p— 1.
There are p cells in each dimension (indexed by the letter k). Under the action of the
group Z/pZ, the cells permute with each other, so that the above cell decomposition
of the sphere S induces a cell decomposition of the lens space L(p, q) with one cell
in each dimension from 0 to 3. So our lens space can be obtained by taking one
of the 3-cells and performing the appropriate identifications on its boundary under
the action of Z/pZ.

Unfortunately, the coordinate presentation of our 3-cells in four-dimensional
space C? is not very convenient to work with, so we begin by changing to the more
natural system of coordinates (x1,z2,z3) € R, where our 3-cell will just be the
unit 3-disk.

To carry out this change, to the point

(pexp(2mif), w), where 0 < p< 1, k/p <8< (k+1)/p, |w|* +p° =1,
let us assign the point
(x1,T2,23) € R, where z, + iz = w, x3 = (2p — 2k — 1)p;

here |z3| < p and % + 22 + 22 < 1 (Fig.11.1). Points of the sphere z? +z3 + 2% =1
for which z3 > 0 (respectively z3 < 0) are assigned to points for which 8 = (k+1)/p
(respectively 8 = k/p).

Points with 6 = k/p are taken by the generator o € Z/pZ to points for which
we have 8 = (k +1)/p. It follows from the definition of our assignment that on the
coordinates x; and z», the element o acts via rotations by the angle 2r¢/p about
the origin; it also identifies the 2-cells of the upper hemisphere with 2-cells of the
lower one as shown in Fig.11.2. These identifications produce L(p, q).
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FIGURE 11.2. Identifying the boundary of a “lens”

Traditionally, the 3-cell with identified 2-cells on the boundary is pictured as a
somewhat flattened 3-disk that resembles a lens, which is apparently the origin of
the term “lens space”.

The solid torus |w|? < 1/2 intersects the 3-cell from which we constructed the
lens space L(p, q) along the solid cylinder (with spherical bases) determined by the
inequalities % + %+ % < 1 and z? +x% < 1/2 (Fig.11.3). Under the identifications
due to the action of the element o, we must glue together the upper base of this
cylinder with its lower base, after a rotation by 2mq/p. The result will be the solid
torus M. We leave to the reader the proof of the fact that its complement in the
lens space L(p, q) is also a solid torus. (This proof may be obtained by using the
constructions described in 11.3.)

Problem 11.1. Find the fundamental group of the lens space L(p,q).

| yzf.i

FIGURE 11.3. Cylinder with spherical bases

11.3. It follows from the result of the previous problem that the lens spaces
L(p,q) and L(p',q') are not homeomorphic if p # p’. On the other hand, it is
obvious from the construction that the lens spaces L(p, q) and L(p,q') are homeo-
morphic provided ¢ = ¢ mod p.
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Our next goal is to prove that the lens spaces L(p,q) and L(p,q’) are homeo-
morphic provided ¢q¢' = +1 mod p. (Then they will also be homeomorphic when
q¢ = -1 mod p.)

To do this, cut the 3-cell into tetrahedra by means of p half-planes passing
through the z3-axis and the O-cells (Fig.11.4). Denote the upper and lower faces of
the first tetrahedron by 77 and S, respectively, and the left and right lateral faces
by A; and Bj, respectively. Denote the faces of the other tetrahedra in a similar
way. Initially the faces B; and A;;; were identical, while the transformation o
identifies the faces S; and T;14 (here and below, we number the faces modulo p).

FIGURE 11.4. The lens cut into tetrahedra

Now instead of identifying the lateral faces first, let us begin by identifying the
upper and lower faces, and only then identify the lateral ones. Then the adjacent
tetrahedra will acquire the numbers 7,5 + q,7 + 2q,...,7 + ¢'q. Hence the face
B;j will be identified with the face Ajy1, which is the same as the face Aj, 4y,
because by assumption the integer ¢’ is the solution of the Diophantine equation
gqd = +1 mod p. Since the end result does not depend on the order in which the
identifications are performed, the two lens spaces are identical. (]

q+1

O 0 15q’ 7/

@ (b) © 0 1 4
FIGURE 11.5. Heegaard diagram of L(5, 3)

11.4. Now we are ready to describe the Heegaard diagram of the lens space
L(p,q). For the meridional disk of the solid torus |[w|? < 1/2, we take its section
by the plane z3 = 0 (Fig.11.5,a). On Fig.11.5,b we show the part of the meridional
disk contained in one of the tetrahedra into which we have cut our “lens”. This
picture shows that the boundary circle of this disk corresponds to p segments on
the other solid torus |w|? > 1/2 (Fig.11.5,c). But under our identifications, the
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lower point with number ¢ is glued to the upper point i + ¢’, where g¢¢’ =1 mod p.
Since the integers p and ¢’ are coprime, we obtain one closed curve on the torus
(shown in Fig.11.5,d). This is the desired Heegaard diagram.

Comments

The idea of a manifold as a geometric entity not lying in some linear space, but
possessing its own intrinsic geometry, is due to B. Riemann. It appeared before the
notion of abstract topological space, and in those days was always supplied with a
metric. We shall not attempt to describe the progressive “topologization” of the
notion of 3-manifold that took place in the first third of the 20th century. The key
names, besides Heegaard and Poincaré, are J. W. Alexander, M. Dehn, J. Nielsen,
H. Seifert. The classical text that brings together the topological achievements of
that period is the Lehrbuch der Topologie by H. Seifert and W. Threlfall ([ST],
1934).

Most of the material of this chapter is traditional and can be found in several
texbooks, e.g. [Rol], [MF], [ST], except for §9, in which we follow the article
[Dow], and Theorem 8.8, which is standard “folklore”, but for which we were not
able to find a proof in the literature.
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CHAPTER 9 . 3-MANTFOLDS AND SURGERY ON LINKS

INTRODUCTION. Up to this point we have been, by and large, concerned
with knots and links in their own right. Although knot theory per se

is by no means a closed book, many of its more interesting developments
in the last decade or two have been in the directions of applicatiocn

of knot-theoretical techniques to other branches of mathematics, or at
least other parts of topology. For example, the study of singularities
in algebraic geometry has been enriched by the application of knot
methods, Milnor's book [1968]215 a highly recommended introduction to
this. Another important application knot theory is in the study of
manifolds. In this chapter we will focus attention on three-dimensional
manifolds. A technique dating back to Dehn -- now known as surgery --
has become a powerful tocl in constructing, and proving theorems about,
3-manifolds, Unless otherwise stated, all closed 3-manifolds M3 under
consideration will be assumed connected and orientable, in other words,

Hl(M) 2 H (M) = Z.

3

LENS SPACES. We already know from the Alexander trick that if cne
attaches two 3-balls together via any homeomorphism of their boundaries,

the resulting space is SB. Consider the analogous construction using

two solid tori Vl and V2 . If h: av2 - BVl is a homeomorphism we
may form the space 3
M=V vV
1 h 2

which is the result of identifying each x € 8V2 with h(x) ¢ avl in

the disjoint union of Vl and V2 .
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I. EXERCISE : M3 18 a closed connected orientable 3-manifold which

depends, up to homeomorphism, only upon the homotopy class of h(mz)

in avl , where m, is a meridian of V2 . [see section 2E].

;l. DEFINITION : Choosing fixed longitude and meridian generators Ll and

m, for ﬂl(avl), we may write
h*(mz) = pll + qam,

where p and q are coprime integers. The resulting M3 is called

the lens space of type (p,q) and denoted traditionally by
3
M~ = L(p,q).

In other words a 3~manifold is a lens space 1f and only if it
contalns a solid torus, the closure of whose complement is also a solid

torus. Some writers don't count S3 and 52 x Sl as lens spaces.

3. EXERCISE : Establish the following homeomorphisms:

L(l,q) = §°
L(0,1) = 52 X Sl
L(2,1) = RP3 (= 83 with antipodal points identified)

4. EXERCISE : Show that L(p,q) =L(p,~q) ® L(-p,q) = L(-p,-q) = L(p,q+kp)

for each integer k .

Thus we adopt the convention that O < g < p . This exhausts

the list of lens spaces which are not the 'degenerate' ones: S3 and

52 x S1 .
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!5. EXERCISE : Show that the fundamental group of L(p,q) is the finite

cyclic group Z/p.

So two lens spaces L(p,q) and L(p’',q') are definitely not

homeomorphic -- nor even of the same homotopy type -— unless p = p'

6. EXERCISE : Show that L(p,q) = L(p,q') if +qq’' = 1l(mod p)

[Hint: Regard V2 U 1 v

1.
-1 1

7! REMARK : Among the list L(p,l) ,..., L(p,p-1) of all lens spaces
with group Zp (recall that q must be prime to p) there are
duplications, up to homeomorphism, according to the exercise. Actually
lens spaces have been completely classified. According to Brody [1960]*

we have that L(p,q) and L(p,q') are
, y -+l
homeomorphic <=> +q' = g— (mod p) .
They are, according to Whitehead [1941], of the

same homotopy type <=> 4qq' 1is a quadratic residue, mod p .

This means that +qq' = m2 (mod p} for some m . Thus for example
L(7,1) and L(7,2) are 3-manifolds of the same homotopy type which
are not homeomorphic.

A theorem of Fermat and Euler states that if p 1s a prime
congruent to 3 modulo 4, then for any q , exactly one of +q 1is a
quadratic residue mod p . For all other primes p either both or

neither of +q 1is a quadratic residue. Thus given p =3, 7, 11, ...

* there are earlier proofs, but Brody's actually uses knot theory.



236 9. 3-MANIFOLDS AND SURGERY ON LINKS

there is only one homotopy type of lens spaces L(p,q) . For p =5,

13, ... there are two homotopy types. What if p isn't prime?

E!, OTHER DESCRIPTIONS : There are other ways of describing L{p,q) . We
list three.

(I) one may regard L(p,q) as the result of removing a
tubular neighbourhood of a trivial knot in S3 and sewing it back so
that a meridian lies on a curve which has linking number p with the
trivial knot and runs gq times along it (i.e. a (q,p) torus knot).
Note that the roles of 'meridian' and 'longitude' become reversed if
we speak relative to the neighbourhood of the trivial knot, rather

than relative to its complementary solid torus.

(II) Consider the unit ball B3 in R3 . Then identify each

point on the upper half (z>0) of 3B3 with its image under counter-
clockwise rotation by an angle of 2wq/p about the z-axis, followed

by reflection in the x - y plane, as in the following picture.
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-r; CdN\S*YWch(
L.(f,1;\ witl, s

To verify that this identification space is L{(p,q) and
for reasons which will become apparent later, we deplct the B3 as a
lens-~shaped solid with edge on the circle x2 + y2 = 1 and edge-angle
2r/p . Let V., be the part of the space inside the cylinder

1

x2 + y2 < 1/4 (with identifications) and let V2 be the closure of

what remains.

It is clear that Vl is a solid cylinder with ends
identified (with a 2mq/p twist)}; thus it's a solid torus. That v,
is also a solid torus can be seen by chopping it into pieces thus

(shown for the case p =5, q = 2)

R SR
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and re-assembling according to the prescribed identifications, like

wedges of a big cheese:

C

We still must identify the parts of V2

which were separated by the
dissection. But this is just sewing the top and bottom of the cheese
together (with a twist) to form a solid torus. Now a meridinal curve of
Vz is just one which runs around the perimeter of the big cheese.
Thus on Vl (before identifying top and bottom) it consists of P
vertical lines equally spaced on the boundary of the cylinder
xz + y2 = 1/4 . Since top and bottom become twisted by q/p full
turns, the meridinal curve of V2 becomes a p, q curve on V2 and
our identification space is indeed L(p,q) .

(III) Here is another description of L(p,q) ; the most
concise of all. Consider S3 as the unit sphere of C2 s complex

2-space. Let T : 83 > 53 be the homeomorphism given by

_ q
T(zo,zl) (zow, 2,w ),

where w = exp(2wi/p) 1is the principal pth root of unity. Then <

is periodic of period p (thus generates a Z/p-action on S3 )

Consider the orbit space of this action; that is, we identify points
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x, vy of S3 if x = Tk(y) for some k .

EXERCISE : Verify that the orbit space is homeomorphic with L(p,q)
[Hint: Show that after stereographic projection, the lens-shaped region
of the discussion above may be taken as a fundamental region of the
action.]

Another view of this 1s that 53 is the universal covering
space of L{p,q) and that T 1is a generator of the cyclic group of
covering translations. This checks with our calculation that the
fundamental group of L{(p,q) 1s Z/p (and thus so is the covering

translation group of the universal cover).

HEEGAARD DIAGRAMS . We now generalize the construction of the
previous section. Recall that a handlebody of genus g is the result
of attaching g disjoint 'l-handles" D2 x [-«1,1] to a 3-ball B3

by sewing the parts % x {+1} to 2g disjoint disks on 38> 1n such
a way that the result 1is an orientable 3-manifold with boundary. Two
handlebodies of the same genus are homeomorphic (and vice versa). The
boundary of a handlebody of genus g is a closed orientable 2-manifold
of genus g , as genus was defined previously. Let Hl and H2 be

handlebodies of the same genus, g , and let h : BHZ -+ BHl be a

homeomorphism. Then form the identification space

as before. Again it is easy to see that M3 is a closed orientable



