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Spherical geometry

Let S2 denote the unit sphere in R3 i.e. the set of all unit vectors
i.e. the set {(x , y , z) ∈ R3| x2 + y2 + z2 = 1 }.

A great circle in S2 is a circle which divides the sphere in half. In
other words, a great circle is the interesection of S2 with a plane
passing through the origin.



Spherical geometry

Let S2 denote the unit sphere in R3 i.e. the set of all unit vectors
i.e. the set {(x , y , z) ∈ R3| x2 + y2 + z2 = 1 }.

A great circle in S2 is a circle which divides the sphere in half. In
other words, a great circle is the interesection of S2 with a plane
passing through the origin.



Spherical geometry

Let S2 denote the unit sphere in R3 i.e. the set of all unit vectors
i.e. the set {(x , y , z) ∈ R3| x2 + y2 + z2 = 1 }.

A great circle in S2 is a circle which divides the sphere in half. In
other words, a great circle is the interesection of S2 with a plane
passing through the origin.



Great circles are straight lines

Great circles play the role of straight lines in spherical geometry.

Given two distinct points on S2, there is a great circle passing
through them obtained by the intersection of S2 with the plane
passing through the origin and the two given points.

You can similarly verify the other three Euclid’s posulates for
geometry.
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Diangles

Any two distinct great circles inter-
sect in two points which are nega-
tives of each other.

The angle between two great circles at an intersection point is the
angle between their respective planes.

A region bounded by two great circles is called a diangle.

The angle at both the vertices are equal. Both diangles bounded
by two great circles are congruent to each other.
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Area of a diangle

Proposition

Let θ be the angle of a diangle. Then the area of the diangle is 2θ.

Proof: The area of the diangle is proportional to its angle. Since
the area of the sphere, which is a diangle of angle 2π, is 4π, the
area of the diangle is 2θ.

Alternatively, one can compute this area directly as the area of a
surface of revolution of the curve z =

√
1− y2 by an angle θ. This

area is given by the integral
∫ 1
−1 θz

√
1 + (z ′)2 dy . �

If the radius of the sphere is r then the area of the diangle is 2θr2.

This is very similar to the formula for the length of an arc of the
unit circle which subtends an angle θ is θ.
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Spherical polygons

A spherical polygon is a polygon on S2 whose sides are parts of
great circles.

More Examples. Take ballon, ball and draw on it.
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Girard’s Theorem: Area of a spherical triangle

Girard’s Theorem

The area of a spherical triangle with angles α, β and γ is α+β+γ−π.

Proof:
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Area of a spherical triangle
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4ABC as shown above is formed by the intersection of three great
circles.

Vertices A and D are antipodal to each other and hence have the
same angle. Similarly for vertices B,E and C ,F . Hence the
triangles 4ABC and 4DEF are antipodal (opposite) triangles and
have the same area.

Assume angles at vertices A,B and C to be α, β and γ respectively.



Area of a spherical triangle
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Let RAD , RBE and RCF denote pairs of diangles as shown. Then
4ABC and 4DEF each gets counted in every diangle.

RAD ∪ RBE ∪ RCF = S2, Area(4ABC ) = Area(4DEF ) = X .

Area(S2) = Area(RAD) +Area(RBE ) +Area(RCF )− 4X

4π = 4α+ 4β + 4γ − 4X

X = α+ β + γ − π

�
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Area of a spherical polygon

Corollary

Let R be a spherical polygon with n vertices and n sides with interior
angles α1, . . . , αn. Then Area(R) = α1 + . . .+ αn − (n − 2)π.

Proof: Any polygon with n sides for n ≥ 4 can be divided into
n − 2 triangles.

The result follows as the angles of these triangles add up to the
interior angles of the polygon. �
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