Homework 7

Due: Wednesday Dec 11th

Geometry for Teachers, MTH 623, Fall 2019
THE CITY UNIVERSITY
College of
Instructor: Abhijit Champanerkar

Reading Notes and slides on Spherical Geometry

Problems Solve and submit the following problems.

1. Using the spherical distance formula prove that the antipodal map is a spherical isometry.
2. Find the great circle containing the following pairs of points.
(a) $P=(0,0,-1)$ and $Q=(0,1,0)$.
(b) $P=(1 / 2,-1 / 2,1 / \sqrt{2})$ and $Q=(2 / 3,1 / 3,-2 / 3)$.
3. Are the points $P=(0,0,-1), Q=(0,1,0)$ and $R=(0,0,1)$ collinear ?
4. Find the spherical distance between the following pairs of points.
(a) $P=(0,0,-1), Q=(0,1,0)$.
(b) $P=(1 / 2,-1 / 2,1 / \sqrt{2}), Q=(2 / 3,1 / 3,-2 / 3)$.
(c) $P=(0,1 / 2, \sqrt{3} / 2)$ and $-P=(0,-1 / 2,-\sqrt{3} / 2)$.
5. Find angle between the following great circles:
(a) $L_{\vec{j}}$ and $L_{\vec{k}}$
(b) $L_{\langle 1 / 3,2 / 3,2 / 3\rangle}$ and $L_{\langle-3 / 5,4 / 5,0\rangle}$
6. Find the area of the triangle with the following vertices:
(a) $P=(1,0,0), Q=(0,-1,0)$ and $R=(0,0,-1)$.
(b) $P=(1 / 2,-1 / 2,1 / \sqrt{2}), Q=(2 / 3,1 / 3,-2 / 3)$, and $R=(1,0,0)$.
7. Can we have a polyhedron consisting of 12 hexagonal faces and every vertex of degree 4 ?

Write up (Please type your write-up, figures can be hand-drawn if needed)
Write a one page summary of the article Think Globally by Steven Strogatz (get article from class homepage).

