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Euler

Leonhard Euler (1707-1783)

Leonhard Euler was a Swiss mathematician who made enormous
contibutions to a wide range of fields in mathematics.



Euler: Some contributions

I Euler introduced and popularized several notational
conventions through his numerous textbooks, in particular the
concept and notation for a function.

I In analysis, Euler developed the idea of power series, in
particular for the exponential function ex . The notation e
made its first appearance in a letter Euler wrote to Goldbach.

I For complex numbers he discovered the formula
e iθ = cos θ + i sin θ and the famous identity e iπ + 1 = 0.

I In 1736, Euler solved the problem known as the Seven Bridges
of Königsberg and proved the first theorem in Graph Theory.

I Euler proved numerous theorems in Number theory, in
particular he proved that the sum of the reciprocals of the
primes diverges.



Convex Polyhedron

A polyhedron is a solid in R3 whose faces are polygons.

A polyhedron P is convex if the line segment joining any two
points in P is entirely contained in P.
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Euler’s Polyhedral Formula

Euler’s Formula

Let P be a convex polyhedron. Let v be the number of vertices, e
be the number of edges and f be the number of faces of P. Then
v − e + f = 2.

Examples

Tetrahedron Cube Octahedron
v = 4, e = 6, f = 4 v = 8, e = 12, f = 6 v = 6, e = 12, f = 8
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Euler’s Polyhedral Formula

Euler mentioned his result in a letter to Goldbach (of Goldbach’s
Conjecture fame) in 1750. However Euler did not give the first
correct proof of his formula.

It appears to have been the French mathematician Adrian Marie
Legendre (1752-1833) who gave the first proof using Spherical
Geometry.

Adrien-Marie Legendre (1752-1833)



Girard’s Theorem: Area of a spherical triangle

Girard’s Theorem

The area of a spherical triangle with angles α, β and γ is α+β+γ−π.

Corollary

Let R be a spherical polygon with n vertices and n sides with interior
angles α1, . . . , αn. Then Area(R) = α1 + . . .+ αn − (n − 2)π.



Proof of Euler’s Polyhedral Formula

Let P be a convex polyhedron in R3. We can “blow air” to make
(boundary of) P spherical.

This can be done rigourously by arranging P so that the origin lies
in the interior of P and projecting the boundary of P on S2 using
the function f (x , y , z) = (x ,y ,z)√

x2+y2+z2
.

It is easy to check that vertices of P go to points on S2, edges go
to parts of great circles and faces go to spherical polygons.
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Proof of Euler’s Polyhedral Formula

Let v , e and f denote the number of vertices, edges and faces of P
respectively. Let R1, . . . ,Rf be the spherical polygons on S2.

Since their union is S2, Area(R1) + . . .+ Area(Rf ) = Area(S2).

Let ni be the number of edges of Ri and αij for j = 1, . . . , ni be its
interior angles.

f∑
i=1

(

ni∑
j=1

αij − niπ + 2π) = 4π

f∑
i=1

ni∑
j=1

αij −
f∑

i=1

niπ +
f∑

i=1

2π = 4π



Proof of Euler’s Polyhedral Formula

Since every edge is shared by two polygons

f∑
i=1

niπ = 2πe.

Since the sum of angles at every vertex is 2π

f∑
i=1

ni∑
j=1

αij = 2πv .

Hence 2πv − 2πe + 2πf = 4π that is v − e + f = 2 �



Why Five ?

A platonic solid is a polyhedron all of whose vertices have the same
degree and all of its faces are congruent to the same regular
polygon. We know there are only five platonic solids. Let us see
why.

Tetrahedron Cube Octahedron Icosahedron Dodecahedron

v = 4 v = 8 v = 6 v = 12 v = 20

e = 6 e = 12 e = 12 e = 30 e = 30

f = 4 f = 6 f = 8 f = 20 f = 12
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Why Five ?

Let P be a platonic solid and suppose the degree of each of its
vertex is a and let each of its face be a regular polygon with b
sides. Then 2e = af and 2e = bf . Note that a, b ≥ 3.

By Euler’s Theorem, v − e + f = 2, we have

2e
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b
= 2

1

a
+

1

b
=

1

2
+

1

e
>

1

2

If a ≥ 6 or b ≥ 6 then 1
a + 1

b ≤
1
3 + 1

6 = 1
2 . Hence a < 6 and b < 6

which gives us finitely many cases to check.
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Why Five ?

a b e v Solid

3 3 6 4 Tetrahedron

3 4 12 6 Octahedron

3 5 30 12 Icosahedron

4 3 12 8 Cube

4 4 1
4 + 1

4 = 1
2 !

4 5 1
4 + 1

5 = 9
20 <

1
2 !

5 3 30 20 Dodecahedron

5 4 1
4 + 1

5 = 9
20 <

1
2 !

5 5 1
5 + 1

5 = 2
5 <

1
2 !
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Plane graphs

Note that we actually proved the Theorem for any (geodesic)
graph on the sphere.

Any plane graph can be made into a graph on a sphere by tying up
the unbounded face (like a balloon). However one may need to
make some modifications (which do not change the count
v − e + f ) to make the graph geodesic on the sphere (keywords:
k-connected for k = 1, 2, 3).

Theorem

If G is a connected plane graph with v vertices, e edges and f faces
(including the unbounded face), then v − e + f = 2.

This theorem from graph theory can be proved directly by
induction on the number of edges and gives another proof of
Euler’s Theorem !
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Surfaces

What about graphs on other surfaces ?



Other surfaces

2−3+1=02−2+1=1

We need the restriction that every face of the graph on the surface
is a disk.

Given this restriction the number v − e + f does not depend on
the graph but depends only on the surface.

The number χ = v − e + f is called the Euler characteristic of the
surface. χ = 2− 2g where g is the genus of the surface i.e. the
number of holes in the surface.
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