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Think Globally   
By STEVEN STROGATZ 
The most familiar ideas of geometry were inspired by an ancient vision — a vision of the world 
as flat. From parallel lines that never meet, to the Pythagorean theorem discussed in last week’s 
column, these are eternal truths about an imaginary place, the two-dimensional landscape of 
plane geometry. 

Conceived in India, China, Egypt and Babylonia more than 2,500 years ago, and codified and 
refined by Euclid and the Greeks, this flat-earth geometry is the main one (and often the only 
one) being taught in high schools today. But things have changed in the past few millennia. 

In an era of globalization, Google Earth and transcontinental air travel, all of us should try to 
learn a little about spherical geometry and its modern generalization, differential geometry. The 
basic ideas here are only about 200 years old. Pioneered by Carl Friedrich Gauss and Bernhard 
Riemann, differential geometry underpins such imposing intellectual edifices as Einstein’s 
general theory of relativity. At its heart, however, are beautiful concepts that can be grasped by 
anyone who’s ever ridden a bicycle, looked at a globe or stretched a rubber band. And 
understanding them will help you make sense of a few curiosities you may have noticed in your 
travels. 

For example, when I was little, my dad used to enjoy quizzing me about geography. Which is 
farther north, he’d ask, Rome or New York City? Most people would guess New York, but 
surprisingly they’re at almost the same latitude, with Rome being just a bit farther north. On the 
usual map of the world (the misleading Mercator projection, where Greenland appears gigantic) 
it looks like you could go straight from New York to Rome by heading due east. 

Yet airline pilots never take that route. They always fly northeast out of New York, hugging the 
coast of Canada. I used to think they were staying close to land for safety’s sake, but that’s not 
the reason. It’s simply the most direct route, if you take the earth’s curvature into account. The 
shortest path from New York to Rome goes past Nova Scotia and Newfoundland, then heads out 
over the Atlantic, and finally veers south of Ireland and across France for arrival in sunny Italy. 



 

This kind of path on the globe is called an arc of a “great circle.” Like straight lines in ordinary 
space, great circles on a sphere contain the shortest paths between any two points. They’re called 
“great” because they’re the largest circles you can have on a sphere. Conspicuous examples 
include the equator and the longitudinal circles that pass through the north and south poles. 

Another property that lines and great circles share is that they’re the straightest paths. That might 
sound strange — all paths on a globe are curved, so what do we mean by “straightest”? Well, 
some paths are more curved than others. The great circles don’t do any additional curving, above 
and beyond what they’re forced to do by following the surface of the sphere. 

Here’s a way to visualize this. Imagine you’re riding a tiny bicycle on the surface of a globe, and 
you’re trying to stay on a certain path. If it’s part of a great circle, you won’t ever need to steer. 
That’s the sense in which great circles are “straight.” In contrast, if you try to ride along a line of 
latitude near one of the poles, you’ll have to keep turning the handlebars. 

Of course, as surfaces go, the plane and the sphere are abnormally simple. The surface of a 
human body, or a tin can, or a bagel would be more typical — they all have far less symmetry, as 
well as various kinds of holes and passageways that make them more confusing to navigate. In 
this more general setting, finding the shortest path between any two points becomes a lot trickier. 
So rather than delving into technicalities, let’s stick to an intuitive approach. This is where 
rubber bands come in handy. 

Specifically, imagine a slippery elastic string that always contracts as far as it can, while 
remaining confined to the surface. With its help, we can easily determine the shortest path 
between New York and Rome, or for that matter, between any two points on any surface. Tie the 
ends of the string to the points of departure and arrival and let the string pull itself tight, while 
clinging to the surface’s contours. When the string is as taut as these constraints allow, voila! It 
traces the shortest path. 

On surfaces just a little more complicated than planes or spheres, something strange and new can 
happen: many locally shortest paths can exist between the same two points. For example, 
consider the surface of a soup can, with one point lying directly below the other. 



 

Then the shortest path between them is clearly a line segment, as shown above, and our elastic 
string would find that solution. So what’s new here? The cylindrical shape of the can opens up 
new possibilities for all kinds of contortions. Suppose we require that the string encircles the 
cylinder once before connecting to the second point. Now when the string pulls itself taut, it 
forms a helix, like the curves on old barbershop poles. 

 

This helical path qualifies as another solution to the shortest path problem, in the sense that it’s 
the shortest of the candidate paths nearby. If you nudge the string a little, it would necessarily get 
longer and then contract back to the helix. You could say it’s the “locally” shortest path — the 
regional champion of all those that wrap once around the cylinder. (By the way, this is why the 
subject is called “differential” geometry; it studies the effects of small local differences on 
various kinds of shapes, such as the difference in length between the helical path and its 
neighbors.) 

But that’s not all. There’s another champ that winds around twice, and another that goes around 
three times, and so on. There are infinitely many locally shortest paths on a cylinder! Of course, 



none of these helices is the “globally” shortest path. The straight-line path is shorter than all of 
them. 

Likewise, surfaces with holes and handles permit many locally shortest paths, distinguished by 
their pattern of weaving around various parts of the surface. The following video by the 
mathematician Konrad Polthier of the Free University of Berlin illustrates the non-uniqueness of 
these locally shortest paths, or “geodesics,” on the surface of an imaginary planet shaped like a 
figure-8, a surface known in the trade as a “two-holed torus”: 

(See video online) 

The red, yellow and green geodesics all visit very different parts of the planet, thereby executing 
different loop patterns. But what they all have in common is their superior directness compared 
to the paths nearby. And just like lines on a plane or great circles on a sphere, these geodesics are 
the straightest possible curves on the surface. They bend to conform with the surface, but don’t 
bend within it. To make this clear, Polthier has produced another illuminating video. 

(See video online) 

Here, a motorcycle rides along a geodesic highway on a two-holed torus, following the lay of the 
land. The remarkable thing is that the motorcycle’s handlebars are locked. It doesn’t need to 
steer to stay on the road. This underscores the earlier intuition that geodesics, like great circles, 
are the natural generalization of straight lines. 

With all these flights of fancy, you may be wondering if geodesics have anything to do with 
reality. Of course they do. Einstein showed that light beams follow geodesics as they sail through 
the universe. The famous bending of starlight around the sun, detected in the eclipse observations 
of 1919, confirmed that light travels on geodesics through curved space-time, with the warping 
being caused by the sun’s gravity. 

At a more down-to-earth level, the mathematics of finding shortest paths is critical in everything 
from the GPS navigation systems in our cars to the routing of traffic on the Internet. In these 
situations, however, the relevant space is a gargantuan maze of addresses and links, as opposed 
to the smooth surfaces considered above, and the mathematical issues have to do with the speed 
of algorithms — what’s the most efficient way to find the shortest path through a network? 
Given the myriad of potential routes, the task would be overwhelming, were it not for the 
ingenuity of the mathematicians and computer scientists who cracked it. 

Sometimes when people say the shortest distance between two points is a straight line, they mean 
it figuratively, as a way of ridiculing nuance and affirming common sense. In other words, keep 
it simple. But battling obstacles can give rise to great beauty — so much so that in art, and in 
math, it’s often more fruitful to impose constraints on ourselves. Think of haiku, or sonnets, or 
telling the story of your life in six words. The same is true of all the math that’s been created to 
find the shortest way from here to there when you can’t take the easy way out. 

Two points. Many paths. Mathematical bliss. 

 

NOTES: 



1. By referring to plane geometry as “flat-earth” geometry, I might seem to be disparaging 
the subject, but that’s not my intent. The tactic of locally approximating a curved shape 
by a flat one has often turned out to be a useful simplification in many parts of 
mathematics and physics, from calculus to relativity theory. Plane geometry is the first 
instance of this great idea. 

2. Nor do I mean to suggest that all the ancients thought the world was flat. For an 
engaging account of Eratosthenes’s measurement of the distance around the globe, see: 
N. Nicastro, Circumference (St. Martin’s Press, 2008). 

3. For a more contemporary approach that you might like to try on your own, Robert 
Vanderbei at Princeton University recently gave a presentation to his daughter’s high 
school geometry class in which he used a photograph of a sunset to show that the earth is 
not flat, and to estimate its diameter. His slides are posted here. 

4. An interactive online demonstration that lets you plot the shortest route between any two 
points on the surface of the earth is available here. (You’ll need to download the free 
Mathematica Player, which will then allow you to explore hundreds of other interactive 
demonstrations in all parts of mathematics.) 

5. A superb introduction to modern geometry was co-authored by David Hilbert, one of the 
greatest mathematicians of the 20th century. This classic, originally published in 1952, 
has been reissued as: D. Hilbert and S. Cohn-Vossen, Geometry and the Imagination 
(American Mathematical Society, 1999). 

6. Several good textbooks and online courses in differential geometry are listed here. 
7. Konrad Polthier has produced a number of fascinating educational videos about 

mathematical topics. Excerpts can be found online here. 
Award-winning videos by Polthier and his colleagues appear in the VideoMath Festival 
collection, available as a DVD from Springer Verlag. 

8. The classic algorithm for shortest path problems on networks is due to Edsger Dijkstra. A 
PDF version of his 1959 paper is available here. 

9. Textbook treatments of related routing problems on networks are given online here and 
here. 

10. Steven Skiena has posted an instructive animation of Dijkstra’s algorithm. 
11. Nature can solve certain shortest path problems by decentralized processes akin to 

analog computation. For chemical waves that solve mazes, see: O. Steinbock, A. Toth, 
and K. Showalter, “Navigating complex labyrinths: Optimal paths from chemical 
waves,” Science 267, p.868 (1995). 
Not to be outdone, slime molds can solve them too: T. Nakagaki, H. Yamada, and A. 
Toth, “Maze-solving by an amoeboid organism,” Nature 407, p.470 (2000). 
This slimy creature can even make networks as efficient as the Tokyo rail system: A. 
Tero et al., “Rules for biologically inspired adaptive network design,” Science 327, 
p.439 (2010). 

12. For an introduction to the mathematics of GPS navigation systems, see: S. Robinson, 
“Mapping magic,” SIAM News (Sep. 26, 2004), available online here. 

13. Delightful examples of six-word memoirs are given here and here. 

Thanks to Robert Vanderbei, for sending the link to his presentation about estimating the earth’s 
diameter from a photograph of a sunset; Margaret Nelson, for preparing the line drawings; 
Doug Arnold, Bob Connelly, Paul Ginsparg, Jon Kleinberg, Andy Ruina and Carole Schiffman, 
for their comments and suggestions; and Konrad Polthier, for generously sharing his videos of 
geodesics. 




