

Date: April 15th, 2020

- Please submit by emailing me the solutions in pdf form either typed or written on plain or ruled paper, by **11:59 pm on Wednesday April 15th, 2020**.
- Justify your answers and write clear proofs for full credit. You can assume the continuity of single and multi-variable functions you have seen in Calculus and Advanced Calculus courses.
- **Policy about plagiarsm and cheating:** Please note that you may be asked to explain and justify to me in an one-on-one online meeting any solution you write down.
- Please include the following honor code statement in your submission, right after your name: I, *student name*, have submitted only those solutions that I fully understand myself.
- 1. (20 *points*) Identify the set of 2×2 matrices, denoted by $M(2, \mathbb{R})$ with \mathbb{R}^4 , thereby giving it the topology inherited from the standard topology from \mathbb{R}^4 .
 - (a) Prove that the set of 2×2 invertible matrices, denoted as $GL(2, \mathbb{R})$, is an open subset of $M(2, \mathbb{R})$.
 - (b) Prove that the set of 2×2 special orthogonal matrices i.e. matrices A such that $AA^T = \text{Id} \text{ and } \det(A) = 1$, denoted as $\text{SO}(2, \mathbb{R})$, is a closed subset of $M(2, \mathbb{R})$.
 - (c) Do you think the statements (a) and (b) are true about $n \times n$ matricies ?
- 2. (20 points)
 - (a) Let $(p_1, p_2, p_3) \in \mathbb{R}^3$ be any point. Prove that $\mathbb{R}^3 \{(p_1, p_2, p_3)\} \cong \mathbb{R}^3 \{(0, 0, 0)\}.$
 - (b) Prove that $\mathbb{R}^3 \{(p_1, p_2, p_3)\}$ is connected.
- 3. (20 points)
 - (a) Prove that a space X is connected if and only if there does not exist a continuous, surjective function $f : X \to \{0, 1\}$.
 - (b) Prove that the set of 2×2 invertible matrices, denoted as $GL(2, \mathbb{R})$, is disconnected.
- 4. (*20 points*) Decide if the following functions are continuous or not. Please give a short justification.
 - (a) $f : \mathbb{R}_{dis} \to \mathbb{R}, f(x) = 2x$.
 - (b) $f : \mathbb{R}_{cofin} \to \mathbb{R}, f(x) = 2x.$
 - (c) $f : \mathbb{R} \to \mathbb{R}_{\ell}, f(x) = 2x$.
 - (d) $f : \mathbb{R}_{PP=0} \to \mathbb{R}, f(x) = 2x.$

- (e) $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 0 for x < 0 and f(x) = 1 for $x \ge 0$.
- 5. (20 points)
 - (a) Prove that any $x \in \mathbb{Z}$ is the limit point of the set $\{3n + 2 | n \in \mathbb{Z}_+\}$ in the finite complement topology on \mathbb{Z} .
 - (b) Prove that we cannot define a metric on \mathbb{R} which will induce the finite complement topology on \mathbb{R} .