Solutions to take home Midterm Exam

- 1. (20 points) Identify the set of 2×2 matrices, denoted by $M(2,\mathbb{R})$ with \mathbb{R}^4 , thereby giving it the topology inherited from the standard topology from \mathbb{R}^4 .
 - (a) Prove that the set of 2×2 invertible matrices, denoted as $GL(2,\mathbb{R})$, is an open subset of $M(2,\mathbb{R})$.
 - (b) Prove that the set of 2×2 special orthogonal matrices i.e. matrices A such that $AA^T = \operatorname{Id}$ and $\det(A) = 1$, denoted as $\operatorname{SO}(2,\mathbb{R})$, is a closed subset of $\operatorname{M}(2,\mathbb{R})$.
 - (c) Do you think the statements (a) and (b) are true about $n \times n$ matricies?

Solution: a) $M(2,R) = \overline{7} \left(\begin{array}{c} ab \\ c \end{array} \right) = \begin{array}{c} A - \left(\begin{array}{c} a \\ c \end{array} \right) \end{array} \longrightarrow \left(\begin{array}{c} a,b,c,d \\ c \end{array} \right)$

det: M(2,R) -> R det(A) = ad-bc cts as it is a polynomial

A \in GL(2,R) iff A invertible iff $\det(A) \neq 0$ \Rightarrow GL(2,R) = $\det(R-0)$

R-O CR open, det ct =) GL(2,R) open.

b) f: M(2,R) x M(2,R) -> M(2,R)

f(A,B) = AB (ab)(Pq) = (ap+bv)

cts polynomial in every

9: M(2,1R) -> M(2,1R)

 $g(A) = AA^T$

cts as matrix mul cts

& A H AT cts

not needl

a (Id) closed as

> Id - (1,0,0,1) ER4

def (517) closed as det it 2 TRCR closed $SO(2,R) = \overline{g}(\overline{H}R) \cap def(\overline{SR}) = 1 \text{ closed}$

c) Yes true for nxn matricies.

(a) Let $(p_1, p_2, p_3) \in \mathbb{R}^3$ be any point. Prove that $\mathbb{R}^3 - \{(p_1, p_2, p_3)\} \cong \mathbb{R}^3 - \{(0, 0, 0)\}$. (b) Prove that $\mathbb{R}^3 - \{(p_1, p_2, p_3)\}$ is connected.
Solution: a) $f: \mathbb{R}^3 \to \mathbb{R}^3$ $f(x,y,z) = (X+P_1,y+P_2,z+P_3)$ linear in every co-ord
\Rightarrow f ds
$f(0,0,0) = (P_1, P_2, P_3)$
g: R3->R3 g(x,y,z) = (x-P1,y-P2,z-P3).
g(ts) = (0,0,0)
$\alpha - ($
f homeo & f: R-(P1) - R-(P1P2R3)
=) they are homeo.
b) Enough to show $1R^3 - (0,0,0)$ (onn. , $(0,1/2)$ z to
Proof!
Though to show R3-10,0,0) is path com.
We will find a path from (x,y,z) to (1,0,0)
See picture.
cases: 1) Z=0, 2) Z \(\) 3) Z \(\) 40, Y=0 (4) Z \(\) 7, Y \(\) 10
draw piecewise linear path in all there cases.
1R3-(0,0,0) path (om=) CONN.
· · · · · · · · · · · · · · · · · · ·
Prof 2: Assure $S^2 \subset \mathbb{R}^3$ (ownected $\Rightarrow S_7^2 = \frac{5}{4}(x,y,z) / x^2 + y^2 + z^2 = y^2$) is (onn
$A = \frac{7}{7} (r_{10}) / r_{70} (shi)$
$ R^3 - lopo_0 = \bigcup (5^2_{r} U A)$
S _r uA low 4r, \(\int_{r>0}\) (\(\frac{2}{5}\)nA)= A \(\psi\)

2. (20 points)

3. (20 points)

not conn.

- (a) Prove that a space X is connected if and only if there does not exist a continuous, surjective function $f: X \to \{0, 1\}$.
- (b) Prove that the set of 2×2 invertible matrices, denoted as $GL(2, \mathbb{R})$, is disconnected.

Solution: a) Assume
$$f(x) = f(x)$$
 for the surjection $f(x) = f(x)$ $f(x) = f(x)$ $f(x)$ $f(x$

