Homework 8

Topology, Math 441, Spring 2020 Topic: Path-connectedness and Compactness **Due:** Wednesday April 29th, 2020

Reading: pg 77-80, pg 83-89 the text book.

Problems:

- 1. Prove that the following spaces are path-commnected: (a) $\mathbb{R}^2 - \{\overline{x}\}$ (b) $\mathbb{R}^n - \{\overline{x}\}$ is connected for $n \ge 3$, (c) $S^{n-1} \subset \mathbb{R}^n$.
- 2. Let $X = \{a, b\}$ and assume that X has the topology $\mathcal{T} = \{\phi, \{a\}, X\}$. Prove that X is path connected in this topology.
- 3. Prove that the following spaces or subsets are non-compact. (a) $(a, b) \subset \mathbb{R}$, (b) $[a, b) \subset \mathbb{R}$, (c) \mathbb{R}^n
- 4. Prove that X_{dis} is compact if and only if X is finite.
- 5. Prove that every subset $K \subset \mathbb{R}_{fc}$ is compact.
- 6. Suppose that X is a compact space and $(x_n) = \{x_1, x_2, \ldots\}$ is a sequence of points in X. Show that there is a subsequence of (x_n) that converges to a point in X.
- 7. Prove that if $X \times Y$ is compact then so are X and Y.
- 8. Prove that a union of two compacts subsets of X is compact.
- *9. We have seen that the topologists sine curve is connected. Prove that it is not path-connected.
- *10. Let C be a countable subset of \mathbb{R}^2 . Prove that the $A = \mathbb{R}^2 C$ is path connected. (Hint: Given a point $\alpha \in A$, there are many lines through α that miss C entirely. Why?).

Handin: 1a, 3a, 4, 5, 8