Homework 7

Topology, Math 441, Spring 2020
Topic: Quotient Topology, Connectedness

Due: Friday April 17th, 2020

Reading: Its important to read the following sections to understand quotient topology.

1. pg 56-61 from the text book.
2. Section 3.3 from book Introduction to Topology by Adams-Franzosa (skip Example 3.18).
3. Section 3.4 from book Introduction to Topology by Adams-Franzosa.

Problems:

1. Give an example to show that the quotient space of a Hausdorff space need not be Hausdorff.
2. (a) Prove that $f: X \rightarrow Y$ is a quotient map if subset $K \subset Y$ is closed if and only if $f^{-1}(K)$ is closed.
(b) A map $f: X \rightarrow Y$ is closed if it takes closed sets to closed sets. Using (a) prove that a surjective, continuous, closed map is a quotient map.
3. Consider the equivalence relation on \mathbb{R}^{2} defined by $\left(x_{1}, x_{2}\right) \sim\left(y_{1}, y_{2}\right)$ if $x_{1}^{2}+x_{2}^{2}=y_{1}^{2}+y_{2}^{2}$. Describe the quotient space \mathbb{R}^{2} / \sim.
4. Describe or draw a picture of the resulting quotient space. Assume that points are identified only with themselves unless they ar eexplicitly said to be identified with other points.
(a) The interval $[0,4] \subset \mathbb{R}$, with integer points identified.
(b) The sphere with the equator collapsed to a point.
(c) The real line \mathbb{R} with $[-1,1]$ collapsed to a point.
5. Prove that \mathbb{R} with the following topology is connected:
(a) $\mathbb{R}_{P P=0}$, the particular point topology with $p=0$.
(b) $\mathbb{R}_{E P=0}$, the excluded point topology with $p=0$.
(c) $\mathbb{R}_{c o-f i n}$, the co-finite topology on \mathbb{R}.
6. Show that if $A \subset X$ is connected then A is contained in a component of X.
7. Prove that $S^{2} \subset \mathbb{R}^{3}$ is connected.
8. Use cutsets to prove the following:
(a) $[a, b]$ is not homeomorphic to (a, b).
(b) $[a, b)$ is not homeomorphic to (a, b).
(c) $(a, b]$ is not homeomorphic to (a, b).
(d) $(a, b]$ is not homeomorphic to $[a, b]$.
9. Prove that no two-point set separates \mathbb{R}^{2}.
*10. Let X be a topological space and Y be a set. Let $p: X \rightarrow Y$ be a surjective map. Prove that the quotient topology on Y induced by p (i.e. using the equivalence relation on X given by $x \sim y \Longleftrightarrow p(x)=$ $p(y)$ is the finest topology under which p is continuous.

Handin: 3, 4ab, 5bc, 7, 8ab, 9

