Homework 6

Topology, Math 441, Spring 2020 Topic: Subspace and Product Topology **Due:** Friday April 3rd, 2020

Reading: Pages 46-56 from Chapter 4.

Problems:

- 1. Let $Y \subset X$ have the subspace topology.
 - (a) Prove that if A is open in Y and Y is open in X then A is open in X.
 - (b) Prove that if A is closed in Y and Y is closed in X then A is closed in X.
- 2. Let Y = (0,4] ∪ {5} ⊂ ℝ. Which of the following subsets of Y are open or closed in the subspace topology on Y ?
 (a) (0,1) (b) (0,1] (c) {1} (d) (1,2) (e) (1,4] (f) [1,4] (g) {5} (h) {4,5}
- 3. Let X be a Hausdorff space and $Y \subset X$. Prove that the subspace topology on Y is Hausdorff.
- 4. Let $B \subset A \subset X$. Then $x \in A$ is a limit point of B in A if and only if x is a limit point of B in X.
- 5. Prove that X is Hausdorff if and only if the subset $\Delta(X) = \{(x, x) \mid x \in X\}$ is a closed subset of $X \times X$.
- 6. Prove that a product of finitely many Hausdorff spaces is Hausdorff (Hint: Prove for two spaces and use induction.)
- 7. Let \mathbb{R}_{fc} denote \mathbb{R} with the finite complement topology. Is the finite complement topology on \mathbb{R}^2 same as $\mathbb{R}_{fc} \times \mathbb{R}_{fc}$?

Handin: 1a, 2, 4, 5