Homework 5

Topology, Math 441, Spring 2020 Topic: Interior, closures etc, and Hausdorff spaces **Due:** Monday March 23rd, 2020

Reading: Pages 23-37 from Chapter 3 of the text book. Read subspace topology from Chapter 4.

Problems:

- 1. Find the interior, closure and boundary of the following sets. (a) $\mathbb{Q} \subset \mathbb{R}$, (b) $\mathbb{R} \subset \mathbb{R}^2$, (c) $A = \{(x, y) \mid y \ge 0\} \subset \mathbb{R}^2$.
- 2. Let X be a topological space and let $A \subset X$. Let ∂A denote the boundary of the set A. Prove the following statements.
 - (a) ∂A is a closed set.
 - (b) $\partial A = \phi$ if and only if A is both open and closed.
 - (c) $\partial A \cap A = \phi$ if and only if A is open.
 - (d) $\partial A = \operatorname{Cl}(A) \cap \operatorname{Cl}(X A).$
- 3. (a) Prove that $x \in Cl(A)$ if and only if every neighbourhood of x interesects A.
 - (b) A subset $A \subset X$ is **dense** if Cl(A) = X. Prove $A \subset X$ is dense if and only if for any $x \in X$ and any neighbourhood U of x, $U \cap A \neq \phi$.
- 4. A space X is **separable** if X has a countable dense set. Prove that a separable metric space is second countable.
- 5. Prove that \mathbb{R}_{fc} is not Hausdorff (Hint: Prove that any two (non-empty) open sets in \mathbb{R}_{fc} intersect).
- 6. Let X be a Hausdorff space. Prove that any finite set is closed in X.
- 7. Let (n^2) be a sequence in \mathbb{R}_{fc} . Prove that for any $x \in \mathbb{R}, n^2 \to x$.

Handin: 1a, 2ad, 3a, 6, 7