Homework 4

Topology, Math 441, Spring 2020 Topic: Closed sets and limit points **Extended Due Date:** Friday March 11th, 2020

Reading: Pages 29-33 from Chapter 3 of the text book.

Problems:

- 1. For a topological space X with a basis for its topology, we gave a characterization of open sets defined in terms of basis open sets. For any $x \in X$ we define a **neighbourhood of** x to be any open set containing x. Show that a set $U \subset X$ is open if and only if every point $x \in U$ has a neighbourhood contained in U.
- 2. Prove that the following subsets are closed.
 - (a) $\mathbb{Z} \subset \mathbb{R}$.
 - (b) $A = \{1/n \mid n \in \mathbb{N}\} \cup \{0\} \subset \mathbb{R}.$
 - (c) A closed rectangle $[a, b] \times [c, d] \subset \mathbb{R}^2$ (Hint: use the fact that open rectangles are basis open sets for topology on \mathbb{R}^2).
 - (d) The (n-1)-dimensional sphere $S^{n-1} = \{ \overline{x} \mid d(\overline{x}, \overline{0}) = 1 \} \subset \mathbb{R}^n$.
 - (e) $[a,b] \subset \mathbb{R}_{\ell}$ i.e. \mathbb{R} with lower limit topology.
- 3. Prove that $\mathbb{Q} \subset \mathbb{R}$ is neither closed nor open.
- 4. Find the closures of the following sets.
 - (a) $(0,1] \subset \mathbb{R}_{\ell}$ i.e. \mathbb{R} with lower limit topology.
 - (b) $\mathbb{Q} \subset \mathbb{R}$.
- 5. Let X be a topological space.
 - (a) Prove that if $A \subset B$ then $Cl(A) \subset Cl(B)$.
 - (b) $A \subset X$. Prove that Cl(X A) = X Int(A).

Handin: 1, 2bce, 3, 4b, 5b