Homework 2

Topology, Math 441, Spring 2020
Topic: Metric Spaces

Due: Monday Feb 24th, 2020

Reading:

1. Pages 15-19 from Chapter 2 of the text book.
2. Here is a quick proof of the Cauchy-Schwarz Inequality:

Theorem 1. Let $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right), \vec{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$. Then

$$
|\vec{x} \cdot \vec{y}| \leq\|\vec{x}\|\|\vec{y}\| .
$$

Proof: Need to prove

$$
\begin{aligned}
\left(\sum_{i=1}^{n} x_{i} y_{i}\right)^{2} & \leq\left(\sum_{i=1}^{n} x_{i}^{2}\right)\left(\sum_{j=1}^{n} y_{j}^{2}\right) \\
\sum_{i=1}^{n} x_{i}^{2} y_{i}^{2}+2 \sum_{i \neq j} x_{i} y_{i} x_{j} y_{j} & \leq \sum_{i, j=1}^{n} x_{i}^{2} y_{j}^{2} \\
2 \sum_{i \neq j} x_{i} y_{i} x_{j} y_{j} & \leq \sum_{i \neq j}^{n} x_{i}^{2} y_{j}^{2} \\
0 & \leq \sum_{i \neq j} x_{i}^{2} y_{j}^{2}-2 \sum_{i \neq j} x_{i} y_{i} x_{j} y_{j} \\
0 & \leq \sum_{1 \leq i<j \leq n}\left(x_{i} y_{j}-x_{j} y_{i}\right)^{2}
\end{aligned}
$$

which holds. Hence the proof.
3. Given a vector space V, a norm on V is a function $\|\|: V \rightarrow \mathbb{R}$ satisfying:
(a) $\|\vec{x}\| \geq 0$ for all $\vec{x} \in V$ and $\|\vec{x}\|=0$ iff $\vec{x}=0$.
(b) $\|\alpha \vec{x}\|=|\alpha|\|\vec{x}\|$ for any scalar α and $\vec{x} \in V$.
(c) $\|\vec{x}+\vec{y}\| \leq\|\vec{x}\|+\|\vec{y}\|$ for all $\vec{x}, \vec{y} \in V$ (Triangle inequality).
$(V,\| \|)$ is called a normed linear space. For example, given a dot product (inner product) on a vector space V, it defines a norm by setting $\|\vec{x}\|=$ $(\vec{x} \cdot \vec{x})^{1 / 2}$.

Problems:

1. Let $(V,\| \|)$ be a normed linear space. Define $d(x, y)=\|x-y\|$. Then d is a metric on V.
2. Prove that $\|\vec{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$ and $\|\vec{x}\|_{\infty}=\max \left\{\left|x_{i}\right| \mid 1 \leq i \leq n\right\}$ are norms on \mathbb{R}^{n}.
3. Let (X, d) be a metric space. Define $\delta(x, y)=\min \{1, d(x, y)\}$ for all $x, y \in X$. Show that δ is a metric on X.
4. Let $\left(X, d_{1}\right)$ and $\left(Y, d_{2}\right)$ be metric space. Show that

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\max \left\{d_{1}\left(x_{1}, x_{2}\right), d_{2}\left(y_{1}, y_{2}\right)\right\}
$$

defines a metric on the product $X \times Y$.
5. Let (X, d) be a metric space, $x \in X$ and $0<r<s$. Show that $B_{r}(x) \subseteq B_{s}(x)$. Give an example when they are equal.
6. Show that the following sets are open. Assume \mathbb{R}^{n} with standard Euclidean metric.
(a) $\mathbb{R}-\mathbb{Z}$.
(b) $(a, b) \times(c, d) \subset \mathbb{R}^{2}$.
(c) Complement of singleton set in any metric space. This property is known as T_{1}.
(d) Complement of a finite set in any metric space.
7. Is $\mathbb{Q} \subset \mathbb{R}$ open ?
8. Let (X, d) be a metric space and let the set X be finite. Show that every subset of X is open. (Hint: First show that singletons are open).

Handin: 2, 4, 6, 8

