Homework 1

Topology, Math 441, Spring 2020 Instructor: Abhijit Champanerkar **Due:** Monday Feb 10th, 2020

Reading:

- 1. Chapter 1 from the text book.
- 2. Read and discuss the proof of the Schröder-Bernstein theorem.

Problems:

- 1. Prove the following:
 - (a) $A \times (B \cup C) = (A \times B) \cup (A \times C)$
 - (b) $f^{-1}(V W) = f^{-1}(V) f^{-1}(W)$
 - (c) Prove that $f(A \cap B) \subset f(A) \cap f(B)$. Give an example to show that the converse is not true.
- 2. Define a relation on \mathbb{R} as $x \sim y$ if and only if $x y \in \mathbb{Z}$. Show that \sim is an equivalence relation on \mathbb{R} . Describe the equivalence class of 1/2. Describe the space $[\mathbb{R}] = \mathbb{R}/\sim$ i.e. the set of all equivalent classes.
- 3. Define a relation on \mathbb{R}^n as $\vec{v} \sim \vec{w}$ if and only if $\vec{v} = \lambda \vec{w}$ for a non-zero real number λ . Show that \sim is an equivalence relation on \mathbb{R}^n .
- 4. Let $f : A \to B$ be a function. Define a relation, called *equivalence* kernel on A as: $x \sim y \iff f(x) = f(y)$. Show that this is an equivalence relation. Determine $[\mathbb{R}]$ for the function $f(x) = \cos(2\pi x)$.
- 5. Show that a countable union of countable sets is countable.
- 6. Show that a finite product of countable sets is countable.
- 7. Determine, with justification, whether the following sets are countable.
 - (a) The set A of all function $f : \mathbb{Z} \to \{0, 1\}$.
 - (b) We say $f : \mathbb{N} \to \{0, 1\}$ is eventually zero is there is a positive integer N such that f(n) = 0 for all $n \ge N$. The set B of all functions $f : \mathbb{N} \to \{0, 1\}$ which are eventually zero.
 - (c) The set C of all finite subsets of \mathbb{N} .

Handin: 1bc, 3,4, 5,7bc