Review for Final Exam

Complex Analysis, MTH 431, Spring 2014

Information

- Final Exam will be held on Wednesday May 21st, 12:20 2:15 pm, 3S-108.
- Syllabus for Final Exam: Chapters 2 8, 9.1, 9.2.
- Final Exam will include definitions, statement of Theorems, true or false questions and some elementary proofs.
- For review on Chapters 2 7, see the reviews for Exam 1 and 2.
- See the homeworks and quizzes.

Key Concepts

Chapter 8

- 1. Laurent Series of f in a punctured disc (Page 137/ Theorem 8.1)
- 2. Principal part of f at c (Page 139)
- 3. Uniqueness of Laurent Series (Page 139/ Theorem 8.2)
- 4. Page 140/ Corollary 8.3
- 5. $a_{-1} = \operatorname{res}(f, c)$ the residue of f at c
- 6. res(f, c) the residue of f at a simple pole (Page 147/ Theorem 8.13)
- 7. $\operatorname{res}(f,c)$ the residue of f at a multiple pole (Page 150/ Theorem 8.17)
- 8. order of f at c
- 9. Classification of singularities of f and Laurent series of f at the singularity.
- 10. The Residue Theorem (Page 146/Theorem 8.12)

Chapter 9

- 1. Theorem 9.1 (page 154).
- 2. Intergrals involving circular functions (page 158).

Sample Review Questions

From Chapter 8

- 1. Page 140/ Example 8.4
- 2. Page 142/ Example 8.7
- 3. Page 143/ Example 8.8
- 4. Page 143/ Exercises 8.1-8.4
- 5. Page 145/ Exercises 8.5, 8.6a
- 6. Page 148/ Example 8.14
- 7. Page 149/ Example 8.16
- 8. Page 150/ Example 8.18
- 9. Page 151/ Example 8.19
- Page 151/ Exercises 8.7, 8.8, 8.9 (cube roots of unity are double poles), 8.10 (0 is a triple pole).
- 11. Page 151/ Exercise 8.13
- 12. See probems on Homework 7.

From Chapter 9

- 1. Page 154/ Example before theomrem 9.1
- 2. Page 155/ Example 9.2
- 3. Page 156-157/ Exercises 9.1 9.9 (can use solutions at back of the book).

- 4. Page 158/ Example 9.4
- 5. Page 159/ Example 9.5, 9.6
- 6. Page 160/ Example 9.7
- 7. Page 160-161/Exercises 9.12 9.15 (can use solutions at back of the book)

Proofs

Theorem 8.2 (Uniqueness of Laurent series), Corollary 8.3, Theorem 8.13 (residue for simple pole), Theorem 8.17 (residue for higher order pole).