Review for Exam 2

Complex Analysis, MTH 431, Spring 2014

Syllabus

- Exam 2 will be held on Monday April 28th.
- Syllabus for Exam 2: Chapters 5,6,7
- Exam will include definitions, statement of Theorems, true or false questions and some elementary proofs.

Key Concepts

 $U \subseteq \mathbb{C}$ open and connected.

Chapter 5

- 1. Parametrization of a curve, simple curve, closed curve, Piecewise smooth curve, arc length of a smooth curve
- 2. Parametrization of a line segment joining two complex numbers c and d: $\gamma(t) = (1-t)c + td$, Parametrization of a circle, Parametrization of reversely oriented curve: $\overleftarrow{\gamma}(t) = \gamma(a+b-t)$ for $t \in [a,b]$.
- 3. Integral of f along γ , Properties of integral of f along γ (a) $\int_{\gamma} (f \pm g) =$

$$\int_{\gamma} f \pm \int_{\gamma} g \text{ (b) } \int_{\gamma} k \cdot f = k \int_{\gamma} f \text{ (c) } \int_{\overleftarrow{\gamma}} f = - \int_{\gamma} f$$

- 4. Fundamental Theorem of Calculus for \mathbb{C} (Theorem 5.19): Let γ : $[a,b] \to \mathbb{C}$ be a piecewise smooth curve. Let $F : U \subseteq \mathbb{C} \to \mathbb{C}$ be such that F'(z) exists and is continuous. Let $\gamma \subset U$. Then, $\int_{\gamma} F'(z)dz = F(\gamma(b)) - F(\gamma(a))$. If γ is closed, $\int_{\gamma} F'(z)dz = 0$.
- 5. Absolute value inequality (Theorem 5.23), ML inequality (Theorem 5.24).

Chapter 6

- 1. A simple closed curve divides the plane into a bounded interior and unbounded exterior regions.
- 2. Caucy-Goursat theorem (Theorem 6.1).
- 3. Deformation theorems (Theorems 6.6 and 6.7).

Chapter 7

- 1. Cauchy's Integral Formula (Theorem 7.1).
- 2. Cauchy's Integral Formula for f'(a) and $f^{(n)}(a)$ (Theorems 7.4 and 7.5).
- 3. Morera's theorem, Liouville's theorem (Theorem 7.8 and 7.9).
- 4. Theorem: If f is entire than 1/f cannot be entire.
- 5. If p(z) is a polynomial of degree $n \ge 1$, then $\exists a \in \mathbb{C}$ such that p(a) = 0 and The Fundamental theorem of Algebra (Theorems 7.10, 7.11).
- 6. Taylor Series of holomorphic f in N(c, r) Theorem 7.16
- 7. Uniqueness of Taylor series (Remark 7.17).

All Theorem numbers are from the textbook. Some of the other problems are taken from one of the references. U will always denote an open, connected subset of \mathbb{C} , and γ will always denote a contour, unless otherwise stated.

Sample Review Questions

From Chapter 5

- 1. Show that: $\int_{\gamma} \frac{1}{z} dz = 2\pi i$ over the circle centered at 0 and radius 3, parameterized as $\gamma(t) = 3e^{it}, 0 \le t \le 2\pi$.
- 2. Show that

$$\int_{\gamma} (z-a)^n dz = \begin{cases} 2\pi i & \text{if } n = -1\\ 0 & \text{if } n \neq -1 \end{cases}$$

where γ is a circle of radius R centered at a (Theorem 5.13).

- 3. Integrate $f(z) = \overline{z}$ over the line segment joining 0 to 1 + i.
- 4. Integrate $f(z) = \overline{z}^2$ over a circle of radius 2 centered at 0.
- 5. Integrate $f(z) = z + \overline{z}$ over the circle |z| = 2 oriented counterclockwise.
- 6. Evaluate $\int_{\gamma} (z^2 2z + 3) dz$ over the circle |z| = 2 oriented counterclockwise.
- 7. Evaluate $\int_{\gamma} e^z dz$ over a simple, curve $\gamma(t)$, $0 \le t \le 1$ which satisfies $\gamma(0) = -4 + i$ and $\gamma(1) = 6 + 2i$. (Hint: Apply Theorem 5.19 on Page 95)
- 8. Evaluate $\int_{\gamma} \sin z dz$ over a simple, curve $\gamma(t)$, $0 \le t \le 1$ which satisfies $\gamma(0) = i$ and $\gamma(1) = \pi$. (Hint: Apply Theorem 5.19 on Page 95)

From Chapter 6

- 1. Evaluate $\int_{\gamma} (z^2 2z + 3) dz$ over the circle |z| = 2 oriented counterclockwise using Cauchy's theorem
- 2. Evaluate $\int_{\gamma} e^z dz$ over γ consisting of two straight lines, one joining -4 + i to 6 + i and other joining 6 + i to 6 + 2i by using the previous exercise and Theorem 6.6 on Page 115.
- 3. Evaluate $\int_{\gamma} \sin z dz$ over γ consisting of two straight lines, one joining i to 0 and other joining 0 to π by using the previous exercise and Theorem 6.6 on Page 115.
- 4. Compute $\int_{\gamma} \frac{1}{z^2+1} dz$ where $\gamma(t)$ is a circle centered at 2i with radius $\frac{1}{2}$. (Apply Cauchy's theorem!)
- 5. Compute $\int_{\gamma} \frac{1}{z^2+1} dz$ where $\gamma(t)$ is a circle centered at 2i with radius 2. (Use partial fractions, apply Cauchy's theorem to one term and $\int_{\gamma} \frac{1}{z-a} dz$ from Chapter 5 to the second term.)

From Chapter 7

1. Suppose f is holomorphic on and inside the circle $z = w + re^{it}$, $0 \le t \le 2\pi$. Show that: $f(w) = \frac{1}{2\pi} \int_0^{2\pi} f(w + re^{it}) dt$. (This is a special case of Cauchy's Integral formula.)

- 2. Compute $\int_0^{2\pi} \sin(e^{it}) dt$ using the formula above. $(e^{it} = 0 + 1.e^{it})$, so what is w?
- 3. Compute $\int_0^{2\pi} \cos(e^{it}) dt$ using the formula above.
- 4. Compute $\int_0^{2\pi} e^{ie^{it}} dt$ using the exercises above. $(e^{ie^{it}} = \cos(e^{it}) + i\sin(e^{it}))$
- 5. Compute $\int_{\gamma} \frac{1}{z^2+1} dz$ where $\gamma(t)$ is a circle centered at 2i with radius 2. (Use $\frac{1}{z^2+1} = \frac{1}{(z+i)(z-i)} = \frac{\frac{1}{z+i}}{z-i}$ and apply Cauchy's integral formula!)
- 6. Evaluate the following integrals: (a) $\int_{|z|=2} \frac{e^z}{z} dz$ (b) $\int_{|z|=2} \frac{e^z}{z-z} dz$

(a)
$$\int_{|z|=2} \frac{e}{z} dz$$
 (b) $\int_{|z|=2} \frac{e}{z-3} dz$ (c) $\int_{|z|=2} \frac{e}{z(z-3)} dz$
(d) $\int_{|z|=1} \frac{\sin z}{z} dz$ (e) $\int_{|z|=1} \frac{\sin z}{z^2} dz$ (f) $\int_{|z|=1} \frac{\cos z}{z^3} dz$

- 7. Evaluate $\int_{|z|=2} \frac{1}{z^2(z-1)^2} dz$ (Use Theorem 7.5)
- 8. Page 125/ Exercises 7.1b,c
- 9. State True or False: Modulus of $\sin z$ is bounded between -1 and 1., why?
- 10. Obtain the Taylor series expansion of $\frac{1}{1-z}$, centered at 0 and state its radius of convergence.
- 11. Obtain the Taylor series expansion of $\frac{1}{(1+z)^2}$, centered at 0 and state its radius of convergence.
- 12. Obtain the Taylor series expansion of e^z , centered at 1 and state its radius of convergence.
- 13. Obtain the Taylor series expansion of $\cos(z)$, centered at $\pi/2$ and state its radius of convergence.

Proofs

Theorems 5.13, 5.24 (assuming 5.23), 6.6, 6.7, 7.8 (Morera's Theorem), 7.9 (Liouville's Theorem), Remark 7.17.