Review for Exam 2
 Complex Analysis, MTH 431, Spring 2014

Syllabus

- Exam 2 will be held on Monday April 28th.
- Syllabus for Exam 2: Chapters 5,6,7
- Exam will include definitions, statement of Theorems, true or false questions and some elementary proofs.

Key Concepts

$U \subseteq \mathbb{C}$ open and connected.

Chapter 5

1. Parametrization of a curve, simple curve, closed curve, Piecewise smooth curve, arc length of a smooth curve
2. Parametrization of a line segment joining two complex numbers c and $d: \gamma(t)=(1-t) c+t d$, Parametrization of a circle, Parametrization of reversely oriented curve: $\overleftarrow{\gamma}(t)=\gamma(a+b-t)$ for $t \in[a, b]$.
3. Integral of f along γ, Properties of integral of f along γ (a) $\int_{\gamma}(f \pm g)=$ $\int_{\gamma} f \pm \int_{\gamma} g(\mathrm{~b}) \int_{\gamma} k . f=k \int_{\gamma} f(\mathrm{c}) \int_{\zeta} f=-\int_{\gamma} f$
4. Fundamental Theorem of Calculus for \mathbb{C} (Theorem 5.19): Let γ : $[a, b] \rightarrow \mathbb{C}$ be a piecewise smooth curve. Let $F: U \subseteq \mathbb{C} \rightarrow \mathbb{C}$ be such that $F^{\prime}(z)$ exists and is continuous. Let $\gamma \subset U$. Then, $\int_{\gamma} F^{\prime}(z) d z=F(\gamma(b))-F(\gamma(a))$. If γ is closed, $\int_{\gamma} F^{\prime}(z) d z=0$.
5. Absolute value inequality (Theorem 5.23), ML inequality (Theorem 5.24).

Chapter 6

1. A simple closed curve divides the plane into a bounded interior and unbounded exterior regions.
2. Caucy-Goursat theorem (Theorem 6.1).
3. Deformation theorems (Theorems 6.6 and 6.7).

Chapter 7

1. Cauchy's Integral Formula (Theorem 7.1).
2. Cauchy's Integral Formula for $f^{\prime}(a)$ and $f^{(n)}(a)$ (Theorems 7.4 and 7.5).
3. Morera's theorem, Liouville's theorem (Theorem 7.8 and 7.9).
4. Theorem: If f is entire than $1 / f$ cannot be entire.
5. If $p(z)$ is a polynomial of degree $n \geq 1$, then $\exists a \in \mathbb{C}$ such that $p(a)=0$ and The Fundamental theorem of Algebra (Theorems 7.10, 7.11).
6. Taylor Series of holomorphic f in $N(c, r)$ - Theorem 7.16
7. Uniqueness of Taylor series (Remark 7.17).

All Theorem numbers are from the textbook. Some of the other problems are taken from one of the references. U will always denote an open, connected subset of \mathbb{C}, and γ will always denote a contour, unless otherwise stated.

Sample Review Questions

From Chapter 5

1. Show that: $\int_{\gamma} \frac{1}{z} d z=2 \pi i$ over the circle centered at 0 and radius 3 , parameterized as $\gamma(t)=3 e^{i t}, 0 \leq t \leq 2 \pi$.
2. Show that

$$
\int_{\gamma}(z-a)^{n} d z= \begin{cases}2 \pi i & \text { if } n=-1 \\ 0 & \text { if } n \neq-1\end{cases}
$$

where γ is a circle of radius R centered at a (Theorem 5.13).
3. Integrate $f(z)=\bar{z}$ over the line segment joining 0 to $1+i$.
4. Integrate $f(z)=\bar{z}^{2}$ over a circle of radius 2 centered at 0 .
5. Integrate $f(z)=z+\bar{z}$ over the circle $|z|=2$ oriented counterclockwise.
6. Evaluate $\int_{\gamma}\left(z^{2}-2 z+3\right) d z$ over the circle $|z|=2$ oriented counterclockwise.
7. Evaluate $\int_{\gamma} e^{z} d z$ over a simple, curve $\gamma(t), 0 \leq t \leq 1$ which satisfies $\gamma(0)=-4+i$ and $\gamma(1)=6+2 i$. (Hint: Apply Theorem 5.19 on Page 95)
8. Evaluate $\int_{\gamma} \sin z d z$ over a simple, curve $\gamma(t), 0 \leq t \leq 1$ which satisfies $\gamma(0)=i$ and $\gamma(1)=\pi$. (Hint: Apply Theorem 5.19 on Page 95)

From Chapter 6

1. Evaluate $\int_{\gamma}\left(z^{2}-2 z+3\right) d z$ over the circle $|z|=2$ oriented counterclockwise using Cauchy's theorem
2. Evaluate $\int_{\gamma} e^{z} d z$ over γ consisting of two straight lines, one joining $-4+i$ to $6+i$ and other joining $6+i$ to $6+2 i$ by using the previous exercise and Theorem 6.6 on Page 115.
3. Evaluate $\int_{\gamma} \sin z d z$ over γ consisting of two straight lines, one joining i to 0 and other joining 0 to π by using the previous exercise and Theorem 6.6 on Page 115.
4. Compute $\int_{\gamma} \frac{1}{z^{2}+1} d z$ where $\gamma(t)$ is a circle centered at $2 i$ with radius $\frac{1}{2}$. (Apply Cauchy's theorem!)
5. Compute $\int_{\gamma} \frac{1}{z^{2}+1} d z$ where $\gamma(t)$ is a circle centered at $2 i$ with radius 2. (Use partial fractions, apply Cauchy's theorem to one term and $\int_{\gamma} \frac{1}{z-a} d z$ from Chapter 5 to the second term.)

From Chapter 7

1. Suppose f is holomorphic on and inside the circle $z=w+r e^{i t}, 0 \leq$ $t \leq 2 \pi$. Show that: $f(w)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(w+r e^{i t}\right) d t$.
(This is a special case of Cauchy's Integral formula.)
2. Compute $\int_{0}^{2 \pi} \sin \left(e^{i t}\right) d t$ using the formula above. $\left(e^{i t}=0+1 . e^{i t}\right.$, so what is w ?)
3. Compute $\int_{0}^{2 \pi} \cos \left(e^{i t}\right) d t$ using the formula above.
4. Compute $\int_{0}^{2 \pi} e^{i e^{i t}} d t$ using the exercises above. $\left(e^{i e^{i t}}=\cos \left(e^{i t}\right)+i \sin \left(e^{i t}\right)\right)$
5. Compute $\int_{\gamma} \frac{1}{z^{2}+1} d z$ where $\gamma(t)$ is a circle centered at $2 i$ with radius 2 . (Use $\frac{1}{z^{2}+1}=\frac{1}{(z+i)(z-i)}=\frac{1}{z+i}$ and apply Cauchy's integral formula!)
6. Evaluate the following integrals:
(a) $\int_{|z|=2} \frac{e^{z}}{z} d z$
(b) $\int_{|z|=2} \frac{e^{z}}{z-3} d z$
(c) $\int_{|z|=2} \frac{e^{z}}{z(z-3)} d z$
(d) $\int_{|z|=1} \frac{\sin z}{z} d z$
(e) $\int_{|z|=1} \frac{\sin z}{z^{2}} d z$
(f) $\int_{|z|=1} \frac{\cos z}{z^{3}} d z$
7. Evaluate $\int_{|z|=2} \frac{1}{z^{2}(z-1)^{2}} d z$ (Use Theorem 7.5)
8. Page 125/ Exercises 7.1b,c
9. State True or False: Modulus of $\sin z$ is bounded between -1 and 1 , why?
10. Obtain the Taylor series expansion of $\frac{1}{1-z}$, centered at 0 and state its radius of convergence.
11. Obtain the Taylor series expansion of $\frac{1}{(1+z)^{2}}$, centered at 0 and state its radius of convergence.
12. Obtain the Taylor series expansion of e^{z}, centered at 1 and state its radius of convergence.
13. Obtain the Taylor series expansion of $\cos (z)$, centered at $\pi / 2$ and state its radius of convergence.

Proofs

Theorems 5.13, 5.24 (assuming 5.23), 6.6, 6.7, 7.8 (Morera's Theorem), 7.9 (Liouville's Theorem), Remark 7.17.

