Review for Exam 1
 Complex Analysis, MTH 431, Spring 2014

Key Concepts

Chapter 2

1. Standard form of a complex number $z=x+i y$
2. Geometric representation of a complex number
3. Conjugate $\bar{z}=x-i y$
4. Properties of conjugates (Page 21)
(a) $\overline{\bar{z}}=z$
(b) $\overline{z+w}=\bar{z}+\bar{w}$
(c) $\overline{z w}=\bar{z} \cdot \bar{w}$
(d) $z+\bar{z}=2 \operatorname{Re}(z)$
(e) $z-\bar{z}=2 i \operatorname{Im}(z)$
5. Modulus of a complex number $|z|^{2}=z \bar{z}$
6. Properties of modulus: (Theorem 2.1, Page 22)
(a) $|\operatorname{Re} z| \leq|z|$
(b) $|\operatorname{Im} z| \leq|z|$
(c) $|\bar{z}|=|z|$
(d) $|z w|=|z||w|$
(e) $|z+w| \leq|z|+|w|$
(f) $||z|-|w|| \leq|z-w|$
7. Polar form of the complex number $z=r \cos (\theta)+i r \sin (\theta)$
8. Euler's form $z=r e^{i \theta}$
9. Converting from one form to another using appropriate relations
(a) $r=\sqrt{x^{2}+y^{2}}$
(b) $\cos (\theta)=\frac{x}{r}, \sin (\theta)=\frac{y}{r}$ and $\theta \in(-\pi, \pi]$
(c) $x=r \cos (\theta), y=r \sin (\theta)$
10. Roots of unity
11. Geometric representation of complex set (sketches)
(a) $\{z:|z-c|<r\}$
(b) $\{z:|z-c|=k|z-d|\}$
(c) $\{z: a \leq|z-c| \leq b\}$
(d) $\{z=x+i y:-a<x<a$, and $-b<y<b\}$

Chapter 3

1. r-neighborhood of $c, N(c, r)=\{z:|z-c|<r\}$
2. open set
3. neighborhood $N(a, r)$, closed neighborhood $\bar{N}(a, r)$, circle $k(a, r)$, punctured disc $D^{\prime}(a, r)$
4. complex function, domain, range, continuity
5. writing $f(z)$ as $u(x, y)+i v(x, y)$, representing functions in z - and w planes

Chapter 4

$U=$ open connected subset of \mathbb{C}

1. $f^{\prime}(c)$ derivative of a complex function f at a point $c \in \mathbb{C}$
2. Cauchy-Riemann equations $u_{x}=v_{y}$ and $v_{x}=-u_{y}$
(a) Example: Consider $f(z)=\operatorname{Re}(z)$ or $f(z)=x$. This function is not differentiable at any point in \mathbb{C}. (Verify.)

Whereas, $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $f(x, y)=(x, 0)$ is differentiable everywhere.
(b) f is differentiable at a point $c \Rightarrow$ Cauchy-Riemann equations are satisfied at c (Page 52/Theorem 4.1)
(c) Cauchy-Riemann equations are satisfied at $c \nRightarrow$ differentiability at c (Page 53/Counter example 4.2)
3. holomorphic $=$ differentiable in U
(a) u_{x}, u_{y}, v_{x} and v_{y} exist, are continuous in U, and Cauchy-Riemann equations are satisfied in U $\Rightarrow f=u+i v$ is differentiable in U (Page 55/Theorem 4.4)
4. entire $=$ differentiable in \mathbb{C}
5. f holomorphic on U and $f^{\prime}(z) \equiv 0 \Rightarrow f$ is constant on U (Page 57/ Theorem 4.9)
6. Goursat's lemma (Page 59/ Theorem 4.11)
7. Converse of Goursat's lemma
8. f holomorphic and $|f|$ is a constant in $N(c, r) \Rightarrow f$ is constant (Page 60/ Theorem 4.13)
Example: Consider $f(z)=\frac{z}{|z|}$ on $\mathbb{C} \backslash\{0\}$. This function maps all nonzero complex numbers to a circle of radius one. Verify that $|f|=1$. The theorem implies that this function is not holomorphic on any open neighborhood in its domain.

Whereas, $f: \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{R}^{2}$ given by $f(x, y)=\left(\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}\right)$ is differentiable in its domain.
9. Infinite series
10. Geometric series: $\sum_{n=0}^{\infty} z^{n}$ converges $\Leftrightarrow|z|<1$

$$
\sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z} \Leftrightarrow|z|<1
$$

11. Power series centered at a
12. Convergence of a power series at a point
13. Convergence of a power series in an open neighborhood
14. (Page 61/ Theorem 4.14) (Proof important)
$\sum_{n=0}^{\infty} c_{n}(z-a)^{n}$ converges at a point $a+d \Rightarrow \sum_{n=0}^{\infty} c_{n}(z-a)^{n}$ converges on $N(a,|d|)$
15. (Page 62/ Theorem 4.15) (Proof important)

Either $\sum_{n=0}^{\infty} c_{n}(z-a)^{n}$ converges on \mathbb{C}
OR $\sum_{n=0}^{\infty} c_{n}(z-a)^{n}$ converges on $N(a, R)$ and diverges on $\mathbb{C} \backslash N(a, R)$
OR $\sum_{n=0}^{\infty} c_{n}(z-a)^{n}$ converges only at a
16. Radius of convergence, circle of convergence
17. Ratio test, Root test (includes $R=0$ and $R=\infty$)
18. (Page 63/ Theorem 4.17)

A power series converges \Leftrightarrow The power series obtained by term-wise differentiation converges.
$\sum_{n=0}^{\infty} c_{n}(z-a)^{n}$ and $\sum_{n=0}^{\infty} n c_{n}(z-a)^{n-1}$ have the same radius of convergence. A power series converges \Rightarrow it is differentiable and the new series obtained by term-wise differentiation is also convergent
\Rightarrow if a function is defined using a power series, it can be differentiated infinitely many times and each time the radius of convergence stays the same.
Play with $f(z)=\frac{1}{1-z}$.
19. Definition of the exponential function using power series $\exp (z)=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$
(a) $\operatorname{Observe} \exp (0)=1$
(b) Find radius of convergence of $\exp (z)$ using ratio test.
20. Use quotient rule to show $\left(\frac{\exp (z+w)}{\exp (z)}\right)^{\prime}=0$.

By Theorem 4.9, $\frac{\exp (z+w)}{\exp (z)}=$ constant.
In particular at $z=0, \frac{\exp (z+w)}{\exp (z)}=\exp (w)$ and so we have $\exp (z+w)=$ $\exp (z) \exp (w)$.
21. Define e to be the sum of the series $\exp (1)$. That is, $e=\exp (1)=\sum_{n=0}^{\infty} \frac{1}{n!}$ and $e^{z}:=\exp (z)$.

The function $z \mapsto e^{z}$ is entire, its derivative is the function itself and $e^{z+w}=e^{z} e^{w}$.

Similarly functions $\cos z, \sin z, \cosh z$ and $\sinh z$ are entire.
22. Using $e^{i(z+w)}=e^{i z} e^{i w}$ and Euler's formula $e^{i *}=\cos (*)+i \sin (*)$, derive angle addition formulas for $\cos (z+w)$ and $\sin (z+w)$.
23. Using $e^{z+w}=e^{z} e^{w}$ and $e^{0}=e^{z-z}$ show that $e^{-z}=\frac{1}{e^{z}}$.
24. Show that e^{z} is always non-zero. (See Page 69/ equation 4.25)
25. Show that $z \mapsto e^{-z}$ is entire.(See Page 69/ line after equation 4.25)
26. Principal $\operatorname{logarithm} \log z=\log |z|+i \arg z$ where $\arg z$ is the principal $\operatorname{argument}$ of $z, \arg z \in(-\pi, \pi]$.
$\log (z+w) \neq \log z+\log w$ (why? counterexample)
27. Multifunction is a function that maps each point in the domain, to a set of values in the range.

$$
\begin{aligned}
\operatorname{Arg} z & =\{\arg z+2 n \pi: n \in \mathbb{Z}\} \\
\log z & =\{\log z+2 n \pi i: n \in \mathbb{Z}\} \\
& =\{\log |z|+i(2 n \pi+\arg z): n \in \mathbb{Z}\} \\
& =\log |z|+i \operatorname{Arg} z
\end{aligned}
$$

28. $\operatorname{Arg}(z+w)=\operatorname{Arg} z+\operatorname{Arg} w$
$\log (z+w)=\log z+\log w$
29. Isolated singularity
30. Classification of isolated singularities - removable, poles (simple or order n), essential
31. meromorphic $=$ holomorphic in U except for possibly poles

Sample Review Questions: Chapters 2 and 3

All page numbers and problem numbers are from the textbook used in class (See [3]). Some of the other problems are taken from one of the references.

1. Page 32/ Exercises 2.3-2.5, 2.7, 2.8, 2.16-2.18
2. Page 40/ Ex 3.2
3. Let $z=1+2 i$ and $w=2-i$. Compute:
(a) $z+3 w$
(b) $\bar{w}-z$
(c) z^{3}
(d) $\operatorname{Re}\left(w^{2}+w\right)$
(e) $z^{2}+\bar{z}+i$
4. Find the modulus and the conjugate of $\frac{3-i}{\sqrt{2}+3 i}$.
5. Solve the equation $z^{4}+1=0$.
6. Solve the equation $z^{4}+16=0$.
7. Sketch the following sets. Determine whether they are open, closed, neither or both and determine their interior, closure \& boundary.
(a) $|z+3|<2$
(b) $|\operatorname{Im} z|<1$
(c) $0<|z-1|<2$
(d) $|z-1|+|z+1|=2$
(e) $|z-1|+|z+1|<3$
(f) $2<|z| \leq 3$
(g) $E=\{z: z \in \mathbb{R} \quad$ and $\quad-2<z<-1\} \cup\{z:|z|<1\} \cup\{z: z=$ 1 or $z=2\}$
8. Write the following functions as $u(x, y)+i v(x, y)$. Discuss the domain and range for each example.
(a) $f(z)=5 i$ constant function
(b) $f(z)=3 z$ linear function
(c) $f(z)=z^{2}$ quadratic function
(d) $f(z)=\bar{z}$ conjugate
(e) $f(z)=|z|$ modulus
(f) $f(z)=\frac{1}{z}$ inverse
(g) $f(z)=i z\left(90^{0}\right)$ counter-clockwise rotation
9. Sketch the region $|\operatorname{Im} z|<1$ in the z-plane and the region $w=f(z)$ in the w-plane where $f(z)=5 i$.
10. Sketch the region $|\operatorname{Im} z|<1$ in the z-plane and the region $w=f(z)$ in the w-plane where $f(z)=\bar{z}$.
11. Sketch the region $|\operatorname{Im} z|<1$ in the z-plane and the region $w=f(z)$ in the w-plane where $f(z)=i z$.

Sample Review Questions: Chapter 4

$U=$ open, connected subset of \mathbb{C}

1. Page 55/ Example 4.6
2. Page 55/ Examples 4.7, 4.8
3. Page 61/ Exercise 4.1
4. Page 66/ Example 4.20
5. Page 69/ derivation of equations 4.22-4.25
6. Page 69/ Exercises 4.5,4.7
7. Page 76/ Example 4.24
8. Using the definition of differentiability at a point determine if the following functions are differentiable at c, for any $c \in \mathbb{C}$.
(a) $f(z)=z^{3}$ (Answer: entire)
(b) $f(z)=\bar{z}$ (Answer: diff only at 0)
(c) $f(z)=\bar{z}^{2}$ (Answer: nowhere diff)
9. Which of the following functions are differentiable (where?) / holomorphic (where?)
(a) $f(z)=e^{-x} e^{-y}$
(b) $f(z)=2 x+i x y$
(c) $f(z)=x^{2}+i y^{2}$
(d) $f(z)=e^{x} e^{-i y}$
(e) $f(z)=\operatorname{Im} z$
10. Prove: If f is holomorphic on U and always real valued, then f is a constant. (Hint: use Cauchy-Riemann equations, show $f^{\prime}=0$).
11. Prove: If f and \bar{f} are both holomorphic on U, then f is a constant on U.
12. Suppose that $f=u+i v$ is holomorphic and $u=x^{2}+y^{2}$. Find v.
13. Find a power series (\& determine its radius of convergence) of $\frac{1}{1+4 z}$.
14. Find a power series (\& determine its radius of convergence) of $\frac{1}{3-\frac{z}{2}}$.
15. Find the radius of convergence of $\sum_{k=0}^{\infty} 4^{k}(z-2)^{k}$. (Ratio test)
16. Find the radius of convergence of $\sum_{k=0}^{\infty} k^{n} z^{k}$, for $n \in \mathbb{Z}$. (Root test)
17. Find the poles (\& their orders) of $\left(z^{2}+1\right)^{-3}(z-1)^{-4}$.
18. Give examples (if they exist) of:
(a) a non-constant holomorphic function defined on an open set, but has $f^{\prime}=0$
(b) f such that $|f|$ is a constant
(c) f holomorphic such that $|f|$ is constant
(d) an entire function
(e) a function with one simple pole
(f) a function with exactly two simple poles
(g) a function with exactly one pole of multiplicity 2
(h) a function with a removable singularity
(i) a function with an essential singularity

References

[1] Matthias Beck, Gerald Marchesi, Dennis Pixton and Lucas Sabalka, A First Course in Complex Analysis, version 1.3, http://math.sfsu.edu/ beck/complex.html.
[2] George Cain, Complex Analysis,http://people.math.gatech.edu/ ~cain/winter99/complex.html.
[3] (Required Text) John Howie, 2004, Complex Analysis, Springer Undergraduate Mathematics Series

