Homework 2

Complex Analysis, MTH 431, Spring 2014

1. Read Remark 3.9 and the discussion about infinity on page 45 .
2. page 48-49: 3.4, 3.6, page 61: 4.1ab, 4.3
3. Where are the following functions differentiable? Where are they holomorphic? Determine their derivatives at points where they are differentiable. Use CR equations.
(a) $f(z)=x^{2}+i y^{2}$
(b) $f(z)=z^{2}-\bar{z}^{2}$
(c) $f(z)=z \operatorname{Im}(\mathrm{z})$
(d) $f(z)=|z|^{2}$
(e) $f(z)=e^{x} e^{i y}$
4. Suppose that $f=u+i v$ is holomorphic. Find v given u :
(a) $u=x^{2}+y^{2}$
(b) $u=x^{2}-y^{2}$
(c) $u=2 x^{2}+x+1-2 y^{2}$
5. Prove the following statements with proper justification. Let U denote an open, path-connected set in \mathbb{C}.
(a) If f is holomorphic on U and always imaginary (i.e. real part equals zero), then f is constant on U.
(b) If f and \bar{f} are both holomorphic on U then f is contant on U.
(c) If f is holomorphic on U and range of f lies in either a straight line or a circle, then f is constant. Hint: Let the straight line be given by $\operatorname{Re}(a w+b)=0$ for some $a, b \in \mathbb{C}$. Consider $g(z):=a f(z)+b$.
6. Give an example (if they exists) of:
(a) a non-constant holomorphic function defined on an open set, but has $f^{\prime}=0$.
(b) f is holomorphic such that $|f|$ is constant.
(c) an entire function.

Hand-in Problems Due: Wednesday Feb 19th 2014

1. page $48,3.4$.
2. page $61,4.1 \mathrm{~b}$
3. Where are the following functions differentiable? Where are they holomorphic? Determine their derivatives at points where they are differentiable. Use CR equations.
(a) $f(z)=x^{2}+i y^{2}$
(b) $f(z)=z^{2}-\bar{z}^{2}$
4. Suppose that $f=u+i v$ is holomorphic. Find v if $u=x^{2}-y^{2}$.
5. Prove that if f is holomorphic on U and always imaginary (i.e. real part equals zero), then f is constant on U.
