Classwork 17

Intermediate Algebra MTH 35

Topic: Degrees, radians and circles

Name: \qquad
π radians $=180^{\circ}$ e.g. $\pi / 2$ radians $=90^{\circ}$, and $270^{\circ}=\frac{270}{180} \pi$ radians $=\frac{3}{2} \pi$ radians

1. Convert from degree to radians.
(a) $270^{\circ}=$ \qquad (d) $-135^{\circ}=$ \qquad
(b) $120^{\circ}=$ \qquad (e) $480^{\circ}=$ \qquad
(c) $-120^{\circ}=$ \qquad (f) $540^{\circ}=$
2. Convert from radians to degrees.
(a) $\pi / 4=$ \qquad (d) $-4 \pi / 3=$ \qquad
(b) $3 \pi / 2=$ \qquad (e) $8 \pi / 3=$ \qquad
(c) $-5 \pi / 6=$ \qquad (f) $-3 \pi / 2=$ \qquad

3. Using the figures above, find the terminal point on the unit circle determined by the real numbers (angles):
(a) $t=\pi / 2$ point= \qquad (f) $t=5 \pi / 6$ point $=\square$
(b) $t=3 \pi / 2$ point= \qquad (g) $t=-5 \pi / 3$ point $=$ \qquad
(c) $t=-\pi / 2$ point $=$ \qquad (h) $t=8 \pi / 3$ point $=$ \qquad
(d) $t=\pi / 4$ point $=$ \qquad (i) $t=-3 \pi / 4$ point $=$ \qquad
(e) $t=5 \pi / 4$ point= \qquad (j) $t=13 \pi / 6$ point $=$ \qquad
