Classwork 17

Intermediate Algebra MTH 35

Topic: Degrees, radians and circles

Name: _____

 π radians = 180° e.g. $\pi/2$ radians = 90°, and $270^{\circ} = \frac{270}{180}\pi$ radians = $\frac{3}{2}\pi$ radians

1. Convert from degree to radians.

(a)
$$270^{\circ} =$$

(b)
$$120^{\circ} =$$

(c)
$$-120^{\circ} =$$

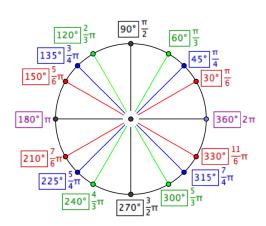
(d)
$$-135^{\circ} =$$

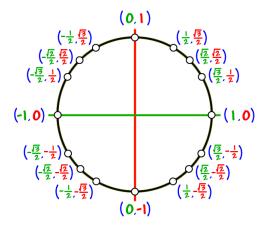
(e)
$$480^{\circ} =$$

(f)
$$540^{\circ} =$$

2. Convert from radians to degrees.

(a)
$$\pi/4 =$$


(b)
$$3\pi/2 =$$


(c)
$$-5\pi/6 =$$

(d)
$$-4\pi/3 =$$

(e)
$$8\pi/3 =$$

(f)
$$-3\pi/2 =$$

3. Using the figures above, find the terminal point on the unit circle determined by the real numbers (angles):

(a)
$$t = \pi/2$$
 point=_____

(f)
$$t = 5\pi/6$$
 point=_____

(b)
$$t = 3\pi/2$$
 point=_____

(g)
$$t = -5\pi/3$$
 point=_____

(c)
$$t = -\pi/2$$
 point=_____

(h)
$$t = 8\pi/3$$
 point=_____

(d)
$$t = \pi/4$$
 point=_____

(i)
$$t = -3\pi/4$$
 point=_____

(e)
$$t = 5\pi/4$$
 point=_____

(j)
$$t = 13\pi/6$$
 point=_____