College Algebra

1. next term $=$ previous term $*\left(\frac{-1}{4}\right)=\left(\frac{-1}{4}\right) *\left(\frac{-1}{4}\right)=\frac{1}{16}$
2. \# of tons processed by process A
in 7 days $=A(7)=7^{2}+(2)(7)=49+14=63$
$\#$ of tons processed by Process B
in 7 days $=B(7)=10 \cdot 7=70$
maximum output $=70$
3. $g(f(3))=g(2)=-3$
4.

$$
\sqrt[6]{x^{3} y^{4} z^{5}}=x^{3 / 6} y^{4 / 6} z^{5 / 6}=x^{1 / 2} y^{2 / 3} z^{5 / 6}
$$

5.

$$
\left[\begin{array}{cc}
(2)-(-2) & (-4)-(4) \\
(6)-(-6) & (0)-(0)
\end{array}\right]=\left[\begin{array}{cc}
4 & -8 \\
12 & 0
\end{array}\right]
$$

6.

$$
\begin{gathered}
A \cdot f(g(x))=f(c x)=2^{c x} \\
B \cdot f(g(x))=f(c / x)=2^{c / x} \\
C \cdot f(g(x))=f(x / c)=2^{x / c} \\
D \cdot f(g(x))=f(x-c)=2^{x-c} \\
E \cdot f(g(x))=f\left(\log _{c} x\right)=2^{\log _{c} x}
\end{gathered}
$$

For $c>1$ and $x>1$ (A) yields the greatest value for $f(g(x))$ which is $2^{c x}$
7.

$$
\begin{gathered}
f(0)=f(0+0)=f(0)+f(0) \quad \text { by given relation } \\
\text { i.e., } \quad f(0)=2 f(0)
\end{gathered}
$$

So, the possible values of $f(0)$ is 0 only.
8. Note that $i+i^{2}+i^{3}+i^{4}=i-1-i+1=0$

Sum of the next four terms $i^{5}+i^{6}+i^{7}+i^{8}$ is also zero, and so on
So, $\left(i+i^{2}+i^{3}+\ldots+i^{48}\right)+i^{49}=0+i^{49}=i^{49}=\left(i^{48}\right)(i)=\left(i^{4}\right)^{12}(i)=1(i)=i$
9. If a is the 1 st term and b is the common difference of an arithmetic series, then, $i^{\text {th }}$ term of the series is $a+(i-1) b$
If the series has n terms, then the last term of the series is $a+(n-1) b$ The difference between the last term and the first term is

$$
[a+(n-1) b]-a=(n-1) b=136-3=133
$$

Now the sum of the series is

$$
\begin{aligned}
\sum_{i=1}^{n} a+(i-1) b= & n a+b\{0+1+2+\ldots+(n-1)\} \\
& =n a+\frac{(n-1) n}{2} b
\end{aligned}
$$

Given, $n a+\frac{n(n-1)}{2} b=1390$, since $(n-1) b=133$ and $a=3$
$3 n+\frac{n \cdot 133}{2}=1390, \quad 139 n=2(1390), \quad n=20$. Then using again $(n-1) b=133$ $19 b=133, b=7$, The first 3 terms are $3,10,17$

