THE COLLEGE OF STATEN ISLAND DEPARTMENTS OF MATHEMATICS/BIOLOGY COURSE OUTLINE

MTH/BIO 415 (GRAD 761) MATHEMATICAL BIOLOGY

SPRING 2006 4CR/4HR

Textbook

Mathematical Models in Biology (Classics in Applied Mathematics by Leah Edelstein-Keshet Paperback: 586 pages Publisher: SIAM: Society for Industrial and Applied Mathematics; New Ed edition ISBN-10: 0898715547 ISBN-13: 978-0898715545

Note: Each Topic will be covered over the week(s) indicated. In many cases, sections in the book will be supplemented by handouts.

Week	Textbook Sections	Topics
Ι	1.1	Introduction to building models: Scaling example. Introduction to MATLAB.
		Theory of difference equations.
II-III	2.1-2.8, 3.1	Non-linear difference equations: recognition, steady states, stability
		Graphical methods, Applications to population dynamics. Cobwebbing using MATLAB.
		Density dependence in single-species
		populations. Chaos and its biological relevance.
III-IV	1.3-1.7	Difference equations continued.
		Application to seed banks and insect
		populations.
		Age and stage structure.
V	3.2-3.5	Host-parasitoid systems. The Nicholson-Bailey
		model and extensions. Discussion of
		applications.

VI-VIII	4.1-4.11	Continuous processes and ordinary differential equations.: Algal growth in a chemostat. Building resource-saturation into the model. Dimensional analysis. Scaling. Linearization of nonlinear equations. Local stability analysis. Systems of equations. e.g. albatross foraging behavior-use in epidemiological models- e.g. spread of AIDS. Use of MATLAB to solve systems of differential equations. ODE23/ODE45
MIDTERM EXAM		
X-XI		Spring Break
IX, XI-XII	5.1-5.6	Phase plane methods; oscillatory systems. Neurons and neuronal models.
	8.1-8.9	Limit cycles, oscillations and excitable systems.
	6.1-6.6	Application of continuous models to population dynamics. Single and competing species models. Predator-prey models.
	7.1-7.4	Models for molecular events: Michaelis-Menten kinetics. Sigmoidal behavior and its implications.
XIII-XV	9.1-9.7	Role of spatial variation in biological systems. Diffusion models.
	10	More complex spatial patterns. Introduction to reaction-diffusion models.
	Handout	Brief introduction to stochastic models.
XVI	Final Project	Presentations