MTH 230 F2015 DF/MT

THE COLLEGE OF STATEN ISLAND, CUNY DEPARTMENT OF MATHEMATICS

MATH 230–CALCULUS I COURSE OUTLINE

Text: Rogawski and Adams, <u>Calculus – Early Transcendentals</u>, 3nd Edition. W. H. Freeman & Co. (2015). ISBN# 978-1-4641-1488-5

Note: Below, each lesson corresponds approximately to a two-hour class. Sections in [brackets] may be omitted by some instructors if time is short. Homework problems in **bold** correspond to similar WeBWorK problems, which must be submitted online.

Lesson	Section	Торіс	Homework Problems
1	1.1	Functions and Graphs	11 , 15 , 37 , 49, 51 , 65, 71
2	1.2	Linear and Quadratic Functions	13, 14, 18, 21, 29, 31, 35, 39, 41, 47
3	1.3	Basic Functions: Polynomials, Rational Functions, Composition of Functions	5, 6, 7,8,11, 13, 19, 25, 27, 29, 32
4	1.4	Trigonometric Functions	3, 7, 9, 13, 15, 16, 19, 21
5	1.5	Inverse Functions	3, 17, 23, 32, 33 , 35, 37
6	1.6	Exponential and Logarithmic Functions	1, 3, 6 , 9, 28, 29, 33
7	2.1 2.2	Limits and rates of change Limits: Numerical and graphical	1, 3, 24, 25, 30 1, 2, 3, 5, 7, 8, 17, 19, 21, 30, 40, 55
8	2.3 2.4	Limit laws Continuity	4, 5, 7,9, 16, 17, 27, 29 1, 3, 5, 7 17, 19, 22, 25, 57, 71, 77, 79
9	2.5 2.6	Evaluating limits algebraically Trigonometric limits	1, 5, 7, 9, 17, 21, 25, 29, 47 2, 17, 21, 25, 29, 31, 33, 34, 44
10	2.7	Limits at Infinity	7, 8, 9, 10, 13, 14, 19, 23, 30, 38
11	2.8 2.9	Intermediate Value Theorem Formal definition of a limit	1, 3, 5
12		Review	
13		Exam 1	
14	3.1	Definition of the derivative	6, 9 , 13, 17 , 18 , 22 , 26, 29, 53, 55, 57
15	3.2	Derivative as a function	9 , 11 , 17 , 23 , 32, 35, 35 , 41 , 43, 52, 53, 66, 68
16	3.3	Product and quotient rules	6 , 8 , 9 , 19, 21 , 29 , 30 , 31, 35, 41, 43, 53
17	[3.4]	Rates of change	2 , 7, 9, 10, 14 , 16, 25 , 26 , 38, 41 , 43
18	3.5 3.6	Higher derivatives Trigonometric functions	5 , 9 , 11 , 19 , 21 , 27, 39, 41 1 , 7 , 10 , 17 , 18, 23, 29, 43
19	3.7	The Chain rule	5, 7 , 11 , 13 , 27 , 35 , 36 , 43, 47, 55, 87

Note: The textbook is used also for MTH 232, 233. If you are only taking MTH 230 or 231 you may use Rogawski and Adams, <u>Single Variable Calculus: Early Transcendentals</u>.

20	3.8	Implicit differentiation	3 , 5 , 11 , 17, 23 , 28, 33 , 41, 54, 82
21	3.9	Derivatives of exponentials and logs	1 , 3 , 7 , 9 , 17, 45, 47
22	3.10	Related rates	3 , 5 , 11, 15, 16, 19, 21 , 25 , 29
23		Review	
24		Exam 2	
25	[4.1]	Linear approximation	5 , 7 , 9, 13, 24 , 25 , 37, 41, 47, 51, 54
26	4.2	Extreme Values	1 , 4 , 9 , 17 , 21 , 41 , 49, 55, 63
27	4.3	First derivative test	1, 15, 16, 17, 25, 26 , 34 , 38 , 46, 50 , 55
28	4.4	Concavity and the second derivative	1 , 2, 7, 9 , 13, 16 , 18 , 23, 37 , 48, 51, 59
29	4.5	L'Hopital's Rule	8 , 12, 16 , 19 , 22, 23, 31 , 40 , 43, 46, 65
30	4.6	Graph sketching and Asymptotes	1, 13, 19 , 28, 31 , 34 , 38, 45, 54 , 57
31	4.7	Optimization	1 , 8, 13, 15, 16 , 22 , 26, 27, 30 , 33 , 43, 57
32	4.7 [4.8]	Optimization Newton's method	(Matlab Project)
33		Review	
34		Exam 3	
35	5.1	Approximating area	3 , 15, 17, 19 , 21 , 47, 79
36	5.2	Definite integral	8 , 9, 13 , 19, 23, 29 , 41, 45 , 56
37	5.3	Antiderivatives	3, 5, 7, 14, 16, 19, 22, 24, 27, 47, 51, 68
38	5.4	Fundamental Theorem of Calculus I	10, 11 , 13 , 25 , 33, 35 , 37, 40 , 45, 47, 53, 55, 62
39	5.5 [5.6]	Fundamental Theorem of Calculus II Net change	5, 8, 9, 13, 15, 16, 17,19, 21, 23, 24, 29, 30, 33, 35, ,
40	5.7	Integration by substitution	29, 30, 35, 46, 51, 61, 65, 71, 72, 85, 95
41	[5.8] [5.9]	Integration of transcendental functions Exponential growth & decay	3 , 9 , 13, 16, 43 , 44 , 46 , 53 1, 9, 14, 15, 19
42		Review	