THE COLLEGE OF STATEN ISLAND, CUNY DEPARTMENT OF MATHEMATICS

MATH 230 – CALCULUS I COURSE OUTLINE

- Text: Rogawski, Adams & Franzosa, <u>Calculus Early Transcendentals</u>, 4th Edition.
 W. H. Freeman & Co. (2019).
 ISBN: 9781319411671 (e-book ISBN: 9781319411657)
- Note: Below, each lesson corresponds to a one-hour class. Sections in [brackets] may be omitted if the time is short. Homework problems in **bold** correspond to similar WeBWorK problems, which must be submitted online.

Lesson	Section	Торіс	Homework Problems
1	1.1	Real numbers, functions and graphs	15, 19, 41 , 53, 55 , 71, 77
			13 , 14 , 18 , 21, 25 , 33, 37 , 41 , 43
2	1.2	Linear and quadratic functions	
3	1.3	The basic classes of functions	5, 6, 7,8,11, 13, 19, 25, 27, 29, 32
4	1.4	Trigonometric functions	3, 7, 9, 13, 15, 16, 19, 21, 33
5	1.5	Inverse functions	3 , 19, 25 , 28 , 34 , 35 , 37 , 39
6	1.6	Exponential and log functions	1, 4, 7, 26, 27, 31
7	2.1 2.2	Instantaneous velocity and tangent lines Investigating limits	1 , 4, 18 , 21 , 26 , 29 1 , 7, 9 , 21, 23 , 25, 30, 34 , 36 , 57, 61
8	2.3 2.4	Basic limit laws Limits and continuity	4 , 5, 9, 18, 19, 21, 29 , 31 , 33 1, 17, 19, 22, 27, 57 , 65, 73, 79, 85
9	2.5 2.6	Indeterminate forms The squeeze theorem and trig limits	5, 7, 9, 17, 21, 27, 29, 35, 45, 51, 53, 54 6, 12, 17, 21, 25, 29, 33, 34, 36, 44, 49
10	2.7	Limits at infinity	7, 8,10,14,19, 22, 34, 42
11	2.8 2.9	Intermediate Value Theorem The formal definition of the limit	3, 5, 7, 9, 15
12		Review	
13		Exam 1	
14	3.1	Definition of the derivative	6, 9 , 13 , 17, 18, 22, 26 , 29, 57, 59, 61

15	3.2	Derivative as a function	9, 11, 17, 23, 32, 35, 37, 43, 45, 56, 57 , 65 , 70, 72
16	3.3	Product and quotient rules	6, 8, 9, 21, 23, 32, 33, 37, 41, 47, 51 , 61
17	[3.4]	Rates of change	2 , 7, 9, 10, 22, 29 , 30 , 43
18	3.5 3.6	Higher derivatives Derivatives of trig functions	5, 9, 11, 19, 21, 27 , 39, 41, 42 1, 7, 10, 17, 18 , 23, 29, 43
19	3.7	The chain rule	5 , 7 , 13 , 15 , 29 , 37 , 38 , 45 , 49 , 57, 93
20	3.8	Implicit differentiation	3, 5, 13, 19, 25, 30, 35, 43, 56, 87
21	3.9	Derivatives of exponentials and logs	1, 3, 7, 9, 17, 45, 47
22	3.10	Related rates	3, 5, 9, 13, 15, 16, 19, 21, 25, 29
23		Review	
24		Exam 2	
25	[4.1]	Linear approximation	5 , 7 , 9 , 13 , 15 , 17 , 19 , 23, 28 , 29, 33 , 45, 48
26	4.2	Extreme values	4 , 9 , 17 , 21 , 41 , 49 , 57 , 67
27	4.3	Mean Value Theorem / Monotonicity	1, 15, 16, 17, 25, 26, 34, 38, 39, 46, 55, 59
28	4.4	The second derivative and concavity	1 , 2, 9, 11 , 15 , 20 , 22 , 29 , 43, 54, 57, 65
29	4.5	L'Hôpital's Rule	8 , 12 , 16 , 19 , 22 , 23 , 31 , 40 , 43 , 46 , 67
30	4.6	Sketching graphs	1, 13, 19, 28, 31, 34, 38, 45, 54, 57
31	4.7	Applied optimization	1, 8, 13, 15, 16, 24 , 28, 29, 32 , 35, 45, 59
32	4.7 [4.8]	Applied optimization Newton's method	
33		Review	
34		Exam 2	
35	5.1	Approximating and computing area	3 , 19 , 21 , 26 , 47, 79
36	5.2	The definite integral	8 , 9, 13 , 18 , 22 , 25, 31 , 43, 47 , 58
37	5.3	The indefinite integral	3, 5, 7, 14, 16, 17, 19, 22, 24, 27, 32, 38, 47, 51, 66

-

38	5.4	Fundamental Theorem of Calculus I	10, 11, 13 , 25, 33 , 35, 37, 40, 45, 47 , 53 , 55, 62
39	5.5 [5.6]	Fundamental Theorem of Calculus II Net change	14 , 15 , 19 , 21 , 22 , 25 , 27 , 28 , 33 , 34 , 37 , 39, 41, 43, 47
40	5.7	The substitution method	29, 30, 35, 38, 48, 53, 63, 67, 73, 87, 97
41	5.8	Further integral formulas	3, 9, 17, 20, 47, 48, 50 , 57
42		Review	