Exercise 1:
Use MATLAB to plot the graphs of each of the following. Then determine what interval for t is needed in order to trace the entire graph only once. (Use subplot(2,2,1) through subplot(2,2,3) to get the three graphs onto one window.)

a.) interval for t in order to trace $r = 4\cos(2t)$ only once:
 (1) Circle one:
 1. $[0, \pi/3]$ 2. $[0, \pi/2]$ 3. $[0, 2\pi]$ 4. $[0, \pi]

b.) interval for t in order to trace $r = \cos(5t)$ only once:
 (2) Circle one:
 1. $[0, \pi/3]$ 2. $[0, \pi/2]$ 3. $[0, 2\pi]$ 4. $[0, \pi]

c.) interval for t in order to trace $r = \sin(t/2)$ only once:
 (3) Circle one:
 1. $[0, 4\pi]$ 2. $[0, 3\pi]$ 3. $[0, 2\pi]$ 4. $[0, \pi]

d.) Submit a print-out of your graphs
 (4) Attach your graph to the worksheet.

Exercise 2:

a.) Use MATLAB to plot $r = \sin(2t)$ and $\cos(2t)$ on the same graph.
 (5) Attach your graph to the worksheet.

b.) $\sin(2t) =
 (6) Circle one:
 1. $\cos(2t - \pi/3)$ 2. $\cos(2t - \pi/4)$ 3. $\cos(2t + \pi/4)$ 4. $\cos(2t - \pi/2)$
“Polar Graphs”

Exercise 3:

a.) Use MATLAB to draw the graph of \(r = 6 - 4 \sin (t) \). Submit the graph
(7) Attach your graph to the worksheet.

b.) \(r = 6 - 4 \sin (t) \) is a
(8) Circle one:
1. rose 2. limacon 3. circle 4. cardioid

Exercise 4:

a.) Find the point of intersection for \(r = 8 \cos^2 (2t) \) and \(r = 4 \) where \(0 < t < \pi/4 \)
(9) Circle one:
1. \(\pi/8 \) 2. \(\pi/6 \) 3. \(\pi/10 \) 4. \(\pi/12 \)

b. Find the area within 4 petals common to \(r = 8 \cos^2 2t \) and \(r = 4 \).
(10) Circle one:
1. \(20\pi + 32 \) 2. \(16\pi \) 3. \(\pi/4 \) 4. \(20\pi - 32 \)