Exercise 1:

a.) If \(f = \tan^4 2x \), then the MATLAB command \(\text{diff}(f) \) equals

 (1) Circle one:
 1. \(8\tan(2x)^3\sec(2x)^2 \)
 2. \(4\tan(2x)^3(2+2\tan(2x)^2) \)
 3. \(4\tan(2x)^3(2+2\tan(2x))^2 \)
 4. \(\tan(2x)^2(2+2\tan(2x))^2 \)
 5. none of the above

b.) Mathematically, which of the answers in (a) above are equivalent?

 (2) Circle one:
 1. 1 and 2
 2. 2 and 3
 3. 2 and 4
 4. 1 and 3
 5. none of the above

Exercise 2:

a.) \(\int \ln x \, dx \). Which of the integration techniques should you use to find the antiderivative?

 (3) Circle one:
 1. Trigonometric substitution
 2. Substitution (reverse of the chain rule)
 3. Integration by parts
 4. MATLAB
 5. Explicit integral cannot be found

b.) \(\int \ln x \, dx \) equals

 (4) Circle one:
 1. \(\ln(x)^2/2 \)
 2. \(1/x \)
 3. \(x \ln x - x \)
 4. \(\ln(x)^2/x \)
 5. none of the above
Exercise 3:

a.) \(\int \frac{1}{\sqrt{1-4x^2}} \, dx \). Which of the integration techniques should you use to find the antiderivative?

(5) Circle one:
1. Trigonometric substitution 2. Substitution (reverse of the chain rule) 3. Integration by parts 4. MATLAB 5. Explicit integral cannot be found

b.) \(\int \frac{1}{\sqrt{1-4x^2}} \, dx \) equals

(6) Circle one:
1. \(\frac{1}{2} \sinh^{-1}2x \) 2. \(\frac{1}{2} \arcsin 2x \) 3. \(\frac{2}{3}(1 + x^2)^{3/2} \) 4. \((1 + x^2)^{1/2} \) 5. none of the above

Exercise 4:

a.) \(\int xe^{x^2} \, dx \). Which of the integration techniques should you use to find the antiderivative?

(7) Circle one:
1. Trigonometric substitution 2. Substitution (reverse of the chain rule) 3. Integration by parts 4. MATLAB 5. Explicit integral cannot be found

b.) \(\int xe^{x^2} \, dx \) equals

(8) Circle one:
1. \(xe^{x^2} \) 2. \(2xe^{x^2} \) 3. \(e^{x^2} \) 4. \(\frac{1}{2}e^{x^2} \) 5. None of the above

Exercise 5:

a.) \(\int \frac{x}{\sqrt{1+x^2}} \, dx \). Which of the integration techniques should you use to find the antiderivative?

(9) Circle one:
1. Trigonometric substitution 2. Substitution (reverse of the chain rule) 3. Integration by parts 4. MATLAB 5. Explicit integral cannot be found

b.) \(\int \frac{x}{\sqrt{1+x^2}} \, dx \) equals

(10) Circle one:
1. \((1 + x^2)^{1/2} \) 2. \(\sinh^{-1}x \) 3. \(\frac{2}{3}(1 + x^2)^{3/2} \) 4. \(\arcsin x \) 5. none of the above

Exercise 6:

a.) \(\int \frac{1}{\sqrt{1+x^2}} \, dx \). Which of the integration techniques should you use to find the antiderivative?

(11) Circle one:
1. Trigonometric substitution 2. Substitution (reverse of the chain rule) 3. Integration by parts 4. MATLAB 5. Explicit integral cannot be found
b.) \(\int \frac{1}{\sqrt{1+x^2}} \, dx \) equals

(12) Circle one:
1. \(2/3(1 + x^2)^{3/2} \) 2. \(sinh^{-1}x \) or \(\ln|(1 + x^2)^{1/2} + x| \) 3. \(\arcsin x \) 4. \((1 + x^2)^{1/2} \) 5. none of the above

Exercise 7:

a.) \(\int x^3 \sin x \, dx \). Which of the integration techniques should you use to find the antiderivative?

(13) Circle one:
1. Trigonometric substitution 2. Substitution (reverse of the chain rule) 3. Integration by parts 4. MATLAB 5. Explicit integral cannot be found

b.) \(\int x^3 \sin x \, dx \) equals

(14) Circle one:
1. \(-1/3 \sin^2 x \cos(x)(-2/3) \cos x \) 2. \(-x^4/4 \cos x \) 3. \(-x^3 \cos x + 3x^2 \sin x - 6 \sin x + 6x \cos x \) 4. \(x^3 \cos x - 3x^2 \sin x + 6 \sin x - 6x \cos x \) 5. none of the above

Exercise 8:

a.) \(\int \sin^3 x \, dx \). Which of the integration techniques should you use to find the antiderivative?

(15) Circle one:
1. Trigonometric substitution 2. Substitution (reverse of the chain rule) after replacing trig function 3. Integration by parts 4. MATLAB 5. Explicit integral cannot be found

b.) \(\int \sin^3 x \, dx \) equals

(16) Circle one:
1. \(-1/3 \sin^2 x \cos(x)(-2/3) \cos x \) 2. \(-x^4/4 \cos x \) 3. \(-x^3 \cos x + 3x^2 \sin x - 6 \sin x + 6x \cos x \) 4. \(x^3 \cos x - 3x^2 \sin x + 6 \sin x - 6x \cos x \) 5. none of the above

Exercise 9:

a.) \(\int \sin (x^3) \, dx \). Which of the integration techniques should you use to find the antiderivative?

(17) Circle one:
1. Substitution (reverse of the chain rule) 2. Integration by parts 3. Trigonometric substitution 4. Explicit integral cannot be found – MATLAB estimates it in terms of the ”LommelS1” function

b.) \(\int \sin (x^3) \, dx \) equals

(18) Circle one:
1. \(-1/3 \sin^2 x \cos(x)(-2/3) \cos x \) 2. \(-x^4/4 \cos x \) 3. \(-x^3 \cos x + 3x^2 \sin x - 6 \sin x + 6x \cos x \) 4. \(x^3 \cos x - 3x^2 \sin x + 6 \sin x - 6x \cos x \) 5. none of the above
Exercise 10:

a.) \(\int_{0}^{\pi} \sin (x^3) \, dx \). Which of the integration techniques should you use to evaluate the definite integral?

(19) Circle one:
1. Substitution (reverse of the chain rule)
2. Integration by parts
3. Trigonometric substitution
4. Explicit integral cannot be found – MATLAB estimates it in terms of the ”LommelS1” function

b.) \(\int_{0}^{\pi} \sin (x^3) \, dx \approx (20) \) Circle one:
1. 0.4158
2. 1.3333
3. 0.4999
4. 12.1567
5. none of the above