
Successor Levels of the Jensen Hierarchy∗

Gunter Fuchs
Westfälische Wilhelms-Universität Münster

Germany

April 25, 2008

Abstract

I prove that there is a recursive function T that does the following: Let
X be transitive and rud closed, and let X ′ be the closure of X ∪{X} under
rud functions. Given a Σ0 formula φ(x) and a code c for a rud function
f , T (φ, c, ~x) is a Σω formula such that for any ~a ∈ X, X ′ |= φ[f(~a)] iff
X |= T (φ, c, ~x)[~a]. I make this precise and show relativized versions of this.
As an application, I prove that under certain conditions, if Y is the Σω

extender ultrapower of X with respect to some extender F that also is an
extender on X ′, then the closure of Y ∪ {Y } under rud functions is the Σ0

extender ultrapower of X ′ with respect to F , and the ultrapower embeddings
agree on X.

1 Introduction

There are many situations in inner model theory where it is necessary to express
a definition over a successor level of a relativized Jensen-hierarchy by a (more
complex) definition over the predecessor level, in a uniform way. The author came
across this problem when trying to establish a one-to-one correspondence between
(pre-)mice in the setting of [MS94] and those in the Friedman-Jensen style (cf.
[Jen97], [Zem02]). This was done in the author’s dissertation [Fuc03]. Stripping
away many details and complications, the situation in which the tool presented
here is called for is as follows.

Let’s assume the two “corresponding” structures M̄ = 〈JAᾱ , B〉 (where, for
simplicity, A,B ⊆ JAᾱ) and M̄ ′ = F (M̄) = 〈JA′ᾱ′ , B′〉 have been defined already.
Again, suppose that A′, B′ ⊆ JA

′

ᾱ′ . The function F is defined by recursion, and,

∗MSC 2000: 03E45. Keywords: Rudimentary closure, extenders, ultrapowers

1

say we are in a successor case of the definition, where, setting M = 〈JAᾱ+1, B〉, we
have that M ′ := F (M) = “M̄ ′ + 1” = 〈JA′ᾱ′+1, B

′〉. I want the structures to have
“the same fine structural properties”. For example, I want the projecta to be the
same, and so on. What this amounts to is an analysis of Σ1-definability over these
structures. Suppose we have a translation tM̄ of Σω formulae ψ(~x) such that

M̄ |= ψ[~a] ⇐⇒ M̄ ′ |= tM̄(ψ)[~a].

In order to expand this translation function further, suppose φ(x) to be a Σ0

formula, and let c be a rudimentary term for an element of the A-rudimentary
closure of a set.1 So let c code f(−, |M̄ |), and let ~a ∈ M̄ . I would like to be able
to argue as follows:

M |= φ[f(~a, |M̄ |)]
⇐⇒ M̄ |= T (φ, c, ~x)[~a]

⇐⇒ M̄ ′ |= tM̄(T (φ, c, ~x))[~a]

⇐⇒ M ′ |= tM̄(T (φ, c, ~x))M̄ ′ [~a].

Expanding this method to, say, Σ1 formulae amounts to quantifying over rudimen-
tary terms. So let T(Ȧ) denote the set of A-rudimentary terms, and let φ(y, x) be
a Σ0 formula. One can then proceed as follows:

M |= ∃y φ[y, f(~a, |M̄ |)]
⇐⇒ ∃d ∈ T(Ȧ)∃~b ∈ M̄ M |= φ[fd(~b, |M̄ |), f(~a, |M̄ |)]
⇐⇒ ∃d ∈ T(Ȧ) M̄ |= (∃~y T (φ, x, c, ~x, y, d, ~y))[(~x/~a)]

⇐⇒ ∃d ∈ T(Ȧ) M̄ ′ |= tM̄(∃~y T (φ, x, c, ~x, y, d, ~y))[~a]

⇐⇒ M ′ |= ∃d ∈ T(Ȧ) (M̄ ′ |= tM̄(∃~y T (φ, x, c, ~x, y, d, ~y))[~a]).

I wrote fd to denote the A-rud function which is coded by d. The presentation is
intentionally very sketchy; e.g., it is unclear which parameters are to be allowed
in the formulae that are translated. A detailed exposition will be given in the
forthcoming article [Fuc].

The basic idea of how to define the function T that enables me to argue as
indicated above stems from the first pages of the foundational article [Jen72], and
hence from the very beginnings of fine structure theory. The information gained
from [Dev84, Chapter IV, p. 246, Lemma 1.18] is not sufficient for the intended
applications of the translation procedure; what is needed is a recursive and uniform
way to translate formulae in the way I described.

1I am a bit sloppy here: Every element y of the A-rud closure of a set X has the form
y = f(~a,X), where f is rud in A and ~a ∈ X. The terms I am talking about are basically names
for the functions ~x 7→ f(~x,X).

2

The article is organized as follows. In the first section, in order to be able to
state the results precisely, I introduce a coding of rudimentary functions. Which
coding is chosen is probably not very important, as long as it is reasonably simple.
For example, since the rudimentary functions have a finite basis, one could use
terms in the language consisting of function symbols representing the basic func-
tions. Or one could view a rudimentary function as a finite sequence of defining
schemes. The coding chosen here is pretty much equivalent to the latter approach
but has notational advantages. Compared to the former coding, it seems to facili-
tate inductive arguments. Using this coding, I prove a substitution lemma for Σ0

formulae.
The second section introduces rudimentary terms, which can be viewed as

codes for the elements of successor levels of the Jensen hierarchy. Subsequently,
the translation function is defined.

Finally, in the last section, I give an application on extender ultrapowers of
successor levels, which makes use of the translation procedure of the second section.

The notation I use is quite standard. I should maybe say that I write |M |
for the universe of a model M (not for its cardinality), ~x is short for a finite list
x1, . . . , xm, 〈~x〉 is the m-tuple, and ≺~α� is the value of 〈~α〉 under the Gödel pairing
function.

2 Substitution and Codes for Rudimentary

Functions

In order to be able to state the results, I fix the following coding of rudimentary
functions.

Definition 2.1. Let ~̇A = Ȧ1, . . . , Ȧl be a list of predicate symbols. Since I shall
be working with transitive structures that are closed under ordered pairs, I shall

once and for all restrict to unary predicate symbols. The set C(~̇A) of codes for

functions rudimentary in ~̇A is defined by the following clauses.

(a) For all n ∈ ω \{0} and k, l < n, the following symbols are codes for an n-ary

function rudimentary in ~̇A:
πnk , p

n
k,l, δ

n
k,l.

(b) The symbol fȦk
is a code for a 1-ary function rudimentary in ~̇A (1 ≤ k ≤ l).

(c) If f is a code for an n-ary function rudimentary in ~̇A, then so is un[f].

3

(d) If h is a code for an m-ary function rudimentary in ~̇A and h0, . . ., hm−1 are

codes for n-ary functions rudimentary in ~̇A, then h ◦ (h0, . . . , hm−1) is a code

for an n-ary function rudimentary in ~̇A (m,n ≥ 1).

Now I am going to define the interpretations of codes for functions rudimentary

in ~̇A:
Fix sets (or classes) ~A := A1, . . . , Al. Given a code t for an n-ary function in

C(~̇A), I define its interpretation, val
~A[t] : Vn −→ V by recursion on t as follows.2

(a) Let n ∈ ω \ {0}, k, l < n. Then set:

(1) val
~A[πnk](a0, . . . , an−1) = ak.

(2) val
~A[pnk,l](a0, . . . , an−1) = {ak, al}.

(3) val
~A[δnk,l](a0, . . . , an−1) = ak \ al.

(b) val
~A[fȦk

](a) = Ak ∩ a (1 ≤ k ≤ l).

(c) Let f be a code for an n-ary function rudimentary in ~̇A for which val
~A[f]

has been defined already. Then set:

val
~A[un[f]](a0, . . . , an−1) =

⋃
b∈a0

val
~A[f](b, a1, . . . , an−1).

(d) Let h be a code for an m-ary function rudimentary in ~̇A, and let h0, . . .,

hm−1 be codes for n-ary functions rudimentary in ~̇A, such that val
~A[h]

and val
~A[h0], . . ., val

~A[hm] have already been defined. Then, for ~a =
a0, . . . , an−1, set:

val
~A[h ◦ (h0, . . . , hm−1)](~a) = val

~A[h](val
~A[h0](~a), . . . , val

~A[hm−1](~a)).

I shall freely confuse codes for rudimentary functions with their Gödel numbers.
The following result is a refinement of [Jen72, Lemma 1.2., p. 235] (see also
[Dev84, Lemmata IV.1.17,18]), which says that rudimentary functions are simple,
meaning that the substitution of a rudimentary function in a Σ0 relation again
is a Σ0 relation. What matters here, though, is that if I am given a Σ0-formula
and codes for the rudimentary functions to be substituted, then I can effectively

2The relation over which the recursive definition is formulated is the immediate subcode
relation. For further details, see p. 5.

4

compute a Σ0 formula that defines the relation which is the result of substituting
the functions into the relation defined by the original Σ0 formula.

For the rest of the paper, fix a language L∗ which is the language of set theory

with additional predicate symbols ~̇A := Ȧ1, . . . , Ȧp and ~̇B := Ḃ1, . . . , Ḃq.

Definition 2.2. Let φ be an L∗-formula. Then a variable v which is not bound
in φ is basic in φ if φ has no subformula of the form Ȧk(v) (1 ≤ k ≤ p) or Ḃl(v)
(1 ≤ l ≤ q).

An assignment in X is a finite function whose domain is a set of variables
and whose range is contained in X. If b is an assignment in X, v is a variable
and a ∈ X, then b(v/a) is the assignment with domain dom(b) ∪ {v} (note that
v ∈ dom(b) is allowed) which coincides with b at all variables, with the possible
exception of v, which is mapped to a. An assignment for φ in X is an assignment
in X whose domain contains the set of free variables of φ.

Lemma 2.3. There is a recursive function Sub′ (only depending on L∗) with the
following property.

Let φ = φ(v0, . . . , vn−1) be a Σ0 formula in L∗. Fix interpretations Ak, Bl of

Ȧk, Ḃl, respectively. Let i∗ < n be such that vi∗ is basic in φ. Let c∗ ∈ C(~̇A) be

a code for an m-ary function rudimentary in ~̇A, and let x0, . . . , xm−1 be a list of
variables not containing the variable vi∗, nor any bound variable of φ.

Then ψ := Sub′(φ, vi∗ , c
∗, 〈~x〉) is again a Σ0 formula in L∗ whose free variables

are in {~x,~v} \ {vi∗}, and which has the property that for any assignment b for ψ
in V,

〈V, ~A, ~B〉 |= φ[b(vi∗/
val

~A[c∗](b(~x))
)] ⇐⇒ 〈V, ~A, ~B〉 |= ψ[b].

Moreover,

(#) Every variable that is basic in φ is basic in ψ, as well.

Proof. I am going to define a function with the desired properties by recursion on
a set-like well founded relation which I introduce below.

Firstly, it’s clear what is meant by saying that a rudimentary code c is an
immediate subcode of another rudimentary code d: Either d = ul[c] for an l ∈ ω,
or d = h ◦ (h0, . . . , hl−1), where c ∈ {h, h0, . . . , hl−1}.

Call a = 〈φ, v, c, 〈~x〉〉 a permissible argument, if, according to the statement of
the lemma, a should be in the domain of Sub′. For a permissible argument a, I
say:

(A) a is of type (A), if a has the form 〈u ∈ v, v, c, 〈~x〉〉.

(B) a is of type (B), if a has the form 〈∀y ∈ z ψ, z, c, 〈~x〉〉, where z doesn’t occur
in ψ.

5

Now let a1 := 〈φ1, v1, c1, 〈~x1〉〉 and a2 := 〈φ2, v2, c2, 〈~x2〉〉 be permissible argu-
ments. Then I set a1 ≺ a2 iff one of the following possibilities holds true:

1. c1 is an immediate subcode of c2.

2. c1 = c2, a1 is of type (A) or (B), and a2 is not of of type (A) or (B).

3. c1 = c2, a1 is not of type (A) or (B), a2 is not of type (A) or (B), and φ1 is
a subformula of φ2.

Now I define, by ≺-recursion on permissible arguments a = 〈ψ, v, c, 〈~x〉〉, the
value Sub′(a). There is an additional clause to every definition, which I mention
only once:

If v does not occur in ψ, then Sub′(a) := ψ.

Also, there is a technical issue which I would like to address now and then suppress
in the rest of the proof when it is not important. The problem is that if Sub′(a) =
ψ′, then ψ′ will generally contain more bound variables than ψ contained. Suppose
now that a ≺ b, and that Sub′(a) has been defined. Since Sub′(a) has been
defined “out of context”, i.e., without knowing b, it may occur that some of the
newly introduced bound variables in ψ′ are free in the formula of b, i.e., in the
first component of the argument b. But in defining Sub′(b), I want to refer to
Sub′(a). There are several ways to deal with this problem: One could rename
the bound variables of Sub′(a) when using it in the definition of Sub′(b). The
cleaner approach seems to be to define a preliminary function Sub′ which takes
an additional argument b, a finite set of “forbidden” variables, a “black list”. For
a permissible argument c, one defines χ = Sub′(c, b) by recursion in such a way
that in the end, one may set Sub′(c) = Sub′(c, ∅), and that in addition, none of
the variables in b occur in χ as a bound variable. The variables occurring in c
will implicitly be treated as though they were on the black list, so the definition
Sub′(c) = Sub′(c, ∅) is right. Whenever I pick a bound variable in the course of
the proof, this choice can be made effectively by presuming an enumeration of the
variables, and then choosing the one with the least index among those that are not
on the black list b, which is sometimes suppressed in the notation. The ordering on
pairs 〈c, b〉, where c is a permissible argument and b is a black list, along which the
recursive definition shall proceed, is induced by ≺ by simply ignoring the second
component:

〈c, b〉 ≺′ 〈c′, b′〉 ⇐⇒ c ≺ c′.

At sensitive places in the construction, I’m going to write down the details
explicitly.

Let’s begin with the recursive definition now.

6

Case 1: c is a primitive code (i.e., c has no immediate subcode).

Case 1.1: a is of type (A) or (B).

Then, depending on the type of a, I stipulate:

(A) Let ψ ≡ (w ∈ v). If w and v are not identical, then

Sub′(w ∈ v, v, πni , 〈~x〉) := w ∈ xi,
Sub′(w ∈ v, v, pnk,l, 〈~x〉) := (w = xk ∨ w = xl),
Sub′(w ∈ v, v, δnk,l, 〈~x〉) := (w ∈ xk ∧ ¬(w ∈ xl)),
Sub′(w ∈ v, v, fȦk

, x) := ∃z ∈ x (z = w ∧ Ȧk(z)).

If w and v are identical, then Sub′(a) := (x0 ∈ x0).

(B)
Sub′(∀y ∈ v φ, v, πni , 〈~x〉) := ∀y ∈ xi φ,
Sub′(∀y ∈ v φ, v, pnk,l, 〈~x〉) := (φ(y/xk

) ∧ φ(y/xl
)),

Sub′(∀y ∈ v φ, v, δnk,l, 〈~x〉) := ∀y ∈ xk (y /∈ xl −→ φ),

Sub′(∀y ∈ v φ, v, fȦk
, x) := ∀y ∈ x (Ȧk(y) −→ φ).

The definition in the fourth case of (A) may seem unnecessarily complicated,
but note that just taking the formula Ȧk(w) ∧ w ∈ x as the definition won’t
do, since this would make Ȧk(w) a subformula of Sub′(w ∈ v, v, fȦk

, x), which
is forbidden by (#). Note also that I introduced a new bound variable in this
case. This is a place where I really use the black list that’s dragged along as an
additional argument. So, to be explicit, I define

Sub′(w ∈ v, v, fȦk
, x, b) := ∃z ∈ x (z = w ∧ Ȧk(z)),

where z is the variable with least index (as a short form for this, I’ll just say “the
least variable” in the future) that’s not on the black list b and that doesn’t occur
in {v, w, x}.

In case w and v are identical, I had to define Sub′(w ∈ v, v, c, ~x) to be some-
thing like (x0 ∈ x0), because v is not allowed to be a free variable in the resulting
formula anymore.

Case 1.2: a is not of type (A) or (B), and ψ is atomic.

It cannot be the case that ψ ≡ Ȧk(v) or ψ ≡ Ḃl(v), as a is a permissible argu-
ment. So only the following subcases may occur:

7

Case 1.2.1: ψ ≡ w = v.

If w and v are identical, i.e., if ψ ≡ v = v, then I set: Sub′(a) := x0 = x0. The
reason is, again, that v is not allowed to occur as a free variable in the resulting
formula. If w and v are distinct, then I define Sub′(w = v, v, c, 〈~x〉) to be the
following formula:

(∀z ∈ w Sub′(z ∈ v, v, c, 〈~x〉︸ ︷︷ ︸
type (A)

)) ∧ Sub′(∀z ∈ v z ∈ w, v, c, 〈~x〉︸ ︷︷ ︸
type (B)

).

To be more precise, I’ll give the real definition of Sub′(w = v, v, c, 〈~x〉, b) in this
case:

(∀z ∈ w Sub′(z ∈ v, v, c, 〈~x〉, b ∪ {w}︸ ︷︷ ︸
type (A)

)) ∧ Sub′(∀z ∈ v z ∈ w, v, c, 〈~x〉, b︸ ︷︷ ︸
type (B)

),

where z is the least variable that does not occur in b ∪ {v, w, ~x}. The case that
the other variable is to be substituted is symmetric.

Case 1.2.2: ψ ≡ v ∈ w.

Since a is not of type (A), the following definition will do:

Sub′(v ∈ w, v, c, 〈~x〉) := ∃z ∈ w Sub′(z = v, v, c, 〈~x〉)︸ ︷︷ ︸
defined as in case 1.2.1

.

Again, z has to be picked according to the suppressed bookkeeping system: So I
define Sub′(v ∈ w, v, c, 〈~x〉, b) to be the formula

∃z ∈ w Sub′(z = v, v, c, 〈~x〉, b ∪ {w}),

where z is the least variable which does not occur in b ∪ {v, w, ~x}.

Case 1.3: ψ ≡ ¬φ′ or φ ≡ φ1 ◦ φ2, where ◦ = ∧,∨,→,↔.

In this case I make the obvious definitions:

Sub′(¬φ′, x, c, 〈~x〉) := ¬Sub′(φ′, x, c, 〈~x〉)
Sub′(φ1 ◦ φ2, x, c, 〈~x〉) := Sub′(φ1, x, c, 〈~x〉) ◦ Sub′(φ2, x, c, 〈~x〉).

Case 1.4: ψ ≡ ∀v ∈ w φ, where φ = φ(v, w, ~z) and a is neither of type (A)
nor of type (B).

8

If w is to be substituted, then it also appears in φ since otherwise the argument
would be of type (B). So in this case, I set:

Sub′(∀v ∈ w φ,w, c, 〈~x〉) := Sub′(∀v ∈ w Sub′(φ,w, c, 〈~x〉), w, c, 〈~x〉︸ ︷︷ ︸
a′

).

Note that w does not occur in Sub′(φ,w, c, 〈~x〉). Hence, the permissible argument
a′ is of type (B), and hence, Sub′(a′) is already defined. Really, one should add v
to the black list in the nested function call to Sub′ here.

If it isn’t w that is to be substituted, I make the following definition:

Sub′(∀v ∈ w φ, zi, c, 〈~x〉) := ∀v ∈ w Sub′(φ, zi, c, 〈~x〉).

Here, one really should add v and w to the black list in the function call to
Sub′(. . .), in order to insure that these variables aren’t introduced as new bound
variables there.

Case 1.5: ψ ≡ ∃w ∈ v φ.

This case can be reduced to the case ¬(∀w ∈ v ¬φ) as usual.

Case 2: c = un[g].

Case 2.1: The argument is of type (A) or (B).

If the argument is of type (A), I set:

Sub′(w ∈ v, v, un[g], 〈~x〉) := ∃z ∈ x0 Sub′(w ∈ z′, z′, g, 〈z, x1, . . . , xn−1〉),

where z and z′ are new variables and ~x = x0, x1, . . . , xn−1. More precisely, Sub′(w ∈
v, v, un[g], 〈~x〉, b) is defined to be the following formula:

∃z ∈ x0 Sub′(w ∈ z′, z′, g, 〈z, x1, . . . , xn−1〉, b ∪ {x0}),

where z and z′ are the next two variables that are not in b ∪ {v, w, ~x}.
Otherwise, if the argument is of type (B), I define:

Sub′(∀w ∈ v φ, v, un[g], 〈~x〉) :=

∀z ∈ x0 Sub′(∀w ∈ z′ φ, z′, g, 〈z, x1, . . . , xn−1〉).

Again, z and z′ have to be picked relative to the suppressed black list, and x0 has
to be added to the black list in the function call to Sub′ on the right hand side.

9

The other cases 2.2-2.5 can be dealt with like the cases 1.2-1.5; there, it didn’t
matter there that the substituted code was primitive.

Case 3: c = h ◦ (h0, . . . , hm−1).

Choose new variables z0, . . ., zm−1 (relative to the black list) and then define
Sub′(ψ, v, c, 〈~x〉) to be the formula ψ′, where

ψ′ := Sub′(Sub′(φ, v, h, 〈~z〉), z0, h0, 〈~x〉, . . . , zm−1, hm−1, 〈~x〉).

I used a suggestive yet sloppy notation here. What’s really meant is the following:

ψ′ := Sub′(Sub′(. . . Sub′(Sub′(Sub′(ψ, v, h, ~z), z0, h0, 〈~x〉),
, z1, h1, 〈~x〉) . . .), zm−1, hm−1, 〈~x〉).

In the innermost function call Sub′(ψ, v, h, ~z), it really has to be insured that none
of the variables ~x are added as bound variables, by adding them to the black list.
After this, the other function calls are possible. So the exact definition would be
that Sub′(ψ, v, c, 〈~x〉, b) is the following formula:

Sub′(Sub′(. . . Sub′(Sub′(Sub′(ψ, v, h, 〈~z〉, b ∪ {~x}), z0, h0, 〈~x〉, b),

, z1, h1, 〈~x〉, b) . . .), zm−1, hm−1, 〈~x〉, b).

It is obvious that all arguments appearing in this formula are ≺ a, as the codes
substituted are immediate subcodes of c.

This completes the definition of Sub′. It is easy to verify that it has the desired
properties.

The function Sub′ allows for the substitution of one variable. Now I am going
to define a function that makes multiple simultaneous substitutions possible.

Lemma 2.4. There is a recursive function Sub such that the following holds.
Let φ = φ(v0, . . . , vn−1) be a Σ0 formula L∗. Fix interpretations Ak, Bl of Ȧk

and Ḃl, respectively.
Let a = {i0, . . . , im−1} be an m-element subset of n, such that for j < m, vij is

basic in φ. Moreover, for j < m, let cj ∈ C(~̇A) be a code for an nj-ary function,
and ~xj := xj0, . . . , x

j
nj−1 a list of variables not bound in φ.

Then ψ := Sub(φ, vi0 , c0, 〈~x0〉, . . . , vim−1 , cm−1, 〈~xm−1〉) is a Σ0 formula in L∗
that has the following property:

If ~w = w0, . . . , wm′−1 is an enumeration of {vk | k ∈ n \ a}, then the set of
free variables of ψ is contained in {~w, ~x0, . . . , ~xm−1} – this is a list with possible
repetitions. Let b be an assignment of these variables. Then we have:

10

〈V, ~A, ~B〉 |= φ[(vi0/
val

~A[c0](b(~x0))
), . . . , (vim−1/

val
~A[cm−1](b(~xm−1))

), (~w/b(~w))]
⇐⇒

〈V, ~A, ~B〉 |= ψ[b].

Proof. Let 〈φ, vi0 , c0, 〈~x0〉, . . . , vim−1 , cm−1, 〈~xm−1〉〉 be a suitable argument. Iter-
ated application of the function Sub′ from the previous lemma will achieve the
simultaneous replacement of several variables. The following procedure describes
how to compute Sub(φ, vi0 , c0, 〈~x0〉, . . . , vim−1 , cm−1, 〈~xm−1〉). First, I will define a
sequence 〈φ0, . . . , φm−1〉 of formulae by induction.

Let ~y0 = y0
0, . . . , y

0
n0−1 be the least n0 variables that don’t occur in φ or in

~x0, . . . , ~xm−1. Set:
φ0 = Sub(φ, vi0 , c0, 〈~y0〉).

Analogously, if l + 1 < m and φl has already been defined, then let ~yl+1 be the
least nl+1 variables which don’t occur in φl or in ~x0, . . . , ~xm−1, and set:

φl+1 = Sub(φl, vil+1
, cl+1, 〈~yl+1〉).

That the arguments occurring here are permissible is guaranteed by the property
(#) that Sub′ satisfies.

Now φm−1 is almost as wished. All that’s left to do seems to be to rename
~y0 by ~x0, etc. But it might be that some of the xkl are bound variables in φm−1.
So let φ′m−1 result from φm−1 by renaming bound variables so that this does not
occur anymore. This can be done effectively: Let ~w list the xkl which are bound
in φm−1, in increasing order. Let r be the length of this list. Let ~w′ list the r next
variables which do not occur in φm−1 and which are different from ~x0, . . . , ~xm−1. Let
φ′m−1 = φm−1(~w/~w′). Now I can define Sub(φ, vi0 , c0, 〈~x0〉, . . . , vim−1 , cm−1, 〈~xm−1〉)
to be the formula

φ′m−1(~y
0

/~x0) · · · (~ym−1

/~xm−1).

This formula has the desired properties, and the process defining it is clearly
recursive.

3 The Translation Procedure and Rudimentary

Terms

Now I am aiming at expressing Σ0 definability over the rudimentary closure of some
set over the set itself. To this end, I introduce rudimentary terms that represent
elements of the rudimentary closure of a set. In order to avoid a possible confusion,
since there are conflicting definitions in the literature, it should be pointed out that
by rud ~A(X) I mean the closure of X ∪ {X} under functions rudimentary

11

in ~A. That’s what I refer to as the ~A-rudimentary closure of X. So every element
of rud ~A(X) is of the form f(~a,X), where f is a function rudimentary in ~A and
~a ∈ X. This is the motivation for the following two definitions.

Definition 3.1. Fix predicate symbols ~̇A. The set T(~̇A) of terms rudimentary in
~̇A is defined to consist of pairs t = 〈c, 〈~x〉〉, where c ∈ C(~̇A) is a code for an n-ary
function and ~x = 〈x0, . . . , xn−1〉 is an n-tuple, such that, for i < n, either xi is a
variable, or xi = Φ for a fixed new constant symbol Φ.

The set of free variables of t, Fr(t) is defined to be {xi | xi 6= Φ}.

Evaluations of rudimentary terms are now computed relative to a given inter-
pretation of the predicate symbols and a given interpretation of a universe.

Definition 3.2. I evaluate a rudimentary term t = 〈c, 〈x0, . . . , xn−1〉〉 ∈ T(~̇A) in

a structure M = 〈X, ~A〉 as follows:
Let a be an assignment in X whose domain contains the free variables of t.

Define an extension ã of a by setting:

ã(x) =

{
a(x) if x 6= Φ, x ∈ dom(a),
X if x = Φ.

Then I set:
valM [t](a) := (val

~A[c])(ã(x0), . . . , ã(xn−1)).

If M̃ = 〈M, ~B〉 is a structure enhanced by additional predicates, I set:

valM̃ [t](a) = valM [t](a).

Lemma 3.3. Fix two lists of predicate symbols, ~̇A and ~̇B. Then there is a recursive
function T = T ~̇A; ~̇B

with the following property:

Let ~A and ~B be interpretations of ~̇A and ~̇B. Let X be a transitive set closed
under functions rudimentary in ~A, and let ~A, ~B ⊆ X. Set X ′ = rud ~A(X), and

define M := 〈X, ~A, ~B〉, M ′ := 〈X ′, ~A, ~B〉. Let φ be a Σ0-formula with free variables

v0,. . ., vn−1. Let a = {i0, . . . , im−1} ∈ [n]m. For each j < m, let tj ∈ T(~A), such
that no free variable of tj occurs as a bound variable in φ.

Then ψ := T (φ, vi0 , t0, . . . , vim−1 , tm−1) is a Σω-formula with the following prop-
erty: If ~w = w0, . . . , wm′−1 is an enumeration of {vk | k ∈ n \ a}, then the set of
free variables of ψ is contained in {~w} ∪

⋃
j<m Fr (tj) (here, repetitions may oc-

cur). Further, for any assignment b of the free variables of ψ with values in X,
we have:

M ′ |= φ[b′] ⇐⇒ M |= ψ[b],

12

where b′ = b[(vi0/valM [t0](b)), . . . , (
vim−1/valM [tm−1](b))]. Hence, one might very well

write:
ψ = φ((vi0/t0), . . . , (vim−1/tm−1)).

Proof. Let 〈φ, vi0 , t0, . . . , vim−1 , tm−1〉 be a suitable argument as in the lemma. For
l < m, let tl = 〈cl, 〈xl0, . . . , xlnl−1〉〉.

The argument consists of three steps: First, φ will be transformed in such a
way that it doesn’t contain a subformula of the form Ȧk(vi) (1 ≤ k ≤ p) or Ḃl(vi)
(1 ≤ l ≤ q) (for any i ∈ a). Then this formula is transformed using the substitution
function Sub from Lemma 2.4. Finally, this formula is transformed into a Σω

formula that “expresses over M what the formula we started with expressed over
M ′”.

The first transformation, T1, is defined by recursion, for arbitrary Σ0 formulae
ψ. Given ψ, fix z to be the least variable that doesn’t occur in ψ. Now define, by
recursion on (not necessarily proper) subformulae of ψ, a function Tψ1 .

For ψ̄ ≡ C(v) (C ∈ { ~̇A, ~̇B}), where v ∈ {vi | i ∈ a}, let

Tψ1 (ψ̄) ≡ ∃w ∈ z w = v ∧ C(w).

The other cases of atomic formulae are trivial, i.e., these formulae remain un-
changed by Tψ1 . The expansion of Tψ1 to Boolean combinations and to bounded
quantifications is as usual. So the only actual change occurs in this one atomic
case. Finally, let T1(ψ) = Tψ1 (ψ).

The idea is that in the end, the value X will be substituted for z. Note that
for an assignment h of the free variables of ψ with values in X, it is the case that:

(M ′ |= ψ[h]) ⇐⇒ (〈V, ~A, ~B〉 |= T1(ψ)[h(z/X)]).

Now let’s return to the specific Σ0 formula φ from the beginning of the proof.
Let φ′ = T1(φ). Choose (effectively) new variables ~y0, . . . , ~ym−1, where ~yj =
yj0, . . . , y

j
nj−1 (so ~yj has the same length as ~xj), and form:

φ̃ := Sub(φ′, vi0 , c0, ~y
0, . . . , vim−1 , cm−1, ~y

m−1).

Call the variables z and yjk with xjk = Φ temporary. Let ~w, b and b′ be as in the
statement of the lemma, and define an assignment b̃ of the free variables of φ̃ other
than z by setting

b̃(v) =


X if v is temporary and different from z,
b(xkl) if v = ykl and xkl 6= Ω,
b(v) otherwise.

13

Then valM [ti](b) = val[ci](b̃(~y
i)) for i < m, and so,

b′ = b[(vi0/val[c0](b̃(~y0))) · · · (
vim−1/val[cim−1

](b̃(~ym−1)))].

In particular, b′ and b̃[(vi0/val[c0](b̃(~y0))) · · · (
vim−1/val[cim−1

](b̃(~yim−1)))] agree on the free

variables of φ′ (other than z, which is not in the domain of any of these assign-
ments). So it’s clear by Lemma 2.4 that

〈V, ~A, ~B〉 |= φ′[b′(z/X)] ⇐⇒ 〈V, ~A, ~B〉 |= φ̃[b̃(z/X)].

Note that these two formulae are Σ0, so that they are satisfied in the universe iff
they are satisfied in M ′.

In order to pull φ̃ down to M , I have to transform it into a Σω formula in which
the temporary variables don’t occur freely anymore, and which is satisfied in M iff
φ̃ is satisfied in the real world, when all temporary variables are assigned the value
X and the variables occurring in both formulae are assigned the same values. I
define this transformation, T2(ψ), again by recursion on ψ.

Case 1: ψ ≡ Ȧk(x) (1 ≤ k ≤ p) or ψ ≡ Ḃl(x) (1 ≤ l ≤ q).

If x is not temporary, then ψ remains unchanged. Otherwise, I set: T2(ψ) ≡
∀x x 6= x. This definition works, since I demanded that ~A and ~B are subsets of X.

Case 2: ψ ≡ x ∈ y.

Case 2.1: y is temporary, while x is not.

Then let T2(ψ) ≡ (x = x).

Case 2.2: x is temporary.

Then let T2(ψ) ≡ (∀x x 6= x).

Case 2.3: Neither x nor y are temporary.

Then ψ remains unchanged.

Case 3: ψ ≡ x = y.

Case 3.1: Exactly one of the variables x and y is temporary.

14

Let v ∈ {x, y} be the variable which is not temporary. Then T2(ψ) = (v 6= v).

Case 3.2: Both x and y are temporary.

Then let T2(ψ) ≡ ∀x x = x.

Case 3.3: Neither x nor y is temporary.

Then ψ remains unchanged.

This defines T2 for atomic formulae. The definition for Boolean combinations
of formulae for which T2 is already defined is as usual. The only remaining case of
interest is

Case 4: ψ ≡ ∃x ∈ y ψ̄, where T2(ψ̄) is already defined.

If y isn’t temporary, then let T2(ψ) ≡ ∃x ∈ y T2(ψ̄). In the other case I set:

T2(ψ) ≡ ∃x T2(ψ̄).

Note that in the formula I’m interested in, namely in φ̃, only free variables can
be temporary, so that it is irrelevant whether or not x is temporary in the current
case.

The case of universal quantification is reduced in the usual way to existential
quantification and negation. So this completes the definition of T2.

So now I can define:

ψ ≡ T2(φ̃)(〈y
j
k | j<m∧k<nj∧xj

k 6=Φ〉/〈xj
k | j<m∧k<nj∧xj

k 6=Φ〉).

So backtracking the definition, we have:

ψ ≡ T (φ, vi0 , c0, 〈~x0〉, . . . , vim−1 , cm−1, 〈~xm−1〉)
≡ T2(Sub(T1(φ), vi0 , c0, ~y

0, . . . , vim−1 , cm−1, ~y
m−1))

(〈y
j
k | j<m∧k<nj∧xj

k 6=Φ〉/〈xj
k | j<m∧k<nj∧xj

k 6=Φ〉),

which obviously is recursive.
Let’s check that ψ has the desired properties. Let b, b′ and b̃ be as before.

15

Then it follows from the properties of T2 that:

M |= ψ[b] ⇐⇒ M |= (T2(φ̃)(〈y
j
k | j<m∧k<nj∧xj

k 6=Φ〉/〈xj
k | j<m∧k<nj∧xj

k 6=Φ〉))[b]

⇐⇒ M |= T2(φ̃)[b(〈y
j
k | j<m∧k<nj∧xj

k 6=Φ〉/〈b(xj
k) | j<m∧k<nj∧xj

k 6=Φ〉)]

⇐⇒ 〈V, ~A〉 |= φ̃[b̃(z/X)]

⇐⇒ 〈V, ~A〉 |= φ′[b′(z/X)]

⇐⇒ 〈V, ~A〉 |= φ[b′]

⇐⇒ M ′ |= φ[b′].

This completes the proof.

4 Extender Ultrapowers of Successor Structures

In this section, I would like to give an application of the machinery developed thus
far to extender ultrapowers of a structure in comparison to extender ultrapowers
of its rud closure. In order to state the result precisely, I need some definitions. I
shall adopt Jensen’s view of extenders, see [Jen97].

Definition 4.1. Let M = 〈X, ~A, ~B〉 be a transitive structure which is closed under

functions which are rudimentary in ~A, and assume that ~A, ~B ⊆ M . Let κ ∈ M
be an ordinal which is primitive recursively closed, and assume that whenever
X1, . . . , Xn are in P(κ) ∩M , ν1, . . . , νn < κ and C is primitive recursive in the

predicates ~X and the parameters ~ν, then C ∩ κ ∈ P(κ) ∩M . Then F is a (κ, λ)-
extender on M if κ < λ, λ is primitive recursively closed, F is a function with
domain P(κ)∩M and ran(F) ⊆ P(λ), such that whenever X1, . . . , Xn ∈ P(κ)∩M
and C ~X ⊆ On is primitive recursive in ~X, then F (C ~X ∩ κ) = CF (~X) ∩ λ. κ is the
critical point of F and λ is the length of F .

The following definition is designed to capture the structures to which the main
theorem of this section applies. These structures make it possible to form fully
elementary external extender ultrapowers.

Definition 4.2. A structure M = 〈X, ~A, ~B〉 is definably well-ordered iff it has a
well-order which is definable in the structure. This means that there is a formula
φ(x, y, z) in the language of set theory with additional unary predicate symbols

~̇A, ~̇B such that there is an element p ∈ X, so that the set

{〈a, b〉 |M |= φ(a, b, p)}

is a well-order of M .

16

I’ll now describe what I call the (external) Σω extender ultrapower.

Definition 4.3. Let M = 〈X, ~A, ~B〉 be rud ~A-closed with ~A, ~B ⊆ M . Let F be a
(κ, λ)-extender on M . Assume that P(κ) ∩ Σ˜ω(M) = P(κ) ∩M . Then

π : M −→Σω
F N

expresses the following statements:

1. π : M −→Σω N ,

2. N is transitive,

3. for x ∈ P(κ) ∩M , π(x) ∩ λ = F (x),

4. for any function f : κ −→M which is definable over M in parameters ~a, let
π(f) be the function defined over N by the same formula, in the parameters
π(~a). Then

|N | = {π(f)(α) | f ∈ (κM) ∩ Σ˜ω(M) ∧ α < λ}.

Analogously, if E is an extender on M̄ , then I write σ : M̄ −→E N̄
′ to express

that N̄ ′ is the usual extender ultrapower of M̄ by E, formed with functions which
are elements of M̄ , and that σ is the canonical embedding. This kind of ultrapower
is sometimes referred to as a Σ0-ultrapower.

The construction of Σω-ultrapowers is an adaptation of the construction of fine
structural ultrapowers.

Definition 4.4. Let M = 〈X, ~A, ~B〉 be rud ~A-closed with ~A, ~B ⊆ M . Let F be a
(κ, λ)-extender on M . Let

Γω(M,κ) := {h ∈ Σ˜ω(M) | ∃n < ω h : κn −→ |M |},
Dω(M,κ, λ) := {〈~α, f〉 | f ∈ Γω(M,κ) ∧ f : κlh(~α) −→ |M | ∧ ~α < λ}.

Define a relation ∼ on Dω = Dω(M,κ, λ) by

〈~α, f〉 ∼ 〈~β, g〉 ⇐⇒ ≺~α, ~β� ∈ F ({≺~γ, ~δ� | ~γ, ~δ < κ ∧ f(~γ) = g(~δ)}).

Define also a “pseudo ∈-relation” on Dω:

〈~α, f〉E〈~β, g〉 ⇐⇒ ≺~α, ~β� ∈ F ({≺~γ, ~δ� | ~γ, ~δ < κ ∧ f(~γ) ∈ g(~δ)}).

Note that these definitions can be made, as F measures all M̄ -definable subsets of
κ.

17

The following is standard:

Lemma 4.5. In the notation of the previous definition, ∼ is a congruence relation
with respect to E: If 〈~α, f〉 ∼ 〈~α′, f ′〉 and 〈~β, g〉 ∼ 〈~β′, g′〉, then

〈~α, f〉E〈~β, g〉 ⇐⇒ 〈~α′, f ′〉E〈~β′, g′〉.

It is also a congruence relation with respect to the other predicates A′i, B
′
i, in the

same sense:

A′i(〈~α, f〉) ⇐⇒ A′i(〈~α′, f ′〉) and B′j(〈~α, f〉) ⇐⇒ B′j(〈~α′, f ′〉)

So the following definition is correct:

Definition 4.6. Dω(M,F) = 〈Dω(M,κ, λ)/∼, E/∼, ~A′/∼, ~B′/∼〉, the set of ∼-
equivalence classes of Dω(M̄, κ, λ), where it is stipulated that

[~α, f]E/∼[~β, g] ⇐⇒ 〈~α, f〉E〈~β, g〉,
A′i/∼([~α, f]) ⇐⇒ A′i(〈~α, f〉),
B′j/∼([~α, f]) ⇐⇒ B′j(〈~α, f〉),

where [~α, f] denotes the ∼-equivalence class of 〈~α, f〉 ∈ Γω(M,κ, λ).

There is a version of Loś’s theorem for Σω-ultrapowers of definably well-ordered
structures:

Theorem 4.7. Suppose that M is as above, with the additional assumption that M
is definably well-ordered. Let Dω = Dω(M,F). Let φ(x0, . . . , xn−1) be a formula,
and let [~α0, f 0], . . . , [~αn−1, fn−1] be elements of Dω. Then the following equivalence
holds:

Dω |= φ([~α0, f 0], . . . , [~αn−1, fn−1])

⇐⇒
≺~α0, . . . , ~αn−1� ∈ F ({≺~β0, . . . , ~βn−1� |M |= φ(f 0(~β0), . . . , fn−1(~βn−1))}),

where ∈̇ is interpreted as E/∼ in Dω, and Ȧi, Ḃj are interpreted as A′i/∼ and
B′j/∼, respectively.

Proof. By induction on formulae. The point is that definable Skolem functions are
available, as M̄ is definably well-ordered.

Theorem 4.8. In the above notation, assume that Dω(M,F) is well-founded, and
let N be its transitive isomorph. Define π : |M | −→ |N | by setting π(x) :=
[0, constx]. If M is definably well-ordered, then

π : M −→Σω
F N.

I also write UltΣω(M,F) for N .

18

Proof. This follows immediately from Loś’s theorem.
Now I am ready to state the main result of this section.

Theorem 4.9. Let ~̇A, ~̇B be predicate symbols with interpretations ~A, ~B. Let X̄
be a transitive set which is closed under functions rudimentary in ~A, such that
~A, ~B ⊆ X̄. Let M̄ = 〈X̄, ~A, ~B〉 be definably well-ordered. Let X := rud ~A(X̄) and

M = 〈X, ~A, ~B〉, and let Σ˜ω(M̄) = X ∩ P(X̄).3Let F be an extender on M̄ and
M .4Let

π̄ : M̄ −→Σω
F M̄ ′,

where M̄ ′ = 〈X̄ ′, ~A′, ~B′〉 is transitive. Then the following is a correct definition of
a function π:

π(valM̄ [t](~a)) := valM̄
′
[t](π̄(~a)),

where t ∈ T(~̇A) and ~a ∈ X̄ is an assignment of its free variables.

Set X ′ := rud ~A′(X̄
′) and M ′ := 〈X ′, ~A′, ~B′〉. Then

π : M −→F M
′ and π̄ ⊆ π.

Proof. The proof will show that the definition of π makes sense even if π̄ is not
an extender embedding but an arbitrary elementary embedding. π will then be
Σ0 preserving and cofinal, hence Σ1 preserving (even Q-preserving; cf. [Zem02,
p. 3]). It is also known (and implicit in the following proof) that π is the only
Σ0 preserving embedding from M into M ′ extending π̄; cf. [Dev84, Lemma 1.19].
What’s new here is that π is again an extender ultrapower.

First, note that X̄ ′ is closed under functions rudimentary in ~A′. This can be

seen as follows: If c is a code for a function rudimentary in ~̇A, then we have:

∀~a ∈ M̄∃b ∈ M̄ b = val
~A[c](~a)

⇐⇒ M̄ |= ∀~x∃y Sub(y = v, v, c, 〈~x〉)
⇐⇒ M̄ ′ |= ∀~x∃y Sub(y = v, v, c, 〈~x〉)
⇐⇒ ∀~a ∈ M̄ ′∃b ∈ M̄ ′ b = val

~A′ [c](~a).

Now I will verify the correctness of the definition of π. Assume we have two
representations of some x ∈ X:

x = valM̄ [t1](~a1) = valM̄ [t2](~a2).

3If ~B is empty, then it is a general fact that Σ˜ω(M̄) = X ∩ P(X̄), see [Jen72, Cor. 1.7]. But
otherwise, this need not be true, since X is the rudimentary closure of X̄ ∪ {X̄} only under
functions which are rudimentary in ~A. So Σ˜ω(M̄) will contain each Bi as an element, while this
is not necessarily true of X.

4Note that, letting κ = crit(F), this implies that P(κ) ∩ X̄ = dom(F) = P(κ) ∩X.

19

Let ~x1 = Fr(t1) and ~x2 = Fr(t2). By renaming the free variables, we may assume
that Fr(t1) ∩ Fr(t2) = ∅. Then we have:

M |= (v = w)[(v/valM̄ [t1](~a1)), (
w/valM̄ [t2](~a2))]

⇐⇒ M̄ |= T ~̇A; ~̇B
(v = w, v, t1, w, t2)[(~x

1

/~a1), (~x
2

/~a2)]︸ ︷︷ ︸
ψ[~a1,~a2]

⇐⇒ M̄ ′ |= ψ[π̄(~a1), π̄(~a2)]

⇐⇒ M ′ |= (v = w)[(v/valM̄′ [t1](π̄(~a1))), (
w/valM̄′ [t2](π̄(~a2)))],

so valM̄
′
[t1](π̄(~a1)) = valM̄

′
[c2](π̄(~a2)). Hence, the definition of π is independent

of the representation of x.
Now it is obvious that π̄ ⊆ π, since for a ∈ X̄, we have

π(a) = π(valM̄ [π1
0](a)) = valM̄

′
[π1

0](π̄(a)) = π̄(a);

as a reminder: π1
0 is the code for the projection of one-tuples onto the first co-

ordinate, i.e., the identity.
I want to show that π : M −→F M

′.
The proof that showed that π is correctly defined also shows that π is Σ0

preserving; instead of “(v = w)” one can use an arbitrary Σ0 formula. Also, let
κ = crit(F) and λ = lh(F). Then, since π̄ ⊆ π and π̄ : M̄ −→Σω

F M̄ ′, it follows
that for x ∈ P(κ)∩M , π(x)∩ λ = π̄(x)∩ λ = F (x). Set (in analogy to Definition
4.4):

Γ0(M,κ) := {h ∈M | ∃n < ω h : κn −→M},
D0(M,κ, λ) := {〈~α, f〉 | f ∈ Γ0(M,κ) ∧ dom(f) = κlh(~α) ∧ ~α < λ}.

I have to show that

(?) X ′ = {π(f)(~α)|〈~α, f〉 ∈ D0(M,κ, lh(F))}.

First, for f ∈ Γω(M̄, κ), I am going to define the value π̄(f), as in Definition 4.3: If
f is defined in M̄ by φ(y, x, z), i.e., if there is a p ∈ M̄ such that for all b, a ∈ |M̄ |,

b = f(a) ⇐⇒ M̄ |= φ[b, a, p],

then let π̄(f) be the function defined in M̄ ′ by φ in the parameter π̄(p). That this
is a correct definition of a function is a consequence of the fact that π̄ is elementary.
We get:

(1) For f ∈ Γω(M̄, κ), π̄(f) = π(f).

20

Proof of (1). Let b = f(a) ⇐⇒ M̄ |= φ[b, a, p]. Since f ∈ Σω(M̄), it follows
that f ∈ X, by assumption. So let t be a rudimentary term, and let ~a ∈ X̄ be
such that

f = valM̄ [t](~a).

Let d = dom(f) ∈ X̄. So d = κn for some n < ω.
Then dom(π̄(f)) = π̄(d) = π(d). For arbitrary b, b′ ∈ X̄, we get:

M̄ |= φ[b′, b, p] ⇐⇒ b′ = f(b)

⇐⇒ M |= 〈b′, b〉 ∈ valM [t](~a)

⇐⇒ M̄ |= ψ[b′, b,~a].

Here,
ψ = T ~̇A; ~̇B

(〈u, v〉 ∈ w,w, t).

So we have:

M̄ |= ∀b′, b (ψ[b′, b,~a]←→ φ[b′, b, p])

⇐⇒ M̄ ′ |= ∀b′, b (ψ[b′, b, π̄(~a)]←→ φ[b′, b, π̄(p)]).

Here I used the full elementarity of π̄. Hence, for arbitrary b′, b ∈ X̄ ′, the following
holds:

π(f)(b) = b′ ⇐⇒ M̄ ′ |= ψ[b′, b, π̄(~a)]

⇐⇒ M̄ ′ |= φ[b′, b, π̄(p)]

⇐⇒ π̄(f)(b) = b′.

This is what was claimed. 2(1)

The proof of (1) actually shows that if for X ∈ Σ˜ω(M̄) we define π̄(X) to be
the set defined over M̄ ′ by the same formula that defined X over M̄ , with the
parameters moved by π̄, then π̄(X) = π(X).

Now I can approach the proof of (?). To this end, let x ∈ X ′. Then

x = valM̄
′
[t](~b),

for some term t ∈ T(~̇A) and elements ~b = b1, . . . , bn ∈ X̄ ′. I may assume that

t = 〈c, 〈~x,Ω〉〉, where ~x are the free variables of t and c ∈ C(~̇A).
Since π̄ : M̄ −→Σω

F M̄ ′, there are 〈~α1, f1〉, . . . , 〈~αn, fn〉 ∈ Dω(M̄, κ, lh(F)) such
that we have:

bi = π̄(fi)(~α
i)

for 1 ≤ i ≤ n. So by (1), bi = π(fi)(~α
i).

21

Let fi : κli −→ X̄. Set: m =
∑

1≤i≤n li. Now define a function g : κm −→ X
by:

g(~γ1, . . . , ~γn) = valM̄ [t](f1(~γ1), . . . , fn(~γn)).

I want to show that x = π(g)(~α1, . . . , ~αn). A first step in this direction is:

(2) g ∈ X.

Proof of (2). The function

h1(~z1, . . . , ~zn, g1, . . . , gn, v) = 〈g1(〈~z1〉), . . . , gn(〈~zn〉), v〉

is (uniformly) rudimentary by [Jen72, 1.1.(d),1.3.(b)].
Let h = valM̄ [t], that is, h is the function mapping ~z to valM̄ [t](~z). Then

there is a function h′ which is rudimentary in ~A, so that for all ~z, h(~z) = h′(~z, X̄).
Now

g = 〈(h′ ◦ h1)(~γ1, . . . , ~γn, f1, . . . , fn, X̄) | ~γ1, . . . , ~γn ∈ κm〉
= h2(κm, ~f , X̄),

where h2 is rudimentary in ~A. This shows that g ∈ X, as X is closed under
functions rudimentary in ~A, and ~f, X̄ ∈ X. 2(2)

(3) π(g)(~α1, . . . , ~αn) = x.

Proof of (3). By (2), I can choose c̃ ∈ C(~̇A) and ~d ∈ X̄ so that

g = val
~A[c̃](~d, X̄).

Since fi ∈ X, for 1 ≤ i ≤ n, I can choose ci ∈ C(~̇A) and ~di ∈ X̄ in such a way that

fi = val
~A[ci](~d

i, X̄).

Let ki + 1 be the arity of the term associated to ci, i.e., let ~di be a ki-tuple. Set:

p =
∑

1≤i≤n

ki and q = m+ p+ 1.

Using [Jen72, Prop. 1.3. (b), 1.1.(d)] it is easy to see that for k < ω, the following
function is rudimentary:

appk(f, x0, . . . , xk−1) =

{
f(x0, . . . , xk−1) if it exists,
∅ otherwise.

Let ˙appk ∈ C be a code for appk, i.e., appk = val[˙appk].
In the follwing, I will construct a code c′ for an m-ary function rudimentary

in ~̇A, so that “val
~A[c′] � κm = g” – this has to be taken with a grain of salt.

Formulating the exact relation forces us to go through the following notational
hell:

22

g(~γ1, . . . , ~γn) =

= val
~A[c ◦ (˙appl1 ◦ (c1 ◦ (πqm, π

q
m+1, . . . , π

q
k1−1, π

q
q−1), πq0, . . . , π

q
l1−1),

˙appl2 ◦ (c2 ◦ (πqm+k1
, πqm+k1+1, . . . , π

q
m+k1+k2−1, π

q
q−1),

πql1 , . . . , π
q
l1+l2−1),

. . .,
˙appln ◦ (cn ◦ (πqm+k1+...+kn−1

, πqm+k1+...+kn−1+1, . . . ,

πqm+k1+...+kn−1+kn−1, π
q
q−1),

πql1+...+ln−1
, πql1+...+ln−1+1, . . . , π

q
l1+...+ln−1+ln−1),

πqq−1)]

(~γ1, . . . , ~γn, ~d1, . . . , ~dn, X̄).

:= val
~A[c′](~γ1, . . . , ~γn, ~d1, . . . , ~dn, X̄).

For arbitrary ~γ1, . . . , ~γn ∈ κm, we get:

M |= (val
~A[c̃](~d, X̄))(~γ1, . . . , ~γn) = val

~A[c′](~γ1, . . . , ~γn, ~d1, . . . , ~dn, X̄),

by definition of c′. This means,

M̄ |= ψ[~γ1, . . . , ~γn, ~d1, . . . , ~dn],

where
ψ(~x, ~y) = T ~̇A; ~̇B

((v(~x) = w), v, 〈c̃, 〈~y,Φ〉〉, w, 〈c′, 〈~x, ~y,Φ〉〉).

So we get:
M̄ |= ∀~γ1, . . . , ~γn ∈ κ ψ[~γ1, . . . , ~γn, ~d1, . . . , ~dn],

and as π̄ is elementary,

M̄ ′ |= ∀~γ1, . . . , ~γn ∈ π̄(κ) ψ[~γ1, . . . , ~γn, π̄(~d1), . . . , π̄(~dn)],

in particular
M̄ ′ |= ψ[~α1, . . . , ~αn, π̄(~d1), . . . , π̄(~dn)].

By definition of ψ, and applying Lemma 3.3, this means:

M ′ |= (val
~A′ [c̃](π̄(~d), X̄ ′))(~α1, . . . , ~αn) =

= val
~A′ [c′](~α1, . . . , ~αn, π̄(~d1), . . . , π̄(~dn), X̄ ′).

23

Unraveling the definition of c′, we get:

π(g)(~α1, . . . , ~αn) = (val
~A′ [c̃](π̄(~d), X̄ ′))(~α1, . . . , ~αn)

= val
~A′ [c′](~α1, . . . , ~αn, π̄(~d1), . . . , π̄(~dn), X̄ ′)

= val
~A′ [c]((val

~A′ [c1](π̄(~d1), X̄ ′))(~α1), . . .

. . . , (val
~A′ [cn](π̄(~dn), X̄ ′))(~αn), X̄ ′)

= val
~A′ [c](π(val

~A[c1](~d1, X̄))(~α1), . . . ,

. . . π(val
~A[cn](~dn, X̄))(~αn), X̄ ′)

= val
~A′ [c](π(f1)(~α1), . . . , π(fn)(~αn), X̄ ′)

= val
~A′ [c](b1, . . . , bn, X̄

′)

= x,

which was to be shown. This proves (3), (?), and hence the theorem.
In the following, I will provide the most familiar context in which the previous

theorem can be applied. I will freely use fine structural concepts due to Jensen,
for which [Zem02] serves as a basic reference.

Theorem 4.10. Let M be an acceptable J-structure with R∗M 6= ∅. Let F be an
extender on M at (κ, λ), where ρωM > κ, and let π : M −→∗F N . Then π is fully
elementary.

Proof. For k < ω, let
πk : M −→k

F Nk

be the k-ultrapower (see [Zem02, Section 3.5]). Let p ∈ R∗M . Then p � k ∈ Rk
M ,

and so, by [Zem02, Lemma 3.5.1], πk(p � k) ∈ Rk
Nk

. Now define

σm,n : Nm −→ Nn

by setting σm,n(πm(f)(~α)) = πn(f)(~α), for m ≤ n, f ∈ Γm(M,κ) (i.e., f a good

Σ
(l)
1 (M)-function, for some l < m), and ~α < λ. Then σm,n is Σ

(m)
0 -preserving, since

the Loś theorem holds for Σ
(m)
0 -formulae. So if φ(x) is Σ

(m)
0 , then we get:

Nm |= φ(πm(f)(~α)) ⇐⇒ ~α ∈ F ({~β < κ |M |= φ(f(~β))})
⇐⇒ Nn |= φ(πn(f)(~α)).

Since σm,n(πm(p � m)) = πn(p � m) ∈ Rm
Nn

, [Zem02, Lemma 1.5.2] shows that

σm,n : Nm −→Σm Nn,

24

and the same lemma yields that

πm : M −→Σm Nm.

Now let π : M −→∗F N be the ∗-ultrapower. Define

σn : Nn −→ N

by setting σn(πn(f)(~α)) = π(f)(~α). Then clearly,

〈N, 〈σn | n < ω〉〉 = dir lim(〈〈Nm | m < ω〉, 〈σm,n | m ≤ n < ω〉〉).

We have
σn ◦ πn = π,

for all n < ω: σn(πn(x)) = σn(πn(constx)(0)) = π(constx)(0) = π(x). Here is a
commutative diagram clarifying the situation (for arbitrary m < n < ω):

Nn

M
π -

πn

- 6

N

σ
n

-

Nm

σm,n
σm

-

π
m

-

Obviously, since σn,l is Σn-preserving, for all l ≥ n, it follows that

σn : Nn −→Σn N.

So since also πn : M −→Σn Nn, it follows that π is Σn-preserving, for every n < ω,
and hence that π is fully elementary.

Corollary 4.11. Let M = JE
M

α+1 be a premouse of height α + 1. Let M̄ = M ||α,
and let G = EM

α . Let F be an extender on M̄ , such that crit(F) < ρω
M̄

. Then F is
an extender on M also. Let

π̄ : M̄ −→∗F M̄ ′,

where M̄ ′ is transitive. Let M̄ ′ = 〈JE′M̄
′

α′ , G′〉, and let M ′ = 〈JEM′

α′+1, ∅〉, where E ′ is

the extender sequence EM̄ ′_〈G′〉 (in the obvious sense). Then the following is a
correct definition of a function π : M −→M ′:

π(valM̄ [t](~a)) := valM̄
′
[t](π̄(~a)),

25

where t ∈ T(Ė, Ġ) and ~a ∈ |M̄ | is an assignment of its free variables. Moreover,

π : M −→F M
′ and π̄ ⊆ π.

Proof. Since M̄ is a proper initial segment of a premouse, it is sound, and so, in
particular, it has a very good parameter. So by the previous theorem, π̄ : M̄ −→Σω

M̄ ′. But then it is clear that π̄ : M̄ −→Σω
F M̄ ′ is the Σω-ultrapower: Every member

of M̄ ′ is of the form π̄(f)(~ξ), where f not only is definable in M̄ ′, but is even a

good Σ
(n)
1 -function, for some n < ω. Vice versa, if f : κm −→ M̄ is a function

which is definable over M̄ , then since π̄ is fully elementary, it makes sense to let
π̄(f) : π̄(κ) −→ M̄ ′ be the function defined by the same formula over M̄ ′, with the

parameters used in the definition moved by π̄. Then clearly π̄(f)(~ξ) ∈ M̄ ′, for all
~ξ < λ.

It is easy to check that |M | = rudEM �α,G(|M̄ |). So, knowing that π̄ : M̄ −→Σω
F

M̄ ′ is the Σω-ultrapower, Theorem 4.9 (with ~A = EM � α,G, and ~B empty) can
be applied to get the desired conclusion.

References

[Dev84] Keith J. Devlin. Constructibility. Springer, Berlin, 1984.

[Fuc] Gunter Fuchs. λ-structures and s-structures: Translating the models. In
preparation.

[Fuc03] Gunter Fuchs. λ-Strukturen und s-Strukturen. PhD dissertation,
Humboldt-University, Berlin, Germany, Department of Mathematics,
May 2003. http://www.edoc.hu-berlin.de.

[Jen72] Ronald Jensen. The fine structure of the constructible hierarchy. Annals
of Mathematical Logic, 4:229–308, 1972.

[Jen97] Ronald Jensen. A new fine structure for higher core models. Handwritten
Notes, 1997.

[MS94] William J. Mitchell and John R. Steel. Fine Structure and Iteration Trees.
Lecture Notes in Logic 3. Springer, Berlin, 1994.

[Zem02] Martin Zeman. Inner Models and Large Cardinals. Springer, Berlin, 2002.

26

