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Summary. By the use of conditioning, we extend previously obtained results on
the asymptotic behavior of partial sums for certain triangular arrays of
dependent random variables, known as Curie-Weiss models. These models
arise naturally in statistical mechanics. The relation of these results to multiple
phases, metastable states, and other physical phenomena is explained.

1. Introduction and Physical Background

This paper continues the analysis. begun in [4], of the asymptotic behavior of sums
S, of certain dependent random variables which occur in statistical mechanics.
Thesc random variables arc associated with the Curie-Weiss, or mean field model, a
lattice model of {ferromagnetism [17. [8: §3], [11; Ch. €].

We briefly indicate how the results of the present paper extend those of its
predecessor. The asymptotic behavior of S, depends crucially upon the nature of
the extremal points of a function G which we associate with the model. In [4], a
weak law of large numbers-type result for S, involving global minima of G. was
proved. This is restated here as Theorem 2.1, In addition, in the casc that G has a
unique global minimum a central limit thcorem-type refinement was obtained.
Only in special cases is the limit Gaussian. In gencral it has a density
proportional to exp(—Ax?*(2K)1), A>0, ke{l.2,...}.

Onc of the purposes of this paper is to prove such a result for arbitrary G
(Theorem 2.2). Furthermore. through the use of conditioning we will scc how to
extend Theorems 2.1 and 2.2 to results involving local minima of G. Our results arc
stated in Sect. I and proven in Sect. I11.
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We spend the next part of this section explaining in elementary terms some of
the physical ideas underlying our results. Although these results could have been
presented in a strictly mathematical context. we feel that the physical background
provides a better setting. These physical ideas include the notions of phase
transition, multiple phase, metastable state, and Gibbs free energy.

Let d be a fixed positive integer and A a finite subset of Z%. A ferromagnetic
crystal can be described by random variables X' which represent the spins. or
magnetic moments, of the atoms at sites je A; A describes the macroscopic shape of
the crystal. In the Curie-Weiss model, the joint distribution at fixed temperature
T>0 of the spin random variables is given by

1 5
—— X ( (Y x .)2> dp(x,). (1.1)
Zf P 21A4| j;l ! ,r]—[4 !
In (L1), =T "', Z,(f) is a normalizing constant (also known as the partition
function). | A is the cardinality of A. and p is the distribution of a single spin in the
limit -+ 0. We assume that p is in the class .4 of non-degencrate Borel probability
measures on R which satisty
2

. b)
Jexp (5) dp(x)<x, all b>0. (1.2)

Here and below all integrals extend over R unless otherwisc stated. In the Curie-
Weiss model (1.1), we will take (without loss of generality)d=1 and A={1,....n},
where n is a positive integer. We write » instead of A in the notation for the spin
random variables and the partition function.

We define S,(f)= > X7 which represents the total magnetization of A. We are
i 1

i
interested in studying the asymptotic behavior of S, (f8) in the so-called thermody-
namic Himit 2 -» o. This behavior can be described physically in terms of multiple
phases and metastable states. We explain these concepts for a gas-liquid system
rather than for a ferromagnctic system because they are easier 1o visualize in the
former casc. Afterwards, we rcturn to the Curie-Weiss model. For additional
background on the physics, see [3].

Consider a substance in a gaseous stale occupying i container at a specified
pressure. We assume that a movable piston is attached to the container so that the
pressure may be varied at constant temperature with a consequent variation in the
volume and density of the substance. The state of the substance is considered stable
if it is stable under perturbations; e.g., if the container is shaken momentarily, then
the substance will soon return to its original state. In general. there exists a critical
temperature 7 such that the following behavior occurs. For T2 T, the stable state
of the substance remains a gas, no matter how much it is compressed, the density o
constantly increasing as the pressure P s increased. On the other hand, for T< T,
the gas, upon being compressed to a certain pressure £y = Fy(T) and corresponding
density d, =d,(T), condenses at constant pressure to a liquid of higher density d;
=d,;(T). The gus and the liquid are two pure phases ol the substance and the
phenomenon just described is a phase transition. For de(d;.d;) the two phascs
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COeXISt as a mixture, or a multiple phasc. which represents a stable state of the
substance for the given values of P’ =land T{7:§2.1). For later reference, we note
the distribution function of the mass density (i.c., mass per unit volume) of the
mixed phase. We denote by A, the proportion of the gaseous pure phase present in
the mixed phase and by 4, the analogous quantity for the liquid (so that 4, + 4,
=1 and A,d;+A4,d, =d). The normalized distribution function of the mass
density of the mixed phasc is easily seen to be

Agotw—d)+ A, dw—d,). (1.3)

where d(w—m) denotes the unit point mass with support at m.

It turns out that for T<T.. other behavior is possible. By exercising care one
may compress the gas ubove the pressure £ and density d,; up to a pressurc £,
=K(T) and corresponding density dg=dy(T), without any of the liquid phasc
appearing. This form of a substance is known as a supersaturated vapor. Now fix a
valuc Pe(R,. B). As cxplained in [7;§2.2], effects such as surface tension prevent any
appreciably large droplets of the liquid phase from spontaneously forming.
However, droplets may be induced to form by perturbing the system in one of
several ways; e.g.. by introducing droplets from the outside (called sceding) or by
vigorous shaking. which causes molecules (o clump together as droplets. Hdroplets
larger than a critical size, which depends on P and T. do form, then the substance
will quickly go over into the stable liquid state corresponding to P and 7. Thus. the
supersaturated vapor state is unstable under the perturbations just described. 1t is
called a metastable statc.

The critical sizc of droplets (which determincs the size of the perturbation)
necessary (o causc a metastable state to go over to a stable state decreases as P
increases. If P is any pressurc greater than R(T), then the critical size is of the order
of a molecular radius and droplets larger than the critical size form spontaneously.
Supersaturation cannot be pushed beyond this point. This extreme metustable state
corresponding to P=F(T) is calied a spinodal state. See [10] for additional
information on this matter.

There is another possible metastable state of the substance known as a
superheatcd liquid. With care. one may decompress the liquid phasc below the
pressure £y and density d, down to a pressure £, = B, (T) without any of the gaseous
phasc appearing, Superheating can be discussed in a manner similar to super-
saturation if one considers bubbles instead of droplets.

In thermodynamics, these phenomena can be described in terms of the Gibbs
frec energy. We emphasize one relevant fact. For fixed P and T. a stable state is a
state which minimizes the free energy over all possible states which the substance
may assume [7; p. 24]. On the other hand, a metastable state minimizes the free
cnergy over all states subject to an additional constraint: e.g.. in the case of
supersaturated vapor, this state minimizes the free energy over all stales con-
strained so that no large driplets occur. One may say that a stable statc is a global
minimum of the frec energy and a metastable state, a local minimum.

The goal of statistical mechanics is to derive the macroscopic properties of
substances from the laws of molecular interactions. In classical statistical
mechanics, a stable state of a substance is described by a probability distribution on
phase space, the space of all possiblc configurations of the molcculces constituting
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the substance. For the Curie-Weiss model, this distribution is given by (1.1). In [9].
Penrose and Lebowitz address the problem of basing a rigorous theory of
metastability upon classical statistical mechanics. As a key step in realizing
metastable statcs, it is proposed there that the points in phase space be suitably
restricted. For example, in the case of a supcrsaturated vapor, one should consider
only configurations where no droplets occur. This restriction is implemcented
probabilistically by means of conditioning. For a rigorous treatment of metastable
states in a statistical mechanical model of a gas-liquid system, see [9].

We return 1o the Curie-Weiss model. The analogue of the Gibbs free energy in
this model is the canonical frec energy f = f (f). defined by the formula

f(h= L im

1.4
Boaeuwn T 4
We define the functions ¢ =, (s) and G=G (f.5) by the formulae
¢,(5)=In fexp(sx)dp(x) (1.5)
and
G,(p. .s):lgf~ —(B). (1.6)
It is not hard to show (that
) 1. .
'f"m):/f mf{(:’,(ﬂ, s): sreal}; (1.7)

sce [12; p. 100] for a special case. Until further notice, we fix a value of >0, We
shall drop 8 in the notation for S, and G when there is no danger of confusion:
similarly for p in the notation for f.g. and G. In[4; Lemma 3.1]. G was proved to be
real analytic and to tend to + 20 as |s}-» 2. Thus, G must have global minima.
which can be only finite in number. Definc C = C, as the discrete, non-empty set of
real numbers m such that m is either a global minimum, a local minimum, or a point
of inflection of G. If me C is a minimum of G (global or local). then therc exists a
positive integer k=k(m) and a positive real number 4= /{m) such that

s (m)(s —m)*

G(s)=G(m)+~ o0 +O0((s—m)*" ')y as s >m. (1.8)

If meC is a point of inflection of G, then an expansion like (1.8) holds but with &
=k(m) a hall-integer greater than or cqual to 3/2 and /= /i(m) a non-zero real
number. In cither casc, k(m) and 2.(m) are called the type and strength, respectively,
of the extremal point m. We define the maximal type k* of G by the formula

k* =max {k(m): m a global minimum of G}.
Note that if k=1,

i(m)=B— B2 " (S m). (1.9)
while if k> 1, /(m)= — 2 ¢ 28 (f3m).
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Although the function G has no apparent physical significance, we will soon see
a direct analogy with the situation for a liquid-gas system. Global minima of G
ol maximal type will correspond to stable states (with multiple global minima
representing a mixed phase and a unique global minimum a pure phase). local
minima of G will correspond to metastable states. and points of inflection of G will
correspond to spinodal states.

First suppose that G(f.-) has 0 global minima of maximal type at m,, ..., m,.
Pell.2, ...} (possibly together with other global minima of non-maximal type). It
was proved in [4] and is restated in Theorem 2.1 below that

> ]

5,,'(/“ z, jz:’ b d(w—m), (L.10)
where %= denotes convergence in distribution as # - 7 and the strictly positive
weights b, can be written explicitly in terms of the types k(m;) and the strengths
4(m;). The right-hand side of (1.10) clearly resembles the distribution function (1.3)
which describes a gas-liquid multiple phase. In order to reinforce the connection,
we point out that the notion of mass density for a gas-liquid system is replaced by
magnetization per site for a ferromagnetic system. Since # 'S, is the (random)
magnctization per sitce for a finite system of size n, we may interpret (1.10) as saying
that each global minimum m; of maximal type corresponds to a pure phase of the
Curic-Weiss system in the thermodynamic limit; the magnetization per site of this
pure phase is m;. If f =1, then we have a unique pure phase. If 0> 1. then we have
multiple phdsus each occurring in proportion to h;. Thus, S, obeys a weak law of
large numbers if and only if the Curie-Weiss model i m the thtrmodynamlc limit has
a unique pure phase. We note that only the global minima of maximal type
contributc to the limit distribution in (1.10). (Global minima of non-maximal type
correspond to stable states which do not contribute to this limit distribution and
which should thus be thought of as being absent from the mixed phasc.)

At the end of this introduction we describe a class of measures p .4 with the
following propertics: there cxists a value f§ of fi. the inverse critical temperature,
such that G, has a unique global minimum at the origin for 0< <8, and exactly
two Elobdl mmlma of cqual type, for > f5,. This means that as T decreases past T,
=f-", the stable state of our system switches from a pure phase with zero
mdgnctization per site to a mixture of two pure phases each possessing 4 non-zero
magnetization per site. Thus, the system exhibits a phasc transition at T,.

Returning to the general case of pe#, we can go further and analyze the
fluctuations of S, (f)/n around its magnetization in each pure phasc. Given Q, a
sequence of random variables, F a probability distribution on R, and h€[0, 1]. we
write @, --"»hF to mean that for any continuous function / on R vanishing at
+ .

hml()‘(Q =h| f(w)dF(w):

this sense of convergence is known as vague convergence [2; §4.3]. We show in
Theorem 2.2 that

S.(By—nm;

4 ¥ ”
P T TR (L11)
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where F is an explicitly determined probability measure depending on k(m)). 7.(m;))
and f. F is Gaussian if and only if k(m;)=1. The number h;. which is the same
number appearing in (1.10), is the proportion of our system in the phase with
magnctization m;. This result was proven in (4] in the special case of a unique pure
phase.

We now show the connection between a local minimum m of G and a metastable
statc. According to Penrose-Lebowitz, one rcalizes this state by modifying thejoint
distribution (1.1). We denote by 1, the indicator function of a subsei T of R". We
define the new joint distribution

1 x)?
Z W iy, {(X1s s X, ) exp (/)’ (27—;—'! ) [Tdpix)). (1.12)

=elm—amlul}
1 " elm— Jj

wherea>0is given and Z, () is the new normalizing constant. Instead of aliowing
the spins to take on arbitrary real values in the support of p, (1.12) restricts the
magnetization per site to be in an a-neighborhood of m. Integration with respect to
the distribution (1.12) corresponds to conditioning.

Theorem 2.3 states the analogue of (1.10) for m a local minimum of G:
conditional upon n~ 'S, being near m,

SAp . .
%/) = 3w —m). (1.13)

Thus, under the constraint that the (random) magnetization per site be near m for
eachne{l, 2, ...} thestate in the thermodynamic limit will have magnetization per
sitc precisely equal to m. This is consistent with the identification between a local
minimum of G and a metastable state. We also study the fluctuations of S, in a
metastable statc corresponding to a local minimum m of G. We prove that
conditional upon 1~ 'S, being near m.

Sn(/})_nm ‘
o1 172k m) “ me;.uml;e (1.14)

b4

where the latter measure is the same as in (1.11). In order to handle a spinodal state.
which corresponds to a point of inflection of G. say at m, we replace the indicator
function in (1.12) by the indicator function cither of the set in ! Y x;e(mom+a]}
or of the set {n" 'Y x.e[m—a m]} according to whether Ai(m) is positive or
negative. Analogues of'(l.13)—(1.l4) are then valid.

We illustrate these limit theorems by finding examples of measures p which
satisfy the various hypotheses. Let p be any measure in 4 such that for (say)
=1.G,, has a unique global minimum at the origin of type k= 2. The existence of
such measures was proved in [4]. Then for f¢(0. 1), G, will have a unique global
minimum at the origin. but of type 1. and so S,(f) satisfics a weak law of large
numbers and a central limit theorem. For =1, the weak law of large numbers still
holds; however, concerning fluctuations, S,(f) must be scaled by n', ¢ =2k/(2k
— 1) <2, for a non-trivial limit to exist: this limit is non-Gaussian. Concerning the
situation for f1> 1. we single out a class of measures which are of some physical
signilicance. Assume that p is any symmetric measure in 4 which satisfies the

o T—— e
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Griffiths-Hurst-Sherman inequality [6].[5] (d* ¢,(5)/ds* S0 for all s = 0. where ¢,
is defined in (1.5)) and which has variance one. An example is the symmetric
Bernoulli measure ) [ 5(x— 1)+ (x + 1)]. One may then show that for fe0. 1] G,
has the properties mentioned at the beginning of this paragraph. Furthermore. for
f>1, G, will have exactly two global minima, each of type 1. at points +m. m
=m(ff}>0.(Thus, §_=1 for the corresponding Curie-Weiss model.) For this same I
and any h real. let d p, (x) be the probability measure proportional to exp(hxydp(x).
The parameter & corresponds to an external magnetic field acting at each site of the
ferromagnet. One may prove that for fixed f>1 there exists a number 1> 0 such
that G, has two global minima for h=0, a global minimum and a Io~cal minimum
for he(—h, h), a global minimum and a point of inflection for h= + /. and a single
global minimum for |4} > A. In Theorem 2.6 and in the discussion which follows that
theorem. we statc more general results concerning the existence of measures p such
that G, has prescribed extremal properties.

II. Statement of Results

Our first theorem, proved as Theorem 3.8 of [4]. is included for reference.

Theorem 2.1. Given pe 4, let m . ... mg denote the set of global minima of muximal
type k* of G,. Define

iy

h(m)=A(m,) - 1i2k", b(m)=b(m,) | Y him).
{j=1

1] ’
di(w)=}y b(m;) 3w —m,).

j 1

Then

2 51, (2.1)
n

Remark. This was stated in [4] for p=1

Our next theorem was proved in [4] for the special case that G, has a unique
global minimum,

Theorem 2.2. Given e A, let m be one of the global minima of maximal tvpe k* of G,
Then

S —nm
n e
TTaw - bhim) "k*.um;.;h

n'
where F, . 4 is defined by

exp(—wi2a?)dw

i Ten(mwetdw i k=1 N
k,:../r"] tf)(_p(:/..\yft;"(z_k'_)!)_dw . (2.2)
fexp(—2w**42k))dw i k>1.
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Here.a® =)' =B 'sothat for 2=imyasin(19).a>=([¢"(fm)] '—f) . If mis
not a globul minimum of G, of maximal type. then (S, —nm)in* ¥ >0 for uny ¢> 1.

Remark. Comerning the form of (2.2) for the case k=1, recall (1.9). Also notc that if
mis a non- umque global minimum of maximal type. then the limiting distribution
of (S, —nm)in' V¥ is defective.

Thcorems 2.3-2.5 are analogucs of Theorems 2.1-2.2 obtained by conditioning.
For a random variable @ and an event A. we writc P(Qedw|A) to denote the
measure p(dw) defined by 1(F)=P(QeTI|A4) for Borel scts I in R. Given F a
probability distribution on R. we write (Q,]4,)—7» F to mean P(Q, edwid,)
converges weakly to d F(w).

Theorem 2.3. Given pe 4, for any me C, there exists a number A =A(m)> 0 such
that the following holds. If m is a local or a global minimum of G,. then for any

ae(0, A)
S, 1S .
(i —e[m—a, m +a]) 25 S(w—m), (2.3)
nin
If m is a point of inflection of G, and A(m)>0, then for any ac(0, A).
S, 1S " .
( -n—"e[m, m+a]) 7w —m). (2.4)
n .

If 2{m) <0, then we condition on n 'S, € [m—a, m] and an analogous result holds.

Theorem 2.4. Given p € 4. choose me C, aglobal or alocal minimum of G,. Then for
any ae(0, A). A us above,

T=1:2k

(S —nm

pl-12k | E[m —a,m +a]) I“k{ml.}.lm}. il (25}

where F opis given by (22

Theorem 2.5. Suppose p €4 is chosen so that G, has a point of inflection m with
Amy>0. Then for any ue(0. A). A us above.

S,

€ Lm 177+(l]) (FanlLi(m)'l—O~ L ))- (26J

where for k2372 and 7.>0., (F_,|[0. %)) is defined by
AUF 0, 2= LW DL AW 2R
L X)) == T
Jexp(—awt 2k Y dw
0

If 2(m) <0, then we condition upon n™ 'S, €m—a. m] and an analogous result holds
with the limit distribution supported on (— x. 0].

We next discuss the existence of measures pe# such that G, has prescribed
extremal points. The case of global minima is covered by the nt.xt theorem. the
proof of which will appear elsewhcre.
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Theorem 2.6. Let 1 he a positive integer: my ... m,. n distinct real numbers:

k... K,. it positive integers. There exists a unigue discrete measure pe .4 which is
supportedon(k, + ... + k,) points such that Gp has a global minimum at edch m; of type
k.j=1.... nAf pe B isdistinct from p and G, has a global minimum at each m; of

type k. j=1, ... 9. then p is not supported on fewer than (k, + ... +k, + 1) points and
4y (m; )</ﬂ(m ) j=1.....n.

An analogous result covering local minima and points of inflection is lacking.
On the other hand. it is not difficult 1o gencrate examples. Concerning local
minima, suppose that in Theorem 2.6 my <m, <...<m,. Given h real, let d p, (x) be
the probability mcasurc proportional to exp(hx)-dj(x). By continuity. G, has
local minima nearm;, j=1,2, ...,n— 1. provided h is positive and sulficiently small.
We arc also able to construct p € 4 such that G, has countably infinitely many local
minima. The existence of p e 4 such that G, has a point of inflection was pointed
out at the end of Sect. 1,

IIL. Proofs

We first prove Theorem 2.4 in the case k(m)>1: the casc k(m) =1 is handled
similarly. We then outline the proof of Theorem 2.5, pointing out the relevant
differences from the proofl of Theorem 2.4, Theorem 2.3 follows from Theorems 2.4
and 2.5; it could also be obtained directly by using similar arguments. Finally we
prove Theorem 2.2. The main technical tools for proving Theorem 2.4 arc a
Gaussian transform and a transfer principle applied to the characteristic function
of

S —
( Zhm
n

S
el
it e [ —u,m+ a]) .

The Gaussian transform simplifies the characteristic function at the expensc of
introducing a new variable w; the transfer principle transfers the restriction on
i 'S, 1o a restriction on w. Dominated convergence does the rest.

To ease the notation, we set y=1/2k(m) and =1, General f§ can be handled
analogously. Giiven k{m) > 1, we must find A4 >0 such that for each r real and any
ue(0. 4)

o (S5 e (5507 e

tends, as n » o, to

| exp(irw)exp(—4 nz‘"(Zk)')dw
[exp(—u\“/(’>k)')dn
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where k=k(m) and i=_4(m). Delining

dp,,(x)=exp(mx)dp(x)/|exp (mx)dp(x),

we rewrite (3.1) as

{ exp (zrn u+2u )d\ (1)
__‘|u| a - : (32)

f CXP( u? ) dv,(u)

v, in (3.2) denotes the distribution of the random variable

o2

. nooy . .
The Gaussian transform replaces exp (5 uz) in the numerator and denominator of
(3.2) by '

H

Y x; —nm) n on (IR". n dp,(x ))

je=1 i

(n/2m)* fexp(—nw?/2) exp(nwu)dw.

After we cancel the terms (n/27)t and make the change of variable w+ :r PR
the right-hand side of (3.2) becomes "

exp (2 ’1_ ) ‘exp(rrn w)expt—nw?2) | exp(nwu)dv,dw
) - _— |u| < @ . (33)
jexp(—nw*/’Z) [ exp(nwuydy,dw

lulsa

The change of variables is justified by the analyticity of the integrands in (3.3) as
functions of w complex and the rapid decrease of thesc integrands to zero as
IRew|— x, [Imw]L)rln" ' Since k(m)>1, we have that 1 —27>0 and thus
exp(r?/2n' %7} »1asn - o for cach r real. Hence. we may ncglec.t this factor in
(3.3) for the rest of the proof (lfl\(m)— {, then this factor contributes to the limit of
(3.1y which leads to the special form of (2.2) for the case k=1)

Transfer Principle. There exists B>0 depending only on p such that for each
B (0, B)yand for each ae(0, B/ ‘2) and each r real, there exists & = d(u, B) > 0 such that
asn »rx

T
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Jexp(irn'w)exp (-—g wz) | explrwu)dv, dw

et lu| = a
: . noL\ ;
= | exp(irn’w)exp (—-7 w‘) Jexpmwuydv, dw+0(¢ ™). (3.4)
Iwizn S

We prove the transfer principle after we have completed the rest of the proof of the
thcorem. We accomplish the latter by finding a positive number 8 < B such that for
each r real

2
[ explirw)exp (-n’ ket ‘12—) fexp(n' “wuwydv, dw
|w| = Bnr !

» fexp (irw) exp(—Aw?*j(2k) ) dw. (3.5)

Once we have found B, we set A4 in Theorem 2.4 equal to B/2. The thcorem now
[ollows. Ifu (0, B/2). then at the price of an exponentially small error, the quotient
of integrals in (3.3) can be replaced by a quotient of integrals as on the right-hand
side ol (3.4) with B replaced by B (the numerator with r as given. the denominator
with r=0); the change of variables n" w - » w and {3.5) do the rest. The proofof (3.5) is
essentially the same as the proof of (3.30) in [4]. but to keep our presentation self-
contained, we give the details.

We use the previously defined function ¢ (y) =¢,(y). which for =1 is given by
the formula

2
¢, =Infexp(yx)dp(x)= }-2— =G, (3.6)

Since m is a minimum of G, we have
¢’ (m)=m. {3.7)

We now express in terms of ¢ the function of w multiplying exp(irw) on the lefi-
hand side of (3.9):

LWy
exp (——n" B ) fexp(n' Fwuydy, (u)

2 . :
exp (—n' 2; Wé_) fexp (: O xvi—nm)) exp(m) x)|dpix;)
P ‘ ] cxp(mz.\'_,)ﬂdp(xi} o
—exp (27 exp o0 s 2) i - 1)

: exp ( n 5 ) cxp |n {»(/) m+m, dim)—m o

i
w=

| =exp (—n {.2_;2.}_._ (d) (m +£) —hp(m)— ' (m) :)}) (3.8)

To obtain the last cquation, we uscd (3.7). By (1.8) and (3.6). we write

——
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n (d) (m + “) —p(m)— ' (m) l‘—)
n’ n’

no(wy? ’ w2h w2k 1y
2 (n"") —”(21\')! (rF) +n0 ((n_) )

n w? /.
S22 (2k)!

Hence, for each w real, the last expression in (3.8) tends to exp (—Aw2*{(2k)!) as
n > . Let « be any number which satisfies #€(0,4/2k)"). We may find a
number B >0 such that

w wy aw? J '
B —d _ e | ) etk
" (¢ (m+”1_) Olm)—'(m) n"’,) = n3v ((2 k)! J') "

<B. Hence the last expression in (3.8) is bounded by

W
whenever i
;

H
exp (— ( -)'»——::) wz"') whenever |w/n’|< B
(2k)! , T

Setting B=min (B, B), we obtain (3.5) by the dominated convergence theorem.

Proof of Transfer Principle. We shall find B>0 such that for each Be(0. B) and
each ue(0, B/2), therc exists d =d(a. B) such that

[ exp (*ng) | exprwu)dv, dw=0(¢ ") . (3.9)
|wj= R lul 2o
and
| exp (_B“.z) { exp(nwu)d\'”dw=0(e”"“) (3.10)
iz N 2 s

as n—» o¢. The proof of (3.9) is easy. For any B>0, any a€(0, B/2). the left-hand
side of (3.9} is bounded by

¥, ,2 A . B .
2 [ cxp (-n (?-‘——aw)) dw=2 | exp (——nw (;-—u)) dw=0( "), (3.11)

B 2 1 B

B .
with 6,=8 (3_“)' For (3.10), we have to work harder. It is convenient (o

introduce the function ¢*=¢*. known as the Legendre transformation of the
function ¢:

¢y()y=sup{vv—¢,(¥): y real}, o real. (3.12)

The following lemma is proved later. For an open interval J. we denote by J its
closure and by J° the complement of the closure. We define ¢ * =0.
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Lemma. The function ¢* is convex, finite, and smooth (i.e.. real analyiic) on u
certain open ( possibly unhounded ) interval J containing m, $* = + v on J*, and
(p*) is strictly increasing on J. For any u>0,

Prob {U,>u} Scxp(—=n{p*(m+u)— p*(m)—(P*) (m)u}). (3.13)
There exists a number u, >0 such that for all ue(0, u,)

(Y (im+u)y—{(p*) (m)=u+CZ) with E(u)>0. (3.14)

We return to the proof of (3.10). The left-hand side of (3.10) is bounded by

2 \
. W
2Bsup | cexp (—n (7— wu)) dv, (u). (3.15)
IwlE8 |ul>a < 7
The integral breaks up into one over (a. %) and another over {— %, —u). We
work with the first; the sccond is handled similarly. Integrating by parts, we
have

‘ 42
sup [ exp (-n (Et--—n u)) dv, (1)

Wl =B o 2

/ ..'2
< sup exp (—n (“2,_“,”)) Prob { U, > ]
wlzs /

.2

+nB sup ] exp («n (L—wu)) Prob U >u} du. (3.16)

wlzh
Using (3.13). we next bound Prob { U, > u}. where uZa. We claim that

for usu=su,,

* * E3Y .“2;":'24 ”l-
PF(m+u)y—P*(m)—(P*)Y (muz= 00 (3.17)
2-

for u>u,,

I

where (0, =_‘\f(t)d!>0 and 0, =&(u,/2)12>0. We prove (3.17) for m+u in the

. 0
mterval J. Il J =R, then this takes care of (3.17). If J is a proper subset of R,
4 then (3.17) will hold for all m+u in J by the convexity of ¢* and for all m+u in

J¥ since for these values ¢*(m+u)=+ >, {f a<u<u,, then by (3.14)

G*(m+u)—d*(m) —(P*) (m)u

= (*) (m+0)—(p*) (m)) d

u

=+ di=u?2+ [N drzu?2+0,.
0 0

This is the first line of (3.17). If u>u,, then the monotone increase of (p*)
together with (3.14) imply that

(P*) (m+1)—(d*) () =(P*Y <m+“§) —(p*Y (my=E(u,/2) for uztzu,/2.

———————
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Thus, if u=u,. then

[ UP*Y (m+0)—(p*) (m)dt
0

2 [ (@*Y (m+0—($*) (m) d

uyi 2

Z(u—ug/2)E(uy/2) 2 ul),.

This is the second line of (3.17). Now pick B to satisfy 0<1§<()2 and take any
Be(0, B). Using (3.13) and (3.17). we may bound the last term in (3.16) by

u(., w,‘.’ uZ
nB sup | exp (—n r7v+nwu—n—5——n()l)du

IwlgB o

x w?
+nB sup | exp (—n 5 +nwu—nu()z)du

Iwls B uy
=0(ncexp(—-n0))+O0(exp{—nuy(0,—B)})
=0(e "),

whete 3, =min(0,/2. u(0), — B)). The bound O(nexp(—n(,)) follows from the
inequality (—nrw?2+nwu—nu?/2) <0 for all u, w real. The term in (3.16) involv-
ing Prob {U,>a} is handled similarly. We have thus proved (3.9)-(3.10) with o
=min(d,.0,); o, is defined after (3.11). The proof of the transfer principle will
be complete once we have proved the lemma.

Proof of Lemma. As the supremum of a family of affine functions of v. ¢* is
convex. The function ¢’ is strictly monotone increasing since

_[yexprx)dp(x) )2 exp (yx)dp(x)

¢ ()= (}‘ TepGrdr) | om0

{exp(yx)dp(x)
for all y real. We denote by (¢) ' the inverse function of ¢’. By (3.12).
[p*(v)| < o if v=¢'(y) for some J real (which is then unique) and for such =

P*=vi—$F. (V) =T=($) (). (3.18)

This shows that ¢* is smooth (real analytic). Since by (3.7) m=¢'(m). we
conclude that ¢*(m)< oc. By calculus. one can prove that ¢*(v)= + o for ¢ in
the complement of the closure of the range of ¢ Thus, the interval J in the
lemma is the range of the function ¢'. This proves the first sentence of the
lemma.

Let # by any measure in 4. The proof of (3.13) starts from the incquality

[ ldutxp<exp(—np¥(r)) whenever t>{xdu(x). (3.19)

X oy d=1
n

which is a consequence of Cebysev's inequality. Indeed, the left-hand side is
bounded by cxp[ —n(vy—¢,(¥)] for any y>0 and thus by
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expl—n-supley—e,(1):y>0)].
‘ This equals the right-hand side of (3.19) since whencver 1'->j'x du(x). the
i supremum in (3.12) (with p=1) is taken on for y>0. We rcturn Lo the proof of
{3.13). Because
Prob{U,>uj= | ﬂdp,"(.\‘j).
T‘ a4 u
3y
. f"'" d 'x"
[ xdp,(x)= '[;(—(;u J’{:(\)_) =¢'(m)=m,
(3.19) implics that
Prob{U,>u} <exp(-— ngy (m+u)).
Now (3.13) follows since
% (m+u)
=sup{(m+u)y—Infexp((y+m)x)dp(x)+ Infexp(mx)dp(x))
¥
=sup {(m -+ u)(y +m)—(m + uym
- ln_fexp((y +m)xyd p(x) +In ]'cxp(m x)d pix)]
= —m>+p(m)y—um+ P*(m +u)
=@*(m—+ 1) — P* (m) —(H*Y (m)u
The third equality follows from the definition of ¢. the change of variables (v
+m)— . and the definition of ¢*. Concerning the fourth equality, (3.7) implies
() '(m)=m. so by (3.18) ¢*(m)=m? — p(m) and (p*) (m) = .
To prove (3.14), we notice that since m is a minimum of the function 22
— @ (). there exists 1, >0 such that y>¢'(y} for any ye(m, m+u,). Thus. for such
¥ AP*Y () > v or (¢p*) (m+uw)>m+u for any ue(0.u,). Since (¢*)'(m)=m, (3.14) is
; proved. This completes the proof of the lemmu and thus of Theorem 2.4 for
Proof of Theorem 2.5. The proof of Theorem 2.5 is cssentially identical to that of
Theorem 2.4 except that a different version of the transfer principle is used. We
suppose that 2(m)>0 and use previously defincd notation. We propose to show
that for appropriate B>0 and ae(0, B/2).
; N A . 1]
i fexplirn’wyexp (-—2 wz) | exprwuydy, (wydw
! nel0.q)
i . noLy
[ = | exp(irnw)exp (—-;w*) fexplnwu)d v (ydw+0(n ). (3.20)
. . wel0.8) -

This would suffice to obtain the desired result since then




————y
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. v no\
" {exp(irn’w)exp (—~5w') | explnwu)dv, (u)dw
- nefO.a]

1

,)‘—)‘[exp(n1 "wu)dv, (ydw+ O L)

¥ . 12w
= | exp(irwyexp|—n'"?2
wel0, Bn¥]
r

— f e exp(— 2 (m) w2k 2 k(m)) d w.
4]

The above limit is based on the fact that since k(m)23/2, y—4=1/2k(m) -1 <0;
its proof is the same as that of {3.5) given above. To prove (3.20). we define

d H{(w. u)=exp ( — ; wz> expnwu)dv, (u)dw

and then obtain the following estimates (for some d=4(a, B)>0):

[ | dH(w.u)=0( "), (3.21)

wa B uc[0.al

f f dH(w, u)=0(n"?%). (3.22)

we } ue[0.4)

i [ dHww=0( "), (3.23)

welO.Blu>a

I J dHw.w)=0(n 4. (3.24)
welO Bl uec O
The estimates (3.21) and (3.23) arc derived in an identical fas_hion as (3.9) and
(3.10). respectively, while (3.22) and (3.24) follow from the weak convergence
limit
e d Hinm bwon Y

2

= L0y EXP (—‘7+wu-—zu7_) dwdu. (3.25)

The limit (3.25) is a consequence of the central limit theorem applicd to the
sequence of measures d v, (u/ V,”) and the fact that

[x=m)2dp, (x)= ¢ (m)=1
since G, (m)=1—¢"(m)=0. This completes the proof of Theorem 2.5.
Proof of Theorem 2.2. We dcfinc Y, =(S, —nm)/n* for » some positive number,
denote by N, =N, (g} the event {n~'S,e[m—a,m+a]}, and use the fact that for
any Borel set 'R %,

P{Y,el'Y=P{Y,el\N,J PIN,} + P{Y.eI'|N:} P{N®} (3.26)

RS

If I' is hounded and x<1, then there is a finite positive constant C so that
{Yeljcin 'S,—mI<Cn* '}; the latter set is disjoint from N for all large n
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so that PlY,el'IN;} —0. In the case where m is not a global minimum of
maximal type, we let a=1/c and choose a sufficiently small so that t([#m —a.m
+a])=0 (whcere 1 is defined in Theorem 2.1), It follows from (2.1) that PING 0
so that by (3.26), P{Y,eI'} -0 for any bounded {; thus (§,—nmyn't 50 as
desired. In the casc where m is a global minimum of maximal type k*. we let »
=1—172k* and choose « in accordance with Theorems 2.3 and 2.4. It follows
from (2.1) that P{N,} >h(m). Thus by Theorem 2.4 and (3.26) we have for any

bounded I' that

P { Y;Iel"} 14 h(m)M I';\'").Iml.ﬂ'
7

This completes the proof of the theorem.
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