Asymptotics for pseudo-Anosovs in Teichmüller lattices

Joseph Maher
Oklahoma State University

March 2009

Σ closed orientable surface

Def: $\Gamma=\operatorname{MCG}(\Sigma)=\operatorname{Diff}^{+}(\Sigma) / \operatorname{Diff}_{0}(\Sigma)$
[Thurston] Classification of elements of Γ :

- Periodic
- Reducible
- Pseudo-Anosov

Teichmüller space $\mathcal{T}(\Sigma) \cong \mathbb{R}^{6 g-6}$:

- Space of conformal structures on Σ
- Space of hyperbolic structures on Σ

Teichmüller metric: $d(x, y)=\inf \frac{1}{2} \log K$ infimum over $f: x \rightarrow y$ is K-quasiconformal
Γ acts by isometries on \mathcal{T}
moduli space \mathcal{T} / Γ finite volume

Teichmüller lattice: Гy

[Athreya, Bufetov, Eskin, Mirzakhani]

$$
\left|\Gamma y \cap B_{r}(x)\right| \sim C(x, y) e^{h r}
$$

cf [Margulis] [Sharpe's survey article]

Def: $R=$ non-pseudo-Anosov elements of Γ.
Thm[M]:

$$
\frac{\left|R y \cap B_{r}(x)\right|}{\left|\Gamma y \cap B_{r}(x)\right|} \rightarrow 0 \text { as } r \rightarrow \infty .
$$

$Q=$ unit area quadratic differentials $=$ "unit tangent bundle of \mathcal{T} "
$g_{t}: Q \rightarrow Q$ geodesic flow
$\pi: Q \rightarrow \mathcal{T}, S(x)=\pi^{-1}(x)=$ visual boundary

bisector: $U \subset S(x), V \subset S(y)$
$\gamma \in B(U, V) \Longleftrightarrow q_{x}(\gamma y) \in U$ and $q_{y}\left(\gamma^{-1} x\right) \in V$

Thm[ABEM]:

$$
\left|\Gamma y \cap B_{r}(x), \gamma \in B(U, V)\right| \sim \frac{1}{h} e^{h r} \Lambda_{x}^{+}(U) \Lambda_{y}^{-}(V)
$$

$\Lambda_{x}^{+}, \Lambda_{y}^{-}$measures on $S(x), S(y)$ respectively, defined in terms of the Masur-Veech measure μ on Q, which is g_{t}-invariant, with $\mu(Q / \Gamma)=1$.

Note: distribution of leaving directions $q_{x}(\gamma y)$ given by Λ^{+}, distribution of arriving directions $q_{y}\left(\gamma^{-1} x\right)$ given by Λ^{-}, independent.

Consider $R=$ set of non-pseudo-Anosov elements.
$R_{k}=\left\{\gamma \in R \mid d_{\mathcal{T}}\left(\gamma y, \gamma^{\prime} y\right) \leqslant k\right.$, some $\left.\gamma^{\prime} \in R \backslash \gamma\right\}$
Thm[M]: $\overline{R_{k}}$ has measure zero in visual boundary

Equidistribution:

Thm[Veech]: The Teichmüller geodesic flow is mixing.

$$
\lim _{t \rightarrow \infty} \int_{Q / \Gamma} \alpha\left(g_{t} q\right) \beta(q) d \mu(q)=\int_{Q / \Gamma} \alpha(q) d \mu(q) \int_{Q / \Gamma} \beta(q) d \mu(q)
$$

Conditional mixing:

$$
\lim _{t \rightarrow \infty} \int_{S(x)} \alpha\left(g_{t} q\right) \beta(q) d s_{x}(q)=\int_{Q / \Gamma} \alpha(q) d \mu(q) \int_{S(x)} \beta(q) d s_{x}(q)
$$

Here α, β continuous, compact support.

Go back distance $k / 2$ along geodesic from x to γy, look for lattice point distance at most $d<k / 2$ away, get at least $\left|\Gamma y \cap B_{k / 2-d}(y)\right|$ lattice points in $B_{k}(\gamma y) \cap B_{r}(x)$.

i.e. this estimate works for the proportion of lattice points in $\partial B_{k / 2}(y)$ which lie in $N_{d}(\Gamma x)$, mixing implies this is $\operatorname{vol}\left(N_{d}(x)\right)$ in Q / Γ, tends to 1 as $d \rightarrow \infty$.

