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The Matrix-Tree Theorem

Let T(G # spanning trees of a graph G.

A IEAED!

If G has vertices {v1,..., vp}, then its Laplacian matrix L(G) = D —
where Dj; = deg(vj) and A is the adjacency matrix of G.

2 000 0110 2 -1 -1 0
0200 1 010 -1 2 -1 0
L(6) = 0030 110 1 |-1 -1 3 -1
0 0 0 1 0010 0 0o -1 1
Theorem (Kirchoff, 1847)
n—1

7(G) = any cofactor of L(G) = . H Ai
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Temperley's bijection

Computing 7(G) is still surprisingly difficult.
Temperley discovered the general formula for the m x n grid in 1974.
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Temperley's bijection

Computing 7(G) is still surprisingly difficult.
Temperley discovered the general formula for the m x n grid in 1974.

m—1n—1 k
mxn) HH(4 2cos——2c s—)

j=1 k=1

For m=4, n=05, we get 7(Gsxs5) = 4,140,081
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Temperley's bijection

Computing 7(G) is still surprisingly difficult.
Temperley discovered the general formula for the m x n grid in 1974.

m—1n—1 k
mxn) H H (4 2cos——2co —)

j=1 k=1
mlog 7(Gmxn) 2

—/ / log |2 cos 6 + 2i cos ¢|d6 d¢p = 4C,
T™Jo Jo

lim
m,n— oo m-n
1 1 1 N
where C is Catalan’s constant, C =1 — 32 + = 27 -~ 0.916
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Growth and hyperbolic volume — Example 1

7log T(Gmxn

)=2/ / log |2 cos @ + 2i cos p|df dp = 4C
T Jo Jo

lim
m,n—o00 m-n

4C = Vot =~ 3.6638
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Knot determinant

The knot determinant was one of the first computable knot invariants
(computable = not of the form “minimize something over all diagrams”)

det(K) = |det(M + MT)|, M = Seifert matrix
= |Hi(X2(K); Z)], Y, = 2—fold branched cover of K
= |Vk(-1)] = [Ak(-1)|, Vk, Ak = Jones, Alexander poly
= #spanning trees 7(Gk), Gk = Tait graph of alternating K

Q-
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Alternating knots

We can recover an alternating knot diagram (up to mirror image)
from its Tait graph:

9@
DD,

The other checkerboard coloring gives the planar dual of the Tait graph.
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Determinant and hyperbolic volume

Dunfield (2000) suggested a relationship between det(K) and Vol(S3 — K):

13 crossing alternating knots

Pi % logCd-15)

Volume
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Vol-Det Conjecture

Conjecture (Vol-Det Conjecture): For any alternating hyperbolic link K,

Vol(K) < 2 log det(K)
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Vol-Det Conjecture
Conjecture (Vol-Det Conjecture): For any alternating hyperbolic link K,

Vol(K) < 2 log det(K)

@ Verified for all alternating knots < 16 crossings.
o (Burton) Verified for 2-bridge links, alternating 3-braids.
o (Champanerkar-K-Purcell) 27 is sharp.

i.e., if a < 27 then there exist alternating hyperbolic knots K such that

alogdet(K) < Vol(K)
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Vol-Det Conjecture

Conjecture (Vol-Det Conjecture): For any alternating hyperbolic link K,

Vol(K) < 2 log det(K)

@ Verified for all alternating knots < 16 crossings.
o (Burton) Verified for 2-bridge links, alternating 3-braids.
o (Champanerkar-K-Purcell) 27 is sharp.

i.e., if a < 27 then there exist alternating hyperbolic knots K such that

alogdet(K) < Vol(K)

Remark Let K be a reduced alternating link diagram, and let K’ be
obtained by changing any proper subset of crossings of K.

o (Champanerkar-K-Purcell)  det(K’) < det(K).
e Conjecture Vol(K') < Vol(K).
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Mahler measure

Mahler measure of polynomial p(z) is defined as

1 dz
m(p(2) = 5 [ logle(2) T ET YD oo

«; roots of p
loj|>1

2-variable Mahler measure:

1

1 o o dz dw
w(plz.w) = s [ loglo(zw)

R

2-variable Mahler measures are related to hyperbolic volume
because often they can be expressed using dilograrithms.
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Examples

VO/(@) = Vet = 2.0298. ..

(S;r;glich) Vol(@) =2rm(l+x+y)= 32£L(X_3, 2)

(Boyd) Vol(a§g) = m(A(L, M))

2000
=rm(M* + L(1 — M2 —2M* — M® + M®) — 12 M*)

_27r

(Kenyon) Vo/(@) =% m(p(z, w))

2000
27 ( 1 1 w z)
=—m|b-w———z2———— — —

5 w z z w
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Biperiodic alternating links

Let £ be an alternating link in R? x [ such that its projection graph G(£)
is a 4-valent, biperiodic tiling of the Euclidean plane.

Examples:
Square weave W and Triaxial link @ and
square lattice G(W): trihexagonal lattice G(Q):
WENEERSEN
T
i e
= > i U o,
o g | I
/i e R RN
=7 TUrVU

Figure above
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from Gauss's
1794 notebook

N
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v
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Y
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v
A
Y
A
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More examples of 4-valent semi-regular Euclidean tilings
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the Vol-Det Conjecture
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Geometry of the infinite square weave W

The Z2-quotient of R3—W is a link SR
complement in a thickened torus: e
2 e a e n
T=x1—-W. 7 1 e i i '
U RRRNY

T2x =53 @ so it's also the

complement of a link £ in S3 with a
Hopf sublink.

In this example, S3 — ¢ has a
complete hyperbolic structure with

four regular ideal octahedra. ¢
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Geometry of semi-regular biperiodic alternating links

A biperiodic alternating link £ is invariant under translations by a
2—dim lattice A, such that L = £/A is a link in T2 x |, with a
toroidally alternating diagram on T2 x 0.

Theorem (Champanerkar-K-Purcell) 1If the projection graph G(£) is a
semi-regular Euclidean tiling, then T2 x | — L is hyperbolic and
decomposes into regular ideal tetrahedra and octahedra, with

Vol(T? x | — L) = 10a Viet + b Vocr

where a = #hexagons, and b = #squares in the fundamental domain.

Example: If W =W/A, then
VoI(T2 x | = W) = c(W)  vocr 7\
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Diagrammatic convergence

K, X £ denotes {Kn} Falner converges almost everywhere to L.

This means the alternating links K, satisfy:

@ K, contain increasing subsets of £ which eventually exhaust £
3 G, C G(K,) such that G, C Gn41, and | G, = G(L),
Gy
@ Fglner condition for G, C G(£): lim 0G| =0,
n—oo |G|

G,
© The K, do not have too many other crossings: lim G =1.
n—00 C(Kn)

§§ aoanD ~ N "~ "~ " I 2SERs

J ~
- T
y Sy
- i
F y i = w W )}
» ] » =T L o
—) I o I ¥
< ’ S ’ T Ty
‘ . J vV v Vv
1 1 1 )
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Geometrically maximal knots

Theorem (Champanerkar-K-Purcell) For hyperbolic alternating links K,
KB W — lim Vol(Kp) e — lim 27 log det(Kp)
n—oo c(Kp) n—00 c(Kn)
Geometrically maximal:

Can decompose S3 — K into octahedra, .
one octahedron at each crossing:
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Geometrically maximal knots
Theorem (Champanerkar-K-Purcell) For hyperbolic alternating links K,

F . Vol(K,) . 2mlogdet(K,)
PO k) T T (k)

Geometrically maximal:
Can decompose S3 — K into octahedra, \

one octahedron at each crossing:

Vol (K)
C(K) < Voct

Question What analogous toroidal invariant is the limit for the
determinant density?
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Spanning tree entropy

Square Tait graph Gy
weave W = square grid

Recall, spanning tree entropy of Gyy:
G, = n x n square grid, #spanning trees 7(G,), Catalan's C =~ 0.916

. mlog7(Gp)
lim ————=
n—o0 n

=4C = Voct
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Spanning tree entropy

Square Tait graph Gy
weave W = square grid

Recall, spanning tree entropy of Gyy:
G, = n x n square grid, #spanning trees 7(G,), Catalan's C =~ 0.916
I G
lim o871 5n) 7;( )
n—o0 n

=4C = Voct

This is enough to establish the result for WW. But we want to compute
. 2rmlogdet(Kp,)
lim —————
n—00 c(Kn)

for K, B L for any biperiodic alternating link L.
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Dimers

A dimer covering of a graph G is a set of edges that covers every vertex
exactly once, i.e. a perfect matching.

The dimer model is the study of the set of dimer coverings of G.
Let Z(G) = # dimer coverings of G.

Theorem (Kasteleyn 1963) If G is a balanced bipartite planar graph,

Z(G) = det(K),

where K is a Kasteleyn matrix.

llya Kofman (CUNY) Mabhler measure and the Vol-Det Conjecture
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Dimers and spanning trees

For any finite plane graph G, overlay G and its dual G*, delete a vertex of

G and G* (in the unbounded face) and delete all incident edges to get
balanced bipartite overlaid graph GP.

EEiRsshs

G GUG*

A dimer on G?

Theorem (Burton-Pemantle '93, Propp '02) 7(G) = Z(GP).
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Biperiodic overlaid graph

Biperiodic alternating link £ — Biperiodic bipartite overlaid graph Gf.
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Biperiodic overlaid graph

Biperiodic alternating link £ — Biperiodic bipartite overlaid graph Gg.
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Kasteleyn matrix for toroidal dimer model

Let G® be a finite balanced bipartite toroidal graph.

Kasteleyn matrix K(z, w) for toroidal dimer model on G? is defined by:

@ Choose signs on edges, such that each face with 0 mod 4 edges
has an odd # of signs, called Kasteleyn weighting.

@ Choose a meridian and longitude basis on the torus, v, Yw.
Orient each edge e from black to white. Let

e = 2777 wve

© Order the black and white vertices.

Then K(z,w) is the |B| x |W/| adjacency matrix with entries /.
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Kasteleyn matrix for toroidal dimer model

Yz
-
. . v | E 9
L
Yz Yz
Tw A -] A
1 2!
1
/j'e:; He =2 :
K(z, w) -1-1/z 1+w

141w 14z
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Toroidal dimer model

Let G? be a biperiodic balanced bipartite planar graph, which is invariant
under translations by 2-dim lattice A.

The characteristic polynomial of the toroidal dimer model on G? is

p(z,w) = det K(z, w).

Theorem (Kenyon-Okounkov-Sheffield, 2006)
If G, = GP/nA is a toroidal exhaustion of G®, then

log Z(Gp)

lim > =m(p(z, w)).

n—oo n

Note: This limit does not depend on the choices to get K(z, w).
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Determinant density convergence

Theorem (Champanerkar-K)  Let L be any biperiodic alternating link,
with toroidally alternating quotient link L = £/A. Let p(z, w) be the
characteristic polynomial for the toroidal dimer model on Gg.

F . 2mlogdet(K,) 2mm(p(z,w))
Ky Br — | - .
AT T (K (L)
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Determinant density convergence

Theorem (Champanerkar-K)  Let L be any biperiodic alternating link,
with toroidally alternating quotient link L = £/A. Let p(z, w) be the
characteristic polynomial for the toroidal dimer model on Gg.

F . 2mlogdet(K,) 2mm(p(z,w))
Ky Br — | - .
AT T (K (L)

Idea of proof: The following limits are equal:

@ Spanning tree model on the Tait graph G,
i.e. limit of spanning tree entropies of planar exhaustions of G..

@ Toroidal dimer model on biperiodic overlaid graph Gg,
i.e. limit of dimer entropies of the toroidal exhaustions of Gg.
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Square weave W: Let's put it all together!

\ &

Yo A ] A

»
>
5

W& W

Kasteleyn weighting

VoI(T? x | — W) = 2 veer = 7.32772. ..
p(z,w) =—(4+1/w+w+1/z+2)

(Boyd 1998) 2mm(p(z,w)) = 2 Voct

27 logdet(K,) 27 m(p(z, w)) VoI(T? x | — W)

lim = = =

nte c(Kn) (W) T T (W)
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Triaxial link Q
X X XN
XEX

X

KA

Q& Q

Kasteleyn weighting

Vol(T? x | — Q) = 10 vger = 10.14941 . ..
p(z,w)=6—-—w—-1/w—z—-1/z—w/z—2z/w

(Boyd 1998) 2mm(p(z, w)) = 10 ver

im 2mlogdet(K,)  2mm(p(z,w)) 10we VoI(T? x | — Q)
n—00 C(Kn) - C(Q) B 3 B C(Q)
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Growth and hyperbolic volume — Example 2

We can use our results for the triaxial link to find the spanning tree entropy
T for the regular triangular tiling, and T¢ for its dual hexagonal tiling:

Each fundamental domain (3 crossings of Q) has 2 vertices on hexagons,
and 1 vertex on the triangles, so we adjust accordingly:

. 2mlog7(G,) . 2mlogdet(K,) B
TA = nII—)rT;o W = nll_}n;o W =27 m(p(z, W)) =10 Viet
2 | G, 27 log det(K 2
TO — ||m 0 OgT( n) — ||m ™ Og € ( n) — 7TIIl(p(Z7 W)) — 5 Viet
n—oo  v(Gp) n—soo  2¢(Ky)/3 2
llya Kofman (CUNY) Mabhler measure and the Vol-Det Conjecture
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Rhombitrihexagonal link R

OB g
S TR
\()J ()J A (7 \/_Y_\\__/_Y _/‘/‘Y_\’\‘_/_Y_\T\,
YR SAKATOL
ey sy
MK ASBEKES
G(R) R &R Gh & G

Vol(T2 x | — R) = 10 vger + 3 Vo = 21.14100 . ..
p(z,w)=6(6—-—w—-1/w—z—-1/z—w/z—z/w)
2rm(p(z, w)) = 10vtet + 27 log 6 = 21.40737 . ..

im 2mlogdet(K,)  2mm(p(z,w)) _ Vol(T? x|~ R)

A (K R~ <R

llya Kofman (CUNY)
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Volume density convergence conjecture

Conjecture (Champanerkar-K-Purcell) ~ Let £ be any biperiodic
alternating link, with toroidally alternating quotient link L = L/A.
For hyperbolic alternating links K,

- _ Vol(K,)  Vol(T2x 1 —1L)
K, — - .
=L e " e(Ky) (D)

We can prove this for the square weave W and the triaxial link Q.

) . F
So in these two cases, if K, — L,

im 2mlogdet(K,)  2mm(p(z,w)) Vol(T?x[—L) im Vol(Kp)

oo c(Kp) c(L) c(L) n—oo c(Kp)
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Mahler measure and the Vol-Det Conjecture

Vol-Det Conjecture: For any alternating hyperbolic link K,

Vol(K) < 2 log det(K).

Idea: Use biperiodic alternating links to obtain infinite families of links
satisfying the Vol-Det Conjecture.
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Mahler measure and the Vol-Det Conjecture

Vol-Det Conjecture: For any alternating hyperbolic link K,

Vol(K) < 2 log det(K).

Idea: Use biperiodic alternating links to obtain infinite families of links
satisfying the Vol-Det Conjecture.

This is possible if for K, &> £, lim Vol(Kn) _ iy 27 logdet(Kn)
n—oo c(Kp) n—00 c(Kn)

© Prove using an exact Mahler measure computation that
VoI(T? x | — L) < 2rm(p(z, w)).

@ Use the geometry of T2 x | — L to prove that

Ko 5 £ = Vol(K,) < 27 log det(K,) for almost all n.
e.g. Rhombitrihexagonal link R.

llya Kofman (CUNY) Mabhler measure and the Vol-Det Conjecture
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Bipyramid volume

Let B, denote the hyperbolic regular ideal bipyramid whose link polygons
at the two coning vertices are regular n—gons.

27 /n w(n—2)/2n
Vol(By) = n / —Iog]2sin(9)\d0+2/ ~ log [2sin(6)]d6 | .
0 0

e.g. By = regular ideal octahedron

Theorem (Adams)  Vol(B,) < 2mlog(5) and Vol(B,) - 27 log(3)-
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Bipyramid volume

Let L be a link in T2 x [ with a toroidally alternating diagram on T2 x 0.

Define the bipyramid volume of L as

vol?(L):= Y Vol (Bueg(r)) -
fe{faces of L}

Theorem (Champanerkar-K-Purcell)

Vol(T? x | — L) < vol®(L)

This is a sharp bound for volume, with equality for all semi-regular links.

llya Kofman (CUNY) Mabhler measure and the Vol-Det Conjecture
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Vol-Det Conjecture for infinite families of knots

Conjecture 1 (Champanerkar-K-Lalin) — Let L be any hyperbolic
biperiodic alternating link, with L = £/A, p(z,w) as above. Then

vol®(L) < 27 m(p(z, w))
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Vol-Det Conjecture for infinite families of knots

Conjecture 1 (Champanerkar-K-Lalin) — Let L be any hyperbolic
biperiodic alternating link, with L = £/A, p(z,w) as above. Then

Vol(T? x | — L) < vol(L) < 27 m(p(z, w))

Theorem (Champanerkar-K-Lalin) For hyperbolic alternating links K, 5e,

vol®(L) < 2rm(p(z,w)) = Vol(K,) < 2 log det(K,) for almost all n.

Note: For any L, the infinite families of knots or links satisfying the
Vol-Det Conjecture include almost all K, for every sequence K, 5
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Vol-Det Conjecture for infinite families of knots
Theorem (Champanerkar-K-Lalin) For hyperbolic alternating links K, LN L,

vol®(L) < 2rm(p(z, w)) = Vol(K,) < 27 log det(K,) for almost all n.

% o
Proof: K, B — fim ¥ (Kn) _ vol’(L)
(K L)

llya Kofman (CUNY) Mabhler measure and the Vol-Det Conjecture 34/48



Vol-Det Conjecture for infinite families of knots
Theorem (Champanerkar-K-Lalin) For hyperbolic alternating links K, LN L,

vol®(L) < 2rm(p(z,w)) = Vol(K,) < 2 log det(K,) for almost all n.

vol®(K,)  vol®(L)

. F H j—
Proof: Kyn— L = n||_>rrc1>o (K2 = D)
% O
im Vol(Kp) < lim vol(Kp) _ vol”(L)
MK S i (Ke) D)
2rm(p(z, w)) . 2mlogdet(K,)
STIMPAZ W) _ iy 79891 n)
) AT (K
e im Vol(K,) im 27 log det(K),) 0

n—oo c(Kn) < n—oo c(Kn)
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Remark

The proof above fails when [lim Vol(K.) =l M

mioo c(Ky) e c(K)

e.g., the square weave W, and the triaxial link Q

We checked numerically for weaving knots K|, E> W with hundreds of
crossings that the Vol-Det Conjecture does hold.

llya Kofman (CUNY) Mabhler measure and the Vol-Det Conjecture
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A typical biperiodic alternating link

SN~ )I—
VRS Faces of L:
LX) 3_)_ 1 octagon
Uy L

\ L\’_ g ’\: 4 pentagons
:L / ‘I \/‘.'l /

X)L LX) 1 square
VS Ly |
_“)\/\ < P T/ 8 triangles

Vol((T? x 1) — L) =~ 47.644829
vol®(L) = Vol(Bg) + 4Vol(Bs) + Voct + 16vet = 47.704628

p(Z, W) = wz® 4+ 2% — 2wz + 10422 — 223 /w + w + 510z + 51022 /w + 23 /w? — 24567/ w + 1042° /w?
+510/w + 1/z 4 510z/w? + 22 /w3 + 104/w? — 2/(wz) — 2z/w? + 1/w? + 1/(w?z) + 104
Numerically, 2rm(p(z, w)) =~ 47.9214
So L satisfies Conjecture 1, and the inequality within a range of 0.6%,
Vol((T? x 1) — L) < vol°(L) < 27 m(p(z, w)).

llya Kofman (CUNY) Mabhler measure and the Vol-Det Conjecture
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Exact Mahler measure m(p(x, y)) for certain p(x, y)

1 dx dy
- | =
m(p(e ) = g [ loeloen)] £

Consider C[x, y] = C[x][y], so that for algebraic functions y;(x) of x,

p(x,y) = (y —y1(x)) - (y = ya(x))

d
Jensen 1

miple)) "= 33 /XZI,M(X)N”(X’”)

where
n(x,y) :=log|x|dargy — log |y|d arg x

is a closed differential form, called the volume form.
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Bloch-Wigner dilogarithm D(z)

D(z) := Im(Lix(z)) + log |z| arg(1 — z)

where Liy(z) is the classical dilogarithm.

D(z) is continuous on C, real analytic on C — {0,1}.
D(e'?) = J1(#), where JI() is the Lobachevsky function.
D(z) satisfies the 5—term relation and other identities.
D(z) = Vol(A(2)).

@ dD(z) =n(z,1- z).

So if n(x,y) can be expressed in terms of n(z,1 — z)'s, then we can use
Stokes' Theorem to evaluate m(p(x,y)) exactly in terms of D(z), and
get hyperbolic volumes.
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Exact Mahler measure m(p(x, y)) for certain p(x, y)

Let X = {(x,y) € C? | p(x,y) = 0}. In C(X)* A C(X)*, if we can write
() xAy= Zk a(zi A (1= z))
=  n(x,y)= Zk ak N(zk, 1 —zx) = Zk ay dD(z)
m(p(y) = 5= 30 57 e D)oo
A priori, we may not be able to solve (x).
(Champanerkar 2003) Can solve () for A-polynomial of any 1-cusped M3.

If the curve has genus 0, then we can solve (x) by parametrizing the curve.
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Example: Square weave polynomial (Boyd 1998)

1 1
Sepl plzw) =~ (4w vzt ])
w V4

1 z w
—p(z/w,wz) =4+ wz+ — + — + —
wz w oz

1
=—0+iw+iz+wz)(l—iw—iz+ wz)
wz

= m(p(z,w)) =m(1+iw + iz + wz) + m(1 — iw — iz + wz)

=  m(p(z,w)) =2m(1 + iw + iz + wz)
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1+ iw
wi

Step2: l14+iw4+iz+wz=0 = z=

o
MW i A (L4 iw) — iw A (L — iw)
w

() wAz=wA

=(—iw) A (1 —(—iw)) — (iw A (1 — iw)).

llya Kofman (CUNY) Mabhler measure and the Vol-Det Conjecture 41/48



1+ iw

Step2: l14+iw4+iz+wz=0 = z=

wHi
(%) A /\1+iW w A (14 iw) —iw A (1 — iw)
wWAzZ=w =iw iw) — iw —iw
i+ w
=(—iw) A (1 —(—iw)) — (iw A (1 — iw)).
. 1+ 20
Ifw=ef |z = || _ cot( +”)‘ — |z > 1iff—r <0 <0.
wH i 4
So we must integrate between w = —1 and w = 1.
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147
Step2: l14+iw4+iz+wz=0 = z= +w

Wi
() wA AIEM i A (L iw) — iw A (1— iw)
w zZ=W = — —
[+ W w w w w
=(—iw) A (1 —(—iw)) — (iw A (1 — iw)).
. 1+ 20
I w = el |2 = +’V_Vzcot< +7r)‘:>|z|21iff—7r§9§0.
W+ 4
So we must integrate between w = —1 and w = 1.
m(p(z, w) Zzak D(z)lagiwi=1, 2wy >1y
J 1 k
1

So we must evaluate —»-(D(—iw) — D(iw)) on the boundary w|

2rm(p(z, w)) =2(—D(—i-1) + D(i - 1) + D(—i - (~1)) — D(i - (~1)))
=8 D(i) = 2 vocr.
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New examples

Conjecture 1. VoI(T? x | — L) < vol?(L) < 2rm(p(z, w)).

We used Boyd's computations to prove Conjecture 1 for the square weave,
triaxial and rhombitrihexagonal links:

We use new exact
more examples:
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p(z,w) = —w?z?® + 6w’z + 6wz> — w? + 28wz — 22 + 6w + 6z — 1

27T In(p(Z, W)) = arccos (—%) log(17 + 12\/5) +8D(i) + 4D <7'7+34‘/§’) — 4D <— 7’724‘/5/)
/2 19.771532321797992256575200922336735211

vol®(L) ~ 19.6379
Vol(T? x | — L) ~ 19.5597

So L satisfies Conjecture 1, and the inequality within a range of 0.4%,
Vol(T? x | — L) < vol(L) < 2w m(p(z, w)).
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Why 277
A tower of covers: - > M, - M,_1 — -+ — M — My =M.
For M3, Hy(Mp,; Z) can have arbitrarily large torsion subgroups THi(M,).

Conjecture For closed or 1-cusped hyperbolic M3, if (N, m1M, = {1}
for a tower of regular covers M,,
|Og | THl(Mn)| 1

lim —ol WMl
oo Vol(M,) 67

This is a special case of Liick's Approximation Conjecture in L?>~torsion
theory: For closed or 1-cusped hyperbolic M3, the analytic L?>~torsion of
covering transformations of H? is

pA (M) = N Vol(M).

6
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Recall, det(K) = |H1(X2(K))|, homology of 2—fold branched cover of K.
= | TH1(X(K))|, torsion of 2—fold cyclic cover of S3 — K.

Let X(L) = 2—fold cyclic cover of T2 x I — L, given by kernel of
7r1(T2 x | — L) — Z/27Z, with L meridians — 1, Hopf link meridians — 0.

Theorem (Champanerkar-K) Let L be any hyperbolic biperiodic
alternating link, with L, = £/(nZ x nZ), p(z,w) for L; as above,

m log | TH1(X(Ly))| _ m(p(z, w))
mooe VoI(X(Ly)) 2 Vol(T2 x [ — Ly)

For the subsequence n = 2/, we get a tower of covers with this limit:

= X(Lan) = X(Lp) = -+ — X(L1).

Note: Since X(L) is a common cover, (), m1X(Ln) # {1}.
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Growth and hyperbolic volume — Example 3

e ve
W, =W/(nZ x nZ) (* x/j\/\/\y Qn = Q/(nZ x nZ)
c(W,) = 4n? / ' c(@n) = 3n?

Theorem (Champanerkar-K) For square weave W and triaxial link Q,

log | THI(X(W,))| _ . log| THA(X(Qu)| _ 1

noe VoI(X(W,))  nbe VoI(X(Qn)) 4«

As far as we know, these are the first examples of non-cyclic towers of
covers of hyperbolic 3—-manifolds whose exponential homological torsion
growth can be computed exactly in terms of volume growth.
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Growth and hyperbolic volume — Example 3

Qn = Q/(nZ x nZ)

W, = W/(nZ x nZ) o) ,
c(Q,) =3n

c(W,) = 4n?
Theorem (Champanerkar-K) For square weave W and triaxial link Q,

log | THL(X(W,,))| _ | log [ THL(X(Qn))| _ 1

AT TVOIX (W) e VoI(X(Q)) | An

As far as we know, these are the first examples of non-cyclic towers of
covers of hyperbolic 3—-manifolds whose exponential homological torsion
growth can be computed exactly in terms of volume growth.

Question Can 1/4 be explained in terms of L?~torsion of covering
transformations of X (W) and of X(Q)?
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oo OBITHX (L) m(p(z,w))
noo Vol(X(Ly)) 2Vol(T2 x [ — L)’

Conjecture 1~ Vol(T? x | — L) < vol°(L) < 2w m(p(z, w)).

Together, these imply that for any hyperbolic biperiodic alternating link L,

, - log [ THi(X(Ln))| _ 1
Conjecture 2 nI|_>n;O Vol(X(L,)) ZE’

with equality for the square weave and the triaxial link.

Example: For the Rhombitrihexagonal link R,

i Vg | THI(X(R))l _ 1 (10 vier +2n log(6) _ 1.0126
i = ~
nsoo Vol(X(R,)) 47\ 10 veet + 3 voet 4

and similarly for other examples whose m(p(z, w)) we computed exactly.

llya Kofman (CUNY) Mabhler measure and the Vol-Det Conjecture 47 /48



llya Kofman (CUNY) Mabhler measure and the Vol-Det Conjecture



	Spanning trees
	Determinant and volume
	Biperiodic alternating links
	Diagrammatic convergence
	Dimers
	Examples
	Bipyramid volume
	Exact Mahler measure
	L2

