Mahler measure and the Vol-Det Conjecture

Ilya Kofman

College of Staten Island and The Graduate Center City University of New York (CUNY)

Joint work with Abhijit Champanerkar and Matilde Lalín

May 27, 2019

The Matrix-Tree Theorem

Let $\tau(G) = \#$ spanning trees of a graph G.

If G has vertices $\{v_1, \ldots, v_n\}$, then its Laplacian matrix L(G) = D - A, where $D_{jj} = \deg(v_j)$ and A is the adjacency matrix of G.

$$L(G) = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & -1 & -1 & 0 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & 3 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

Theorem (Kirchoff, 1847)

$$\tau(G) =$$
any cofactor of $L(G) = \frac{1}{n} \prod_{i=1}^{n-1} \lambda_i$

Computing $\tau(G)$ is still surprisingly difficult. Temperley discovered the general formula for the $m \times n$ grid in 1974.

Computing $\tau(G)$ is still surprisingly difficult.

Computing $\tau(G)$ is still surprisingly difficult.

Computing $\tau(G)$ is still surprisingly difficult.

Computing $\tau(G)$ is still surprisingly difficult.

Temperley discovered the general formula for the $m \times n$ grid in 1974.

$$\tau(G_{m\times n}) = \prod_{j=1}^{m-1} \prod_{k=1}^{n-1} \left(4 - 2\cos\frac{\pi j}{m} - 2\cos\frac{\pi k}{n} \right)$$

For m = 4, n = 5, we get $\tau(G_{4 \times 5}) = 4,140,081$

Computing $\tau(G)$ is still surprisingly difficult.

Growth and hyperbolic volume – Example 1

$$\lim_{m,n\to\infty}\frac{\pi\log\tau(G_{m\times n})}{m\cdot n}=\frac{2}{\pi}\int_0^{\pi}\int_0^{\pi}\log|2\cos\theta+2i\cos\phi|d\theta\,d\phi=4C$$

$$4C = v_{oct} \approx 3.6638$$

Knot determinant

The knot determinant was one of the first computable knot invariants (computable = not of the form "minimize something over all diagrams")

$$det(K) = |det(M + M^{T})|, \qquad M = \text{Seifert matrix}$$

= $|H_1(\Sigma_2(K); \mathbb{Z})|, \qquad \Sigma_2 = 2\text{-fold branched cover of } K$
= $|V_K(-1)| = |\Delta_K(-1)|, \qquad V_K, \ \Delta_K = \text{Jones, Alexander poly}$

= # spanning trees
$$\tau(G_K)$$
, G_K = Tait graph of alternating K

Alternating knots

We can recover an alternating knot diagram (up to mirror image) from its Tait graph:

The other checkerboard coloring gives the planar dual of the Tait graph.

Ilya Kofman (CUNY)

Determinant and hyperbolic volume

Dunfield (2000) suggested a relationship between det(K) and $Vol(S^3 - K)$:

Vol-Det Conjecture

Conjecture (Vol-Det Conjecture): For any alternating hyperbolic link K, $Vol(K) < 2\pi \log \det(K)$

 \bullet Verified for all alternating knots ≤ 16 crossings.

- (Burton) Verified for 2-bridge links, alternating 3-braids.
- (Champanerkar-K-Purcell) 2π is sharp.

i.e., if $\alpha < 2\pi$ then there exist alternating hyperbolic knots K such that $\alpha \log \det(K) < Vol(K)$

Remark Let K be a reduced alternating link diagram, and let K' be obtained by changing any proper subset of crossings of K.

- (Champanerkar-K-Purcell) det(K') < det(K).
- Conjecture Vol(K') < Vol(K).

Vol-Det Conjecture

Conjecture (Vol-Det Conjecture): For any alternating hyperbolic link K, $Vol(K) < 2\pi \log \det(K)$

- Verified for all alternating knots \leq 16 crossings.
- (Burton) Verified for 2-bridge links, alternating 3-braids.
- (Champanerkar-K-Purcell) 2π is sharp.

i.e., if $\alpha < 2\pi$ then there exist alternating hyperbolic knots K such that $\alpha \log \det(K) < Vol(K)$

Remark Let K be a reduced alternating link diagram, and let K' be obtained by changing any proper subset of crossings of K.

- (Champanerkar-K-Purcell) det(K') < det(K).
- Conjecture Vol(K') < Vol(K).

Vol-Det Conjecture

Conjecture (Vol-Det Conjecture): For any alternating hyperbolic link K, $Vol(K) < 2\pi \log \det(K)$

- Verified for all alternating knots \leq 16 crossings.
- (Burton) Verified for 2-bridge links, alternating 3-braids.
- (Champanerkar-K-Purcell) 2π is sharp.

i.e., if $\alpha < 2\pi$ then there exist alternating hyperbolic knots K such that $\alpha \log \det(K) < Vol(K)$

Remark Let K be a reduced alternating link diagram, and let K' be obtained by changing any proper subset of crossings of K.

• (Champanerkar-K-Purcell) det(K') < det(K).

• Conjecture
$$Vol(K') < Vol(K)$$
.

Mahler measure

Mahler measure of polynomial p(z) is defined as

$$m(p(z)) := \frac{1}{2\pi i} \int_{S^1} \log |p(z)| \frac{dz}{z} \quad \stackrel{\text{Jensen}}{=} \sum_{\substack{\alpha_i \text{ roots of } p \\ |\alpha_i| \ge 1}} \log |\alpha_i|$$

2-variable Mahler measure:

$$\mathrm{m}(p(z,w)) := \frac{1}{(2\pi i)^2} \int_{S^1 \times S^1} \log |p(z,w)| \frac{dz}{z} \frac{dw}{w}$$

2-variable Mahler measures are related to hyperbolic volume because often they can be expressed using dilograrithms.

Examples

$$Vol(\textcircled{OO}) = 2v_{\text{tet}} = 2.0298\ldots$$

(Smyth) Vol()) =
$$2\pi m(1 + x + y) = \frac{3\sqrt{3}}{2}L(\chi_{-3}, 2)$$

(Boyd)
$$Vol(\textcircled{O}) = \pi \operatorname{m}(A(L, M))$$

= $\pi \operatorname{m}(M^4 + L(1 - M^2 - 2M^4 - M^6 + M^8) - L^2 M^4)$

 $\overline{}$

(Kenyon)
$$Vol(\textcircled{w}) = \frac{2\pi}{5} \operatorname{m}(p(z, w))$$
$$= \frac{2\pi}{5} \operatorname{m} \left(6 - w - \frac{1}{w} - z - \frac{1}{z} - \frac{w}{z} - \frac{z}{w} \right)$$

Biperiodic alternating links

Let \mathcal{L} be an alternating link in $\mathbb{R}^2 \times I$ such that its projection graph $G(\mathcal{L})$ is a 4-valent, biperiodic tiling of the Euclidean plane.

Examples:

Square weave W and square lattice G(W):

Triaxial link Q and trihexagonal lattice G(Q):

Figure above from Gauss's 1794 notebook

More examples of 4-valent semi-regular Euclidean tilings

https://en.wikipedia.org/wiki/Euclidean_tilings_by_convex_regular_polygons

Geometry of the infinite square weave $\ensuremath{\mathcal{W}}$

The \mathbb{Z}^2 -quotient of $\mathbb{R}^3 - W$ is a link complement in a thickened torus: $T^2 \times I - W$

 $T^2 \times I \cong S^3 - \bigotimes$, so it's also the complement of a link ℓ in S^3 with a Hopf sublink.

In this example, $S^3 - \ell$ has a complete hyperbolic structure with four regular ideal octahedra.

Geometry of semi-regular biperiodic alternating links

A biperiodic alternating link \mathcal{L} is invariant under translations by a 2-dim lattice Λ , such that $L = \mathcal{L}/\Lambda$ is a link in $T^2 \times I$, with a toroidally alternating diagram on $T^2 \times 0$.

Theorem (Champanerkar-K-Purcell) If the projection graph $G(\mathcal{L})$ is a semi-regular Euclidean tiling, then $T^2 \times I - L$ is hyperbolic and decomposes into regular ideal tetrahedra and octahedra, with

$$Vol(T^2 imes I - L) = 10a v_{tet} + b v_{oct}$$

where a = #hexagons, and b = #squares in the fundamental domain.

Diagrammatic convergence

 $K_n \xrightarrow{\mathrm{F}} \mathcal{L}$ denotes $\{K_n\}$ *Følner converges almost everywhere* to \mathcal{L} .

This means the alternating links K_n satisfy:

- K_n contain increasing subsets of \mathcal{L} which eventually exhaust \mathcal{L} : $\exists G_n \subset G(K_n)$ such that $G_n \subset G_{n+1}$, and $\bigcup G_n = G(\mathcal{L})$,
- Solution For $G_n \subset G(\mathcal{L})$: $\lim_{n \to \infty} \frac{|\partial G_n|}{|G_n|} = 0$,
- The K_n do not have too many other crossings: $\lim_{n\to\infty} \frac{|G_n|}{c(K_n)} = 1$.

Geometrically maximal knots

Theorem (Champanerkar-K-Purcell) For hyperbolic alternating links K_n

$$K_n \xrightarrow{\mathrm{F}} \mathcal{W} \implies \lim_{n \to \infty} \frac{Vol(K_n)}{c(K_n)} = v_{\mathrm{oct}} = \lim_{n \to \infty} \frac{2\pi \log \det(K_n)}{c(K_n)}.$$

Geometrically maximal:

Can decompose $S^3 - K$ into octahedra, one octahedron at each crossing:

 $\implies \frac{Vol(K)}{c(K)} < v_{\rm oct}$

Geometrically maximal knots

Theorem (Champanerkar-K-Purcell) For hyperbolic alternating links K_n

$$K_n \xrightarrow{\mathrm{F}} \mathcal{W} \implies \lim_{n \to \infty} \frac{Vol(K_n)}{c(K_n)} = v_{\mathrm{oct}} = \lim_{n \to \infty} \frac{2\pi \log \det(K_n)}{c(K_n)}.$$

Geometrically maximal:

Can decompose $S^3 - K$ into octahedra, one octahedron at each crossing:

 $\implies \quad \frac{Vol(K)}{c(K)} < v_{\rm oct}$

Question What analogous toroidal invariant is the limit for the determinant density?

Spanning tree entropy

Recall, spanning tree entropy of G_W : $G_n = n \times n$ square grid, #spanning trees $\tau(G_n)$, Catalan's $C \approx 0.916$

$$\lim_{n\to\infty}\frac{\pi\log\tau(G_n)}{n^2}=4\mathrm{C}=v_{\mathrm{oct}}$$

This is enough to establish the result for \mathcal{W} . But we want to compute

$$\lim_{n\to\infty}\frac{2\pi\log\det(K_n)}{c(K_n)}$$

for $K_n \stackrel{\mathrm{F}}{
ightarrow} \mathcal{L}$ for any biperiodic alternating link \mathcal{L}_{\cdot}

Spanning tree entropy

Recall, spanning tree entropy of G_W : $G_n = n \times n$ square grid, #spanning trees $\tau(G_n)$, Catalan's $C \approx 0.916$

$$\lim_{n\to\infty}\frac{\pi\log\tau(G_n)}{n^2}=4\mathrm{C}=v_{\mathrm{oct}}$$

This is enough to establish the result for \mathcal{W} . But we want to compute

$$\lim_{n\to\infty}\frac{2\pi\log\det(K_n)}{c(K_n)}$$

for $K_n \xrightarrow{\mathrm{F}} \mathcal{L}$ for any biperiodic alternating link \mathcal{L} .

Dimers

A dimer covering of a graph G is a set of edges that covers every vertex exactly once, i.e. a perfect matching.

The dimer model is the study of the set of dimer coverings of G. Let Z(G) = # dimer coverings of G.

Theorem (Kasteleyn 1963) If G is a balanced bipartite planar graph,

$$Z(G) = det(K),$$

where K is a Kasteleyn matrix.

Dimers and spanning trees

For any finite plane graph G, overlay G and its dual G^* , delete a vertex of G and G^* (in the unbounded face) and delete all incident edges to get balanced bipartite overlaid graph G^b .

Theorem (Burton-Pemantle '93, Propp '02) $\tau(G) = Z(G^b)$.

Biperiodic overlaid graph

Biperiodic alternating link $\mathcal{L} \to$ Biperiodic bipartite overlaid graph $G^b_{\mathcal{L}}$.

Kasteleyn matrix for toroidal dimer model

Let G^b be a finite balanced bipartite toroidal graph.

Kasteleyn matrix K(z, w) for toroidal dimer model on G^b is defined by:

- Choose signs on edges, such that each face with 0 mod 4 edges has an odd # of signs, called Kasteleyn weighting.
- ² Choose a meridian and longitude basis on the torus, γ_z , γ_w . Orient each edge *e* from black to white. Let

$$\mu_e = z^{\gamma_z \cdot e} w^{\gamma_w \cdot e}$$

Order the black and white vertices.

Then K(z, w) is the $|B| \times |W|$ adjacency matrix with entries $\pm \mu_e$.

Kasteleyn matrix for toroidal dimer model

$$K(z,w) = \begin{bmatrix} -1 - 1/z & 1+w \\ 1 + 1/w & 1+z \end{bmatrix}$$

Ilya Kofman (CUNY)

Toroidal dimer model

Let G^b be a biperiodic balanced bipartite planar graph, which is invariant under translations by 2-dim lattice Λ .

The characteristic polynomial of the toroidal dimer model on G^b is

$$p(z,w) = \det K(z,w).$$

Theorem (Kenyon-Okounkov-Sheffield, 2006) If $G_n = G^b/n\Lambda$ is a toroidal exhaustion of G^b , then

$$\lim_{n\to\infty}\frac{\log Z(G_n)}{n^2}=\mathrm{m}(p(z,w)).$$

Note: This limit does not depend on the choices to get K(z, w).

Determinant density convergence

Theorem (Champanerkar-K) Let \mathcal{L} be any biperiodic alternating link, with toroidally alternating quotient link $L = \mathcal{L}/\Lambda$. Let p(z, w) be the characteristic polynomial for the toroidal dimer model on $G_{\mathcal{L}}^{b}$.

$$\mathcal{K}_n \xrightarrow{\mathrm{F}} \mathcal{L} \implies \lim_{n \to \infty} \frac{2\pi \log \det(\mathcal{K}_n)}{c(\mathcal{K}_n)} = \frac{2\pi \operatorname{m}(p(z, w))}{c(\mathcal{L})}$$

Idea of proof: The following limits are equal:

Spanning tree model on the Tait graph G_L,
 i.e. limit of spanning tree entropies of planar exhaustions of G_L.

Toroidal dimer model on biperiodic overlaid graph G^b_L, i.e. limit of dimer entropies of the toroidal exhaustions of G^b_L.

Determinant density convergence

Theorem (Champanerkar-K) Let \mathcal{L} be any biperiodic alternating link, with toroidally alternating quotient link $L = \mathcal{L}/\Lambda$. Let p(z, w) be the characteristic polynomial for the toroidal dimer model on $G_{\mathcal{L}}^{b}$.

$$\mathcal{K}_n \xrightarrow{\mathrm{F}} \mathcal{L} \implies \lim_{n \to \infty} \frac{2\pi \log \det(\mathcal{K}_n)}{c(\mathcal{K}_n)} = \frac{2\pi \operatorname{m}(p(z, w))}{c(\mathcal{L})}$$

Idea of proof: The following limits are equal:

- Spanning tree model on the Tait graph G_L,
 i.e. limit of spanning tree entropies of planar exhaustions of G_L.
- Toroidal dimer model on biperiodic overlaid graph G^b_L,
 i.e. limit of dimer entropies of the toroidal exhaustions of G^b_L.

Square weave \mathcal{W} : Let's put it all together!

Kasteleyn weighting

$$Vol(T^2 \times I - W) = 2v_{oct} = 7.32772...$$

 $p(z, w) = -(4 + 1/w + w + 1/z + z)$

(Boyd 1998) $2\pi m(p(z, w)) = 2 v_{oct}$

$$\lim_{n\to\infty}\frac{2\pi\log\det(K_n)}{c(K_n)}=\frac{2\pi\operatorname{m}(p(z,w))}{c(W)}=v_{\mathrm{oct}}=\frac{Vol(T^2\times I-W)}{c(W)}$$

Triaxial link \mathcal{Q}

Kasteleyn weighting

 $Vol(T^2 \times I - Q) = 10 v_{tet} = 10.14941...$ p(z, w) = 6 - w - 1/w - z - 1/z - w/z - z/w

(Boyd 1998) $2\pi m(p(z, w)) = 10 v_{tet}$

$$\lim_{n\to\infty}\frac{2\pi\log\det(K_n)}{c(K_n)}=\frac{2\pi\operatorname{m}(p(z,w))}{c(Q)}=\frac{10v_{\text{tet}}}{3}=\frac{Vol(T^2\times I-Q)}{c(Q)}$$

Growth and hyperbolic volume – Example 2

We can use our results for the triaxial link to find the spanning tree entropy T_{\triangle} for the regular triangular tiling, and T_{\bigcirc} for its dual hexagonal tiling:

Each fundamental domain (3 crossings of Q) has 2 vertices on hexagons, and 1 vertex on the triangles, so we adjust accordingly:

$$T_{\triangle} = \lim_{n \to \infty} \frac{2\pi \log \tau(G_n)}{v(G_n)} = \lim_{n \to \infty} \frac{2\pi \log \det(K_n)}{c(K_n)/3} = 2\pi \operatorname{m}(p(z, w)) = 10 v_{\text{tet}}$$
$$T_{\bigcirc} = \lim_{n \to \infty} \frac{2\pi \log \tau(G_n)}{v(G_n)} = \lim_{n \to \infty} \frac{2\pi \log \det(K_n)}{2 c(K_n)/3} = \frac{2\pi \operatorname{m}(p(z, w))}{2} = 5 v_{\text{tet}}$$

Rhombitrihexagonal link \mathcal{R}

$$Vol(T^2 \times I - R) = 10 v_{tet} + 3 v_{oct} = 21.14100...$$

$$p(z, w) = 6(6 - w - 1/w - z - 1/z - w/z - z/w)$$

 $2\pi m(p(z, w)) = 10v_{\text{tet}} + 2\pi \log 6 = 21.40737...$

$$\lim_{n\to\infty}\frac{2\pi\log\det(K_n)}{c(K_n)}=\frac{2\pi\operatorname{m}(p(z,w))}{c(R)}>\frac{\operatorname{Vol}(T^2\times I-R)}{c(R)}$$

Volume density convergence conjecture

Conjecture (Champanerkar-K-Purcell) Let \mathcal{L} be any biperiodic alternating link, with toroidally alternating quotient link $L = \mathcal{L}/\Lambda$. For hyperbolic alternating links K_n

$$K_n \xrightarrow{\mathrm{F}} \mathcal{L} \implies \lim_{n \to \infty} \frac{\operatorname{Vol}(K_n)}{c(K_n)} = \frac{\operatorname{Vol}(T^2 \times I - L)}{c(L)}.$$

We can prove this for the square weave $\mathcal W$ and the triaxial link $\mathcal Q$.

So in these two cases, if $K_n \xrightarrow{\mathrm{F}} \mathcal{L}$,

$$\lim_{n\to\infty}\frac{2\pi\log\det(K_n)}{c(K_n)}=\frac{2\pi\,m(p(z,w))}{c(L)}=\frac{Vol(T^2\times I-L)}{c(L)}=\lim_{n\to\infty}\frac{Vol(K_n)}{c(K_n)}$$

Mahler measure and the Vol-Det Conjecture

Vol-Det Conjecture: For any alternating hyperbolic link K,

 $Vol(K) < 2\pi \log \det(K).$

Idea: Use biperiodic alternating links to obtain infinite families of links satisfying the Vol-Det Conjecture.

This is possible if for
$$K_n \xrightarrow{\mathrm{F}} \mathcal{L}$$
, $\lim_{n \to \infty} \frac{Vol(K_n)}{c(K_n)} < \lim_{n \to \infty} \frac{2\pi \log \det(K_n)}{c(K_n)}$.

Prove using an exact Mahler measure computation that

$$Vol(T^2 \times I - L) < 2\pi \operatorname{m}(p(z, w)).$$

② Use the geometry of $T^2 \times I - L$ to prove that

 $K_n \stackrel{\mathrm{F}}{\to} \mathcal{L} \implies Vol(K_n) < 2\pi \log \det(K_n)$ for almost all n.

e.g. Rhombitrihexagonal link \mathcal{R} .

Mahler measure and the Vol-Det Conjecture

Vol-Det Conjecture: For any alternating hyperbolic link K,

 $Vol(K) < 2\pi \log \det(K).$

Idea: Use biperiodic alternating links to obtain infinite families of links satisfying the Vol-Det Conjecture.

This is possible if for
$$K_n \xrightarrow{\mathrm{F}} \mathcal{L}$$
, $\lim_{n \to \infty} \frac{Vol(K_n)}{c(K_n)} < \lim_{n \to \infty} \frac{2\pi \log \det(K_n)}{c(K_n)}$.

Prove using an exact Mahler measure computation that

$$Vol(T^2 \times I - L) < 2\pi \operatorname{m}(p(z, w)).$$

2 Use the geometry of $T^2 \times I - L$ to prove that

$${\mathcal K}_n \stackrel{\mathrm{F}}{ o} {\mathcal L} \implies {\mathcal Vol}({\mathcal K}_n) < 2\pi \log \det({\mathcal K}_n)$$
 for almost all n

e.g. Rhombitrihexagonal link \mathcal{R} .

Bipyramid volume

Let B_n denote the hyperbolic regular ideal bipyramid whose link polygons at the two coning vertices are regular *n*-gons.

$$Vol(B_n) = n\left(\int_0^{2\pi/n} -\log|2\sin(\theta)|d\theta + 2\int_0^{\pi(n-2)/2n} -\log|2\sin(\theta)|d\theta\right)$$

e.g. B_4 = regular ideal octahedron

Theorem (Adams) $Vol(B_n) < 2\pi \log(\frac{n}{2})$ and $Vol(B_n) \underset{n \to \infty}{\sim} 2\pi \log(\frac{n}{2})$.

Bipyramid volume

Let L be a link in $T^2 \times I$ with a toroidally alternating diagram on $T^2 \times 0$.

Define the bipyramid volume of L as

$$\mathrm{vol}^{\Diamond}(L) := \sum_{f \in \{ \text{faces of } L \}} Vol\left(B_{\mathrm{deg}(f)}\right).$$

Theorem (Champanerkar-K-Purcell)

$$Vol(T^2 \times I - L) \leq vol^{\Diamond}(L)$$

This is a sharp bound for volume, with equality for all semi-regular links.

Conjecture 1 (Champanerkar-K-Lalín) Let \mathcal{L} be any hyperbolic biperiodic alternating link, with $L = \mathcal{L}/\Lambda$, p(z, w) as above. Then

 $\operatorname{vol}^{\Diamond}(L) \leq 2\pi \operatorname{m}(p(z, w))$

Conjecture 1 (Champanerkar-K-Lalín) Let \mathcal{L} be any hyperbolic biperiodic alternating link, with $L = \mathcal{L}/\Lambda$, p(z, w) as above. Then

$$Vol(T^2 imes I - L) \le \mathrm{vol}^{\Diamond}(L) \le 2\pi \operatorname{m}(p(z, w))$$

Conjecture 1 (Champanerkar-K-Lalín) Let \mathcal{L} be any hyperbolic biperiodic alternating link, with $L = \mathcal{L}/\Lambda$, p(z, w) as above. Then

$$Vol(T^2 \times I - L) \leq vol^{\Diamond}(L) \leq 2\pi \operatorname{m}(p(z, w))$$

Theorem (Champanerkar-K-Lalín) For hyperbolic alternating links $K_n \xrightarrow{\mathrm{F}} \mathcal{L}$,

$$\operatorname{vol}^{\Diamond}(L) < 2\pi \operatorname{m}(p(z,w)) \implies \operatorname{Vol}(K_n) < 2\pi \log \det(K_n)$$
 for almost all n .

Note: For any \mathcal{L} , the infinite families of knots or links satisfying the Vol-Det Conjecture include almost all K_n for *every* sequence $K_n \xrightarrow{\mathrm{F}} \mathcal{L}$.

Theorem (Champanerkar-K-Lalín) For hyperbolic alternating links $K_n \xrightarrow{\mathrm{F}} \mathcal{L}$, $\mathrm{vol}^{\diamond}(L) < 2\pi \operatorname{m}(p(z, w)) \implies \operatorname{Vol}(K_n) < 2\pi \log \det(K_n)$ for almost all n.

Proof:

$$\begin{aligned}
\mathcal{K}_{n} \xrightarrow{\mathrm{F}} \mathcal{L} \implies \lim_{n \to \infty} \frac{\mathrm{vol}^{\Diamond}(\mathcal{K}_{n})}{c(\mathcal{K}_{n})} &= \frac{\mathrm{vol}^{\Diamond}(\mathcal{L})}{c(\mathcal{L})} \\
\lim_{n \to \infty} \frac{\mathrm{Vol}(\mathcal{K}_{n})}{c(\mathcal{K}_{n})} &\leq \lim_{n \to \infty} \frac{\mathrm{vol}^{\Diamond}(\mathcal{K}_{n})}{c(\mathcal{K}_{n})} &= \frac{\mathrm{vol}^{\Diamond}(\mathcal{L})}{c(\mathcal{L})} \\
&< \frac{2\pi \operatorname{m}(\rho(z, w))}{c(\mathcal{L})} &= \lim_{n \to \infty} \frac{2\pi \log \det(\mathcal{K}_{n})}{c(\mathcal{K}_{n})}
\end{aligned}$$

$$\implies \lim_{n \to \infty} \frac{Vol(K_n)}{c(K_n)} < \lim_{n \to \infty} \frac{2\pi \log \det(K_n)}{c(K_n)}$$

Theorem (Champanerkar-K-Lalín) For hyperbolic alternating links $K_n \xrightarrow{\mathrm{F}} \mathcal{L}$, $\mathrm{vol}^{\diamond}(L) < 2\pi \operatorname{m}(p(z, w)) \implies \operatorname{Vol}(K_n) < 2\pi \log \det(K_n)$ for almost all n.

Proof:

$$\begin{aligned}
& \mathcal{K}_n \xrightarrow{\mathrm{F}} \mathcal{L} \implies \lim_{n \to \infty} \frac{\mathrm{vol}^{\Diamond}(\mathcal{K}_n)}{c(\mathcal{K}_n)} = \frac{\mathrm{vol}^{\Diamond}(\mathcal{L})}{c(\mathcal{L})} \\
& \lim_{n \to \infty} \frac{\mathrm{Vol}(\mathcal{K}_n)}{c(\mathcal{K}_n)} \le \lim_{n \to \infty} \frac{\mathrm{vol}^{\Diamond}(\mathcal{K}_n)}{c(\mathcal{K}_n)} = \frac{\mathrm{vol}^{\Diamond}(\mathcal{L})}{c(\mathcal{L})} \\
& < \frac{2\pi \operatorname{m}(p(z, w))}{c(\mathcal{L})} = \lim_{n \to \infty} \frac{2\pi \log \det(\mathcal{K}_n)}{c(\mathcal{K}_n)}
\end{aligned}$$

$$\implies \lim_{n \to \infty} \frac{Vol(K_n)}{c(K_n)} < \lim_{n \to \infty} \frac{2\pi \log \det(K_n)}{c(K_n)}$$

F

Remark

The proof above fails when
$$\lim_{n \to \infty} \frac{Vol(K_n)}{c(K_n)} = \lim_{n \to \infty} \frac{2\pi \log \det(K_n)}{c(K_n)}$$

e.g., the square weave $\mathcal W,$ and the triaxial link $\mathcal Q$

We checked numerically for weaving knots $K_n \xrightarrow{\mathrm{F}} \mathcal{W}$ with hundreds of crossings that the Vol-Det Conjecture does hold.

A typical biperiodic alternating link

- Faces of L:
- 1 octagon
- 4 pentagons
- 1 square
- 8 triangles

$$Vol((T^{2} \times I) - L) \approx 47.644829$$
$$vol^{(L)} = Vol(B_{8}) + 4Vol(B_{5}) + v_{oct} + 16v_{tet} \approx 47.704628$$
$$p(z, w) = {}_{wz^{2} + z^{3} - 2wz + 104z^{2} - 2z^{3}/w + w + 510z + 510z^{2}/w + z^{3}/w^{2} - 2456z/w + 104z^{2}/w^{2}}{+510/w + 1/z + 510z/w^{2} + z^{2}/w^{3} + 104/w^{2} - 2/(wz) - 2z/w^{3} + 1/w^{3} + 1/(w^{2}z) + 104}$$
Numerically, $2\pi m(p(z, w)) \approx 47.9214$

So L satisfies Conjecture 1, and the inequality within a range of 0.6%, $Vol((T^2 \times I) - L) < vol^{\Diamond}(L) < 2\pi m(p(z, w)).$ Exact Mahler measure m(p(x, y)) for certain p(x, y)

$$\mathrm{m}(p(x,y)) = \frac{1}{(2\pi i)^2} \int_{S^1 \times S^1} \log |p(x,y)| \, \frac{dx}{x} \frac{dy}{y}$$

Consider $\mathbb{C}[x, y] = \mathbb{C}[x][y]$, so that for algebraic functions $y_j(x)$ of x,

$$p(x,y) = (y - y_1(x)) \cdots (y - y_d(x))$$

$$\mathrm{m}(p(x,y)) \stackrel{\mathsf{Jensen}}{=} -\frac{1}{2\pi} \sum_{j=1}^d \int_{|x|=1,|y_j(x)|\geq 1} \eta(x,y_j)$$

where

$$\eta(x,y) := \log |x| d \arg y - \log |y| d \arg x$$

is a closed differential form, called the volume form.

Bloch-Wigner dilogarithm D(z)

$$D(z) := \operatorname{Im}(\operatorname{Li}_2(z)) + \log |z| \arg(1-z)$$

where $Li_2(z)$ is the classical dilogarithm.

- D(z) is continuous on $\widehat{\mathbb{C}}$, real analytic on $\mathbb{C} \{0, 1\}$.
- **2** $D(e^{i\theta}) = \Pi(\theta)$, where $\Pi(\theta)$ is the Lobachevsky function.
- **(3** D(z) satisfies the 5-term relation and other identities.

•
$$D(z) = Vol(\triangle(z)).$$

(a) $dD(z) = \eta(z, 1-z)$.

So if $\eta(x, y)$ can be expressed in terms of $\eta(z, 1 - z)$'s, then we can use Stokes' Theorem to evaluate m(p(x, y)) exactly in terms of D(z), and get hyperbolic volumes.

Exact Mahler measure m(p(x, y)) for certain p(x, y)

Let
$$X = \{(x, y) \in \mathbb{C}^2 \mid p(x, y) = 0\}$$
. In $\mathbb{C}(\widehat{X})^* \wedge \mathbb{C}(\widehat{X})^*$, if we can write
(*) $x \wedge y = \sum_k \alpha_k (z_k \wedge (1 - z_k))$
 $\implies \eta(x, y) = \sum_k \alpha_k \eta(z_k, 1 - z_k) = \sum_k \alpha_k dD(z_k)$
 $\mathrm{m}(p(x, y)) = -\frac{1}{2\pi} \sum_{j=1}^d \sum_k \alpha_k D(z_k)|_{\partial\{|x|=1, |y_j(x)| \ge 1\}}$

A priori, we may not be able to solve (\star) .

(*Champanerkar 2003*) Can solve (*) for A-polynomial of any 1-cusped M^3 .

If the curve has genus 0, then we can solve (\star) by parametrizing the curve.

Example: Square weave polynomial (Boyd 1998)

Step 1:
$$p(z, w) = -\left(4 + w + \frac{1}{w} + z + \frac{1}{z}\right)$$

$$-p(z/w, wz) = 4 + wz + \frac{1}{wz} + \frac{z}{w} + \frac{w}{z}$$
$$= \frac{1}{wz}(1 + iw + iz + wz)(1 - iw - iz + wz)$$

$$\implies m(p(z,w)) = m(1 + iw + iz + wz) + m(1 - iw - iz + wz)$$

$$\implies m(p(z,w)) = 2m(1 + iw + iz + wz)$$

Step 2:
$$1 + iw + iz + wz = 0 \implies z = \frac{1 + iw}{w + i}$$
.

(*)
$$w \wedge z = w \wedge \frac{1 + iw}{i + w} = iw \wedge (1 + iw) - iw \wedge (1 - iw)$$

= $(-iw) \wedge (1 - (-iw)) - (iw \wedge (1 - iw)).$

If
$$w = e^{i\theta}$$
, $|z| = \left|\frac{1+iw}{w+i}\right| = \left|\cot\left(\frac{2\theta+\pi}{4}\right)\right| \implies |z| \ge 1$ iff $-\pi \le \theta \le 0$.
So we must integrate between $w = -1$ and $w = 1$.

$$m(p(z,w)) = -\frac{1}{2\pi} \sum_{j=1}^{d} \sum_{k} \alpha_k D(z_k)|_{\partial\{|w|=1, |z_k(w)| \ge 1\}}$$

So we must evaluate $-\frac{1}{2\pi}(D(-iw) - D(iw))$ on the boundary $w|_{-1}^1$

 $2\pi m(p(z,w)) = 2(-D(-i \cdot 1) + D(i \cdot 1) + D(-i \cdot (-1)) - D(i \cdot (-1)))$ = 8 D(i) = 2 v_{oct}.

Step 2:
$$1 + iw + iz + wz = 0 \implies z = \frac{1 + iw}{w + i}$$
.

$$(\star) \quad w \wedge z = w \wedge \frac{1 + iw}{i + w} = iw \wedge (1 + iw) - iw \wedge (1 - iw)$$
$$= (-iw) \wedge (1 - (-iw)) - (iw \wedge (1 - iw)).$$

If
$$w = e^{i\theta}$$
, $|z| = \left|\frac{1+iw}{w+i}\right| = \left|\cot\left(\frac{2\theta+\pi}{4}\right)\right| \implies |z| \ge 1$ iff $-\pi \le \theta \le 0$.
So we must integrate between $w = -1$ and $w = 1$.

$$m(p(z,w)) = -\frac{1}{2\pi} \sum_{j=1}^{d} \sum_{k} \alpha_{k} D(z_{k})|_{\partial \{|w|=1, |z_{k}(w)| \ge 1\}}$$

So we must evaluate $-\frac{1}{2\pi}(D(-iw) - D(iw))$ on the boundary $w|_{-1}^{1}$

 $2\pi m(p(z,w)) = 2(-D(-i \cdot 1) + D(i \cdot 1) + D(-i \cdot (-1)) - D(i \cdot (-1)))$ = 8 D(i) = 2 v_{oct}.

Step 2:
$$1 + iw + iz + wz = 0 \implies z = \frac{1 + iw}{w + i}$$
.

$$(\star) \quad w \wedge z = w \wedge \frac{1 + iw}{i + w} = iw \wedge (1 + iw) - iw \wedge (1 - iw)$$
$$= (-iw) \wedge (1 - (-iw)) - (iw \wedge (1 - iw)).$$

If
$$w = e^{i\theta}$$
, $|z| = \left|\frac{1+iw}{w+i}\right| = \left|\cot\left(\frac{2\theta+\pi}{4}\right)\right| \implies |z| \ge 1$ iff $-\pi \le \theta \le 0$.
So we must integrate between $w = -1$ and $w = 1$.

$$m(p(z,w)) = -\frac{1}{2\pi} \sum_{j=1}^{d} \sum_{k} \alpha_k D(z_k)|_{\partial\{|w|=1, |z_k(w)| \ge 1\}}$$

So we must evaluate $-\frac{1}{2\pi}(D(-iw) - D(iw))$ on the boundary $w|_{-1}^1$

$$2\pi m(p(z,w)) = 2(-D(-i \cdot 1) + D(i \cdot 1) + D(-i \cdot (-1)) - D(i \cdot (-1)))$$

= 8 D(i) = 2 v_{oct}.

New examples

Conjecture 1.
$$Vol(T^2 \times I - L) \le vol^{\Diamond}(L) \le 2\pi m(p(z, w)).$$

We used Boyd's computations to prove Conjecture 1 for the square weave, triaxial and rhombitrihexagonal links:

We use new exact Mahler measure computations to prove Conjecture 1 for more examples:

$$p(z,w) = -w^2 z^2 + 6w^2 z + 6w z^2 - w^2 + 28w z - z^2 + 6w + 6z - 1$$

$$2\pi \operatorname{m}(p(z,w)) = \operatorname{arccos}\left(-\frac{7}{9}\right) \operatorname{log}(17 + 12\sqrt{2}) + 8D(i) + 4D\left(\frac{\sqrt{7+4\sqrt{2}i}}{3}\right) - 4D\left(-\frac{\sqrt{7+4\sqrt{2}i}}{3}\right)$$

$$\approx 19.771532321797992256575200922336735211$$

$$\mathrm{vol}^{\Diamond}(L) pprox 19.6379$$

 $Vol(T^2 imes I - L) pprox 19.5597$

So L satisfies Conjecture 1, and the inequality within a range of 0.4%, $Vol(T^2 \times I - L) < vol^{\diamond}(L) < 2\pi m(p(z, w)).$

Why 2π ?

A tower of covers: $\dots \rightarrow M_n \rightarrow M_{n-1} \rightarrow \dots \rightarrow M_1 \rightarrow M_0 = M$.

For M^3 , $H_1(M_n; \mathbb{Z})$ can have arbitrarily large torsion subgroups $TH_1(M_n)$.

Conjecture For closed or 1-cusped hyperbolic M^3 , if $\bigcap_n \pi_1 M_n = \{1\}$ for a tower of regular covers M_n ,

$$\lim_{n\to\infty}\frac{\log|TH_1(M_n)|}{Vol(M_n)}=\frac{1}{6\pi}$$

This is a special case of Lück's Approximation Conjecture in L^2 -torsion theory: For closed or 1-cusped hyperbolic M^3 , the analytic L^2 -torsion of covering transformations of \mathbb{H}^3 is

$$\rho^{(2)}(M) = -\frac{1}{6\pi} Vol(M).$$

Recall, det(K) = $|H_1(\Sigma_2(K))|$, homology of 2–fold branched cover of K. = $|TH_1(X(K))|$, torsion of 2–fold cyclic cover of $S^3 - K$.

Let X(L) = 2-fold cyclic cover of $T^2 \times I - L$, given by kernel of $\pi_1(T^2 \times I - L) \rightarrow \mathbb{Z}/2\mathbb{Z}$, with L meridians $\rightarrow 1$, Hopf link meridians $\rightarrow 0$.

Theorem (Champanerkar-K) Let \mathcal{L} be any hyperbolic biperiodic alternating link, with $L_n = \mathcal{L}/(n\mathbb{Z} \times n\mathbb{Z})$, p(z, w) for L_1 as above,

$$\lim_{n\to\infty}\frac{\log|TH_1(X(L_n))|}{Vol(X(L_n))}=\frac{\mathrm{m}(p(z,w))}{2\,Vol(T^2\times I-L_1)}$$

For the subsequence $n = 2^{j}$, we get a tower of covers with this limit:

$$\cdots \rightarrow X(L_{2n}) \rightarrow X(L_n) \rightarrow \cdots \rightarrow X(L_1).$$

Note: Since $X(\mathcal{L})$ is a common cover, $\bigcap_n \pi_1 X(L_n) \neq \{1\}$.

Growth and hyperbolic volume – Example 3

Theorem (Champanerkar-K) For square weave ${\mathcal W}$ and triaxial link ${\mathcal Q}$,

$$\lim_{n \to \infty} \frac{\log |TH_1(X(W_n))|}{Vol(X(W_n))} = \lim_{n \to \infty} \frac{\log |TH_1(X(Q_n))|}{Vol(X(Q_n))} = \frac{1}{4\pi}$$

As far as we know, these are the first examples of non-cyclic towers of covers of hyperbolic 3-manifolds whose exponential homological torsion growth can be computed exactly in terms of volume growth.

Question Can $1/4\pi$ be explained in terms of L^2 -torsion of covering transformations of X(W) and of X(Q)?

Ilya Kofman (CUNY)

Growth and hyperbolic volume – Example 3

Theorem (Champanerkar-K) For square weave W and triaxial link Q,

$$\lim_{n \to \infty} \frac{\log |TH_1(X(W_n))|}{Vol(X(W_n))} = \lim_{n \to \infty} \frac{\log |TH_1(X(Q_n))|}{Vol(X(Q_n))} = \frac{1}{4\pi}$$

As far as we know, these are the first examples of non-cyclic towers of covers of hyperbolic 3-manifolds whose exponential homological torsion growth can be computed exactly in terms of volume growth.

Question Can $1/4\pi$ be explained in terms of L^2 -torsion of covering transformations of X(W) and of X(Q)?

Ilya Kofman (CUNY)

Theorem
$$\lim_{n\to\infty} \frac{\log |TH_1(X(L_n))|}{Vol(X(L_n))} = \frac{\mathrm{m}(p(z,w))}{2 \, Vol(T^2 \times I - L_1)}.$$

Conjecture 1
$$Vol(T^2 \times I - L) \leq vol^{\Diamond}(L) \leq 2\pi m(p(z, w)).$$

Together, these imply that for any hyperbolic biperiodic alternating link \mathcal{L} ,

Conjecture 2
$$\lim_{n\to\infty} \frac{\log |TH_1(X(L_n))|}{Vol(X(L_n))} \geq \frac{1}{4\pi},$$

with equality for the square weave and the triaxial link.

Example: For the Rhombitrihexagonal link \mathcal{R} ,

$$\lim_{n \to \infty} \frac{\log |TH_1(X(R_n))|}{Vol(X(R_n))} = \frac{1}{4\pi} \left(\frac{10 v_{\text{tet}} + 2\pi \log(6)}{10 v_{\text{tet}} + 3 v_{\text{oct}}} \right) \approx \frac{1.0126}{4\pi}$$

and similarly for other examples whose m(p(z, w)) we computed exactly.
