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QUASI-FUCHSIAN 3-MANIFOLDS AND METRICS ON

TEICHMÜLLER SPACE∗

REN GUO† , ZHENG HUANG‡ , AND BIAO WANG§

Abstract. An almost Fuchsian 3-manifold is a quasi-Fuchsian manifold which contains an
incompressible closed minimal surface with principal curvatures in the range of (−1, 1). By the work
of Uhlenbeck, such a 3-manifold M admits a foliation of parallel surfaces, whose locus in Teichmüller
space is represented as a path γ, we show that γ joins the conformal structures of the two components
of the conformal boundary of M . Moreover, we obtain an upper bound for the Teichmüller distance
between any two points on γ, in particular, the Teichmüller distance between the two components
of the conformal boundary of M , in terms of the principal curvatures of the minimal surface in M .
We also establish a new potential for the Weil-Petersson metric on Teichmüller space.
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1. Introduction of Main Results. One of the fundamental questions in hy-
perbolic geometry of two and three dimensions is the interaction between the internal
geometry of a hyperbolic 3-manifold and the geometry of Teichmüller space of Rie-
mann surfaces. It is natural to consider the situation for complete quasi-Fuchsian 3-
manifolds. Let M be such a manifold, then M is topologically identified as M = Σ×R,
where Σ is a closed surface of genus g ≥ 2. We denote the Teichmüller space of genus
g surfaces by Tg(Σ), the space of conformal structures on Σ modulo orientation pre-
serving diffeomorphisms in the homotopy class of the identity map. An important
theorem of Brock ([Bro03]), proving a conjecture of Thurston, states that the hyper-
bolic volume of the convex core of a quasi-Fuchsian 3-manifold is quasi-isometric to
the Weil-Petersson distance between the two components of the conformal boundary
of the 3-manifold in Teichmüller space.

The space of quasi-Fuchsian 3-manifolds QF (Σ), called the quasi-Fuchsian space,
is a complex manifold of complex dimension 6g − 6. Its geometrical structures are
extremely complicated, and they have been subjects of intensive study in recent years.
In this paper, we consider mostly a subspace formed by the so-called almost Fuchsian
3-manifolds: a quasi-Fuchsian 3-manifold M is almost Fuchsian if it contains a unique
embedded minimal surface, representing the fundamental group, whose principal cur-
vatures are in the range of (−1, 1). This subspace is an open connected manifold of
the same dimension ([Uhl83]). One can view the quasi-Fuchsian space as a “higher”
Teichmüller space, a square with Teichmüller space sitting inside as a diagonal, and
view the space of almost Fuchsian 3-manifolds as an open subspace of QF (Σ) around
this diagonal. See also ([KS07]) for generalization of almost Fuchsian manifolds to
dS, AdS geometry and surfaces with cone points.

By a remarkable theorem of Uhlenbeck ([Uhl83]), any almost Fuchsian 3-manifold
admits a foliation of parallel surfaces from the unique minimal surface. These parallel
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surfaces, denoted by S(r) for r ∈ R, can be viewed as level sets of distant r from
the minimal surface (see §2.2 for details). Special hypersurfaces such as constant
mean curvature surfaces are investigated in [Wan08] and [HW09] and others. The
existence of a foliation of submanifolds is an important and powerful tool in the
study of geometry. A foliation of parallel surfaces for an almost Fuchsian 3-manifold
allows one to relate the deformation of these structures to Teichmüller theory, the
deformation theory of conformal structures on a closed surface. We consider a foliation
F = {S(r)}r∈R of parallel surfaces (or the normal flow) from the minimal surface S
for an almost Fuchsian 3-manifold M and we are interested in following the locus of
this foliation in Teichmüller space: {S(r)}r∈R of M forms a path γ(M) in Tg(Σ).

Theorem 1.1. The path γ(M) in Tg(Σ) joins the conformal structures of the
two components of the conformal boundary of M .

Starting with any embedded surface with principal curvature in the range of
(−1, 1) in a quasi-Fuchsian manifold, the foliation of parallel surfaces from this surface
forms a path in Teichmüller space. It also joins the two components of conformal
boundary. We establish this general situation in the proof, which is based on Esptein’s
construction in an unpublished manuscript ([Eps84]).

Minsky ([Min93]) considered the locus in Teichmüller space formed by pleated
surfaces, and discovered that, in ǫ0−thick part of Teichmüller space, this locus is a
quasi-geodesic in the Teichmüller metric.

In this paper, we answer a question raised by Rubstein, where he asked to relate
the geometry of an almost Fuchsian 3-manifold to distances in Teichmüller space
([Rub07]). We relate this to the Teichmüller metric and the Weil-Petersson metric.

We obtain an upper bound of the Teichmüller distance dT between the loci of
the minimal surface S and S(r) for r ∈ (−∞,∞). In particular, we obtain an upper
bound of the Teichmüller distance dT between the conformal structures of fibers S(r1)
and S(r2) for r1, r2 ∈ (−∞,∞).

Theorem 1.2. Let λ0 = max{λ(z), z ∈ S} be the maximal principal curvature
on the minimal surface S, then,

dT (S, S(r)) ≤ 1

2
| log

1 + λ0 tanh(r)

1 − λ0 tanh(r)
|(1.1)

dT (S(r1), S(r2)) ≤
1

2
| log

1 + λ0 tanh(r2)

1 − λ0 tanh(r2)
− log

1 + λ0 tanh(r1)

1 − λ0 tanh(r1)
|.(1.2)

A direct consequence is the upper bound for the Teichmüller distance between
two conformal boundaries.

Corollary 1.3. If M = H3/Γ is almost Fuchsian with the conformal boundary
Ω+/Γ ⊔ Ω−/Γ, then

dT (S, Ω±/Γ) ≤ 1

2
log

1 + λ0

1 − λ0
(1.3)

dT (Ω−/Γ, Ω+/Γ) ≤ log
1 + λ0

1 − λ0
.(1.4)

One observes that if two conformal boundaries of an almost Fuchsian 3-manifold
are far away in Teichmüller metric, then the maximal principal curvature of the unique
minimal surface is very close to 1.
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Epstein ([Eps86]) calculated the maximal dilatation of the hyperbolic Gauss map
of a surface homeomorphic to a disk in H3. The inequality (1.4) was essentially due
to him ([Eps86] Proposition 5.1). Some local calculations in the proof of (1.2) can
also be seen in ([Vel99]).

A rival metric on Teichmüller space to the Teichmüller metric is the Weil-
Petersson metric, which offers a vastly different view of Teichmüller space: it is incom-
plete ([Chu76], [Wol75]), Kählerian ([Ahl61]), and with negative sectional curvatures
([Tro86], [Wol86]). We obtain a new potential for the Weil-Petersson metric on Te-
ichmüller space by studying areas of certain immersed surfaces near Fuchsian locus
within the quasi-Fuchsian space.

A potential of Weil-Petersson metric is a function defined on Teichmüller space
Tg(Σ) such that the second variation of this function in direction of two holomorphic
quadratic differentials αdz2 and βdz2 at a point of Tg(Σ) equals the Weil-Petersson
inner product 〈α, β〉WP , up to a constant. Potentials offer important information
and computational tools to study the metric. There are several known potentials
of the Weil-Petersson metric: Dirichlet energy of harmonic maps ([Tro87], [Wol89],
[Jos91]), the Liouville action ([ZT87]), renormalized volume of quasi-Fuchsian mani-
folds ([TT03], [KS08]) and Hausdorff dimension of the limit set ([BT08], [McM08]).
Those potentials are functions well-defined on the whole Teichmüller space. But to
calculate the variation, it suffices that a function is defined locally in a neighborhood.

We denote a Riemann surface by (Σ, σ) where σ is a conformal structure. Our new
potential of the Weil-Petersson metric is a locally defined function in a neighborhood
of (Σ, σ) ∈ Tg(Σ) which is based on the immersion of a minimal surface in some quasi-
Fuchsian manifold within the quasi-Fuchsian space. The cotangent space of Tg(Σ) at
a point (Σ, σ) can be identified with Q(σ), the space of holomorphic quadratic differ-
entials on (Σ, σ). Under this identification, (Σ, σ) corresponds to the zero quadratic
differential denoted by 0 ∈ Q(σ). Uhlenbeck ([Uhl83]) showed that there is an open
neighborhood U of 0 ∈ Q(σ) such that for any holomorphic quadratic differential
αdz2 ∈ U , there exists a minimal surface Σ(αdz2) immersed in some quasi-Fuchsian
3-manifold such that the induced metric on Σ(αdz2) is in the conformal class σ and
the second fundamental form of the immersion is the real part of αdz2. The area
of Σ(αdz2) with respect to the induced metric, denoted by |Σ(αdz2)|, is a function
defined in the neighborhood U ⊂ Q(σ).

Theorem 1.4. The zero quadratic differential 0 ∈ Q(σ) is a critical point of
the area functional |Σ(αdz2)| : U → R. And the area functional is a potential of
Weil-Petersson metric on Teichmüller space.

Plan of the paper. We provide necessary background material in §2. The
Theorem 1.1, the Theorem 1.2 and the Corollary 1.3 are proved in §3. In section §4,
the Theorem 1.4 is established.

Acknowledgements. The authors wish to thank Bill Abikoff, Jun Hu, Albert
Marden, and Xiaodong Wang for their generous help. We also thank the referee
for suggestions to improve this paper. The research of the second named author is
partially supported by a PSC-CUNY grant.

2. Preliminaries. The results in this paper lie in the intersection of several
different fields, low dimensional topology, geometric function theory and geometric
analysis. In this section, we briefly summarize background material for topics involved.
We always assume M is orientable and all surfaces involved are closed and orientable
of genus at least two.
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2.1. Kleinian groups and quasi-Fuchsian 3-manifolds. A hyperbolic mani-
fold is a complete Riemannian manifold of constant curvature −1. The universal cover
of a hyperbolic manifold is Hn, and the deck transformations induce a representation
of the fundamental group of the manifold in Isom(Hn), the (orientation preserving)
isometry group of H

n. In the case we are interested in, Isom(H2) = PSL(2, R) which
lies naturally in Isom(H3) = PSL(2, C).

A subgroup Γ ⊂ PSL(2, C) is called a Kleinian group if Γ acts on H3 properly
discontinuously. For any Kleinian group Γ, ∀ p ∈ H3, the orbit set

Γ(p) = {γ(p) | γ ∈ Γ}

has accumulation points on the boundary S2
∞ = ∂H3, and these points are the limit

points of Γ, and the closed set of all these points is called the limit set of Γ, denoted
by ΛΓ. The complement of the limit set, i.e.,

Ω = S2
∞ \ ΛΓ ,

is called the region of discontinuity. Γ acts properly discontinuously on Ω, whose
quotient Ω/Γ is a finite union of Riemann surfaces of the finite type. The quotient
M = H3/Γ is a 3-manifold with conformal boundary Ω/Γ.

Suppose Γ is a finitely generated torsion free Kleinian group which has more than
two limit points, we call Γ quasi-Fuchsian if its limit set ΛΓ is a closed Jordan curve
and both components Ω± of its region of discontinuity are invariant under Γ. When
ΛΓ is actually a circle, we call Γ a Fuchsian group and the corresponding M Fuchsian
manifold. It is clear that in this case, M is the product space Ω+/Γ× R.

If Γ is a quasi-Fuchsian group, Marden [Mar74] proved that the quotient M =
H3/Γ is diffeomorphic to (Ω+/Γ) × (0, 1), and M = (H3 ∪ Ω)/Γ is diffeomorphic to
(Ω+/Γ) × [0, 1]. M is then called a quasi-Fuchsian 3-manifold.

In this paper we assume that Γ contains no parabolic elements, and M is quasi-
Fuchsian but we exclude the case when M is Fuchsian since the locus of the normal
flow from a totally geodesic minimal surface is a single point in Teichmüller space.
Topologically M = Σ×R where Σ is a closed surface of genus g ≥ 2. The deformation
theory of Kleinian group yields the following simultaneous unformization result, a
beautiful theorem of Bers:

Theorem 2.1. ([Ber60b]) There is a biholomorphic map Q : Tg(Σ) × Tg(Σ) →
QF (Σ) such that Q(X, Y ) is the unique quasi-Fuchsian 3-manifold in the quasi-
Fuchsian space QF (Σ) with X, Y as conformal boundaries.

2.2. Foliation of parallel surfaces. In the following we review some results in
[Uhl83]. Let M be a quasi-Fuchsian 3-manifold which contains a minimal surface S
whose principal curvatures are in the range of (−1, 1). Then there is an equidistant
foliation of M formed by parallel surfaces {S(r)}r∈R. Suppose the coordinate system
on S ≡ S × {0} is isothermal so that, using the local coordinate z = x + iy, the
induced metric (dx, dy)[gij(z, 0)]2×2(dx, dy)T on S can be written in the form

[gij(z, 0)] = e2v(z)
I

for some function v(z) and where I is the 2 × 2 identity matrix. Let
(dx, dy)[hij(z, 0)]2×2(dx, dy)T be the second fundamental form of S. We choose ε > 0
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to be sufficiently small, then the (local) diffeomorphism

S × (−ε, ε) → M

(x1, x2, r) 7→ expx(rν)

induces a coordinate patch in M . Let S(r) be the family of parallel surfaces with
respect to S, i.e.

S(r) = {expx(rν) | x ∈ S} , r ∈ (−ε, ε) .

The induced metric (dx, dy)[gij(z, r)](dx, dy)T on S(r) can be computed as

[gij(z, r)] = [gij(0, r)](cosh rI + sinh r[gij(0, r)]−1[hij(z, 0)])2(2.1)

= e2v(z)(cosh rI + sinh re−2v(z)[hij(z, 0)])2.

And it is easy to verify, under the principal curvature condition, that induced metric
on S(r) (2.1) is well defined for all r ∈ R. Moreover, the set of parallel surfaces
{S(r)}r∈R forms a foliation of M , which is called the equidistant foliation or the
normal flow.

The second fundamental form (dx, dy)[hij(z, r)](dx, dy)T on S(r) is given by

hij(z, r) =
1

2

∂

∂r
gij(z, r) , 1 ≤ i, j ≤ 2 .

We denote λ(z),−λ(z) as the principal curvatures of S with λ(z) ≥ 0. Then the
principal curvatures of S(r) are given by

(2.2) λ1(z, r) =
tanh r − λ(z)

1 − λ(z) tanh r
and λ2(z, r) =

tanh r + λ(z)

1 + λ(z) tanh r
.

We observe that they are increasing functions of r for fixed z ∈ S, and they both
approach ±1 when r → ±∞, respectively.

2.3. Metrics on Teichmüller space. For references on quasiconformal map-
pings and Teichmüller theory, see, for example, the paper [Ber60a] and the book
[GL00].

Points in Teichmüller space Tg(Σ) are equivalence classes of conformal structures
(or alternatively, hyperbolic metrics) on a closed surface Σ. Two Riemann surfaces
(Σ, σ1) and (Σ, σ2) are equivalent if there is a homeomorphism f : Σ → Σ, homotopic
to the identity, which is a conformal map from (Σ, σ1) to (Σ, σ2). Teichmüller space
carries a natural topology which is induced by several natural metrics, and among
these metrics, the most studied are the Teichmüller metric and the Weil-Petersson
metric.

The Teichmüller distance between (Σ, σ1) and (Σ, σ2) is given by

(2.3) dT ((Σ, σ1), (Σ, σ2)) =
1

2
log inffK[f ],

where f : (Σ, σ1) → (Σ, σ2) is a quasiconformal map homotopic to the identity and
K[f ] is the maximal dilatation of f . This infimum is reached by the Teichmüller map,
which yields very geometrical description ([Ber60a]).

The Weil-Petersson metric on Teichmüller space Tg(Σ) is induced via an inner
product on the cotangent space Q(σ). At a point (Σ, σ) ∈ Tg(Σ), let αdz2, βdz2 ∈
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Q(σ) be two holomorphic quadratic differentials on (Σ, σ). The Weil-Petersson co-
metric is defined by the Hermitian form

(2.4) 〈α, β〉WP =

∫

Σ

αβ

g2
0

dAg0
,

where g0|dz|2 is the unique hyperbolic metric in the conformal class σ, and dAg0
is

its area element.

Infinitesimally, the Teichmüller norm of a holomorphic quadratic differential
φ(z)dz2 ∈ Q(σ) is the L1-norm of φ(z)dz2, while the Weil-Petersson norm is induced
by the L2-norm.

3. Foliation as a path in Teichmüller space. In this section, we prove the
theorems concerning the locus of the foliation {S(r)}r∈R of parallel surfaces for M in
Teichmüller space. In §3.1, we show the Theorem 1.1 and provide alternative point
of view from geometric analysis. In §3.2, we calculate the dilatation of the quasi-
conformal map from the minimal surface to a fiber S(r), and in §3.3 we treat the
general case, i.e, the quasi-conformal map between any two points on the locus.

3.1. Joining the boundaries. Let S be the minimal surface in an almost Fuch-
sian manifold M , and {S(r)}r∈R be the foliation of parallel surfaces from S. The in-
duced metric (dx, dy)[gij(z, r)](dx, dy)T on each fiber S(r) is given by (2.1), and such
metric determines a conformal structure σ(r) on S(r). The path γ is formed by the
set {(S(r), σ(r)) ∈ Tg(Σ)}r∈R. The Theorem 1.1 basically states that the conformal
structures determined by the limiting metrics are the conformal boundaries Ω+/Γ and
Ω−/Γ, prescribed in Bers’ Uniformization Theorem 2.1, where M = H3/Γ.

Proof of Theorem 1.1. Consider the disjoint decomposition of the boundary of
H3: S2

∞ = Λ⊔Ω+⊔Ω−, where ΛΓ is the limit set of Γ, and let S ⊂ M be an embedded
surface (not necessary to be minimal) with principal curvatures in the range of (−1, 1).
The universal cover of (M, S, Ω+/Γ, Ω−/Γ) is (H3, S̃, Ω+, Ω−), where S̃ is topologically
a disk with boundary ΛΓ.

Note that we do not assume S is a minimal surface in this proof, as long as it
satisfies the principal curvature condition, or equivalently, the normal flow from S can
be extended to infinities. Then M is isometric to S × R with the metric

(3.1) dr2 + (dx, dy)[gij(z, r)](dx, dy)T ,

where the second term is the induced metric on S(r) as in (2.1), while {z} is the
conformal coordinate on S.

Let us make it clear how to follow the locus of S(r) in Teichmüller space: for each
r, the induced metric on S(r) can be expressed in the complex form of w(z, r)|dz +
µ(z, r)dz̄|2. Solving the Beltrami equation fz̄ = µ(z, r)fz for each r provides a quasi-
conformal map from S to S(r) which is a diffeomorphism a.e., which associates a
complex structure on S(r), a point in Teichmüller space ([Ber60a]).

We will work in the universal cover since in what follows is invariant under the
action of Γ. We will use coordinates on Ω+ to write the embedding of S̃ into H3. H3

is identified with B3 = {(x, y, z)|x2 + y2 + z2 < 1} and S2
∞ with the unit sphere

S2 = {X(θ) := (
2ℜθ

|θ|2 + 1
,

2ℑθ

|θ|2 + 1
,
|θ|2 − 1

|θ|2 + 1
)|θ ∈ S2

∞}.
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Given a point X(θ) ∈ S2, there is unique horoshpere H(θ) at X(θ) tangent to S̃.
Therefore S̃ determines a function ρ : S2 → R on Ω+ whose absolute value is the
hyperbolic distance from (0, 0, 0) ∈ B3 to H(θ), and ρ(θ) is positive when (0, 0, 0) is
out of H(θ), and it is negative when (0, 0, 0) is in H(θ).

Using the function ρ(θ), Epstein ([Eps84] (2.4)) obtained the embedding of S̃ in
B3:

Ω+ → B3

θ 7→ |Dρ|2 + (e2ρ − 1)

|Dρ|2 + (eρ + 1)2
X(θ) +

2Dρ

|Dρ|2 + (eρ + 1)2
,

where Dρ is the gradient of ρ(θ) with respect to the canonical metric on S2: 4|dθ|2

(1+|θ|2)2 .

With above formula of the embedding, one can work out explicitly the first and
second fundamental forms of S̃

(dℜθ, dℑθ)[gij(θ, 0)](dℜθ, dℑθ)T ,

(dℜθ, dℑθ)[hij(θ, 0)](dℜθ, dℑθ)T ,

in the coordinate θ (see [Eps84] (5.4, 5.6)).
As in the formula (2.1), the induced metric (dℜθ, dℑθ)[gij(θ, r)](dℜθ, dℑθ)T on

the parallel surface S̃(r), with distance r > 0 to S̃ is again

[gij(θ, r)] = [gij(θ, 0)](cosh rI + sinh r[gij(θ, 0)]−1[hij(θ, 0)])2.

When r → ∞, the matrix [gij(θ, r)] does not converge. Using the matrix

cosh−2 r[gij(θ, r)] which induces the same conformal structure as [gij(θ, r)], we get
the limit (see [Eps84] (5.10)):

lim
r→∞

cosh−2 (r)[gij(θ, r)] = [gij(θ, 0)](I + [gij(θ, 0)]−1[hij(θ, 0)])2

= e2ρ(θ) 4

(1 + |θ|2)2 I.

We can check that, for any element γ ∈ Γ, the function ρ(θ) satisfies

e2ρ(γ(θ)) |γ′(θ)|2
(1 + |γ(θ)|2)2 = e2ρ(θ) 1

(1 + |θ|2)2 .

Therefore e2ρ(θ) 4|dθ|2

(1+|θ|2)2 defines a metric on Ω+/Γ which is conformal under the co-

ordinate θ. Thus this metric induces the same conformal structure on Ω+/Γ coming
from Bers’s Uniformization.

It is clear that one can use above calculation for r < 0 to treat the case of the
Riemann surface Ω−/Γ.

We want to also provide an alternative approach to the Theorem 1.1, in a much
more general setting. Let N̄ be a compact manifold with boundary ∂N . We call f
a defining function if f is a smooth function on N̄ with a first order zero on ∂N . A
Riemannian metric g on N = int(N̄) is called conformally compact if for any defining
function f , f2g extends as a smooth metric on N̄ , whose restriction defines a metric
and a well-defined conformal structure C on ∂N . The pair (∂N, C) is the conformal
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infinity of N . A quasi-Fuchsian manifold is a conformally compact Einstein manifold
and the conformal infinity of a conformal compact Einstein manifold is independent
of the choice of boundary defining functions ([FG85], [GL91]). Therefore we need to
find a defining function for the metric gM in formula (3.1).

Let t = tanh(r), then t ∈ (−1, 1) and the formula (3.1) can be written as

g′M =
1

(1 − t2)2
dt2 +

1

1 − t2
(dx, dy)h(z, t)(dx, dy)T ,

where h(z, t) = e2v(z)[I + te−2v(z)A(z)]2 and z = x + iy. Then M is isometric to
Σ × (−1, 1) with the metric g′M .

Now we define f(t) = 1 − t2, then f(±1) = 0 and f ′(±1) 6= 0, and

f2(t)g′M = dt2 + (1 − t2)(dx, dy)h(z, t)(dx, dy)T .

It is then easy to see that f2(t)g′M is a smooth metric on the compactified M̄ =
M ∪ ∂M , isometric to Σ × [−1, 1], with conformal infinity the disjoint union of two
conformal structures achieved by taking t = ±1. Therefore by above definitions,
g(z, r), hence the parallel surfaces, approach two components of the conformal infinity.

Remark 3.1. The question whether the locus γ is simple in Teichmüller space is
not known.

3.2. Teichmüller distance bounds.. In this subsection, we prove formulas
(1.1) and (1.3), i.e, we compare the conformal structure on S(r) with the minimal
surface S. Solutions are in a simpler form when we use conformal coordinates on a
minimal surface since the mean curvature is zero.

The strategy is quite straightforward: we express the induced metric
(dx, dy)[gij(z, r)](dx, dy)T on S(r) in its complex form, then estimate the dilatation
for the quasi-conformal map which assigns the complex structure on S(r).

We fix the metric (dx, dy)[gij(z, 0)](dx, dy)T = e2v(z)dzdz on S and the second
fundamental form (dx, dy)[hij(z, 0)](dx, dy)T . Since the surface S is minimal, we may
write the matrix e−2v(z)[hij(z, 0)] as

(
a b
b −a

)

with ±λ as eigenvalues, i.e., the principal curvatures of S. And we define λ0 > 0 as
the maximum of the principal curvatures of S. It is easy to see that a2 + b2 = λ2.

Let pr be the intersection point of S(r) (r ∈ (−∞,∞)) and the geodesic per-
pendicular to S at p. There is a diffeomorphism ur : S → S(r) sending p to pr.

Lemma 3.2. This map ur : S → S(r) is λ0| tanh(r)|−quasiconformal.

Proof. Assume ρ2dζdζ is the induced metric on S(r) from the embedding S(r) →
M , in terms of the conformal coordinate ζ. To calculate the complex dilatation, we
need to write the pull-back (ur)∗ρ2dζdζ in its complex form w(z, r)|dz + µ(z, r)dz̄|2
using the coordinate z on S.

Write z = x + iy, α := cosh(r) and β := sinh(r). We find that
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(ur)∗ρ2dζdζ = (dx, dy)e2v(z)(cosh rI + sinh re−2v(z)[hij(z, 0)])2(dx, dy)T

= (dx, dy)e2v(z)

(
α + aβ bβ

bβ α − aβ

)2

(dx, dy)T

=: Edx2 + 2Fdxdy + Gdy2,

where

E = e2v(z)(α2 + 2aαβ + β2λ2)

F = e2v(z)(2bαβ)

G = e2v(z)(α2 − 2aαβ + β2λ2).

From standard Riemannian geometry, we have

(3.2) µ(z, r) =
E − G + 2

√
−1F

E + G + 2
√

EG − F 2
.

Here we have

EG − F 2 = e4v(z)(α2 − λ2β2)2,

and the complex dilatation of ur in a neighborhood of p ∈ S is

µ(z, r) = tanh(r)(a +
√
−1b),

with |µ(z, r)| = |λ(z) tanh(r)| ≤ λ0| tanh(r)| < 1. Since the surface Σ is closed, ur is
λ0| tanh(r)|−quasiconformal.

Directly from (2.3), the Teichmüller distance between S and S(r) is bounded from
above, i.e.,

dT (S, S(r)) ≤ 1

2
log

1 + λ0| tanh(r)|
1 − λ0| tanh(r)| <

1

2
log

1 + λ0

1 − λ0
.

This completes the parts (1.1) and (1.3) in the Theorem 1.2, and the Corollary 1.3.

3.3. Teichmüller distance bounds: general case. In this subsection, we
complete the proof of the Theorem 1.2. The same strategy applies: given any two
fiber surfaces S(r1) and S(r2), we determine the quasi-conformal map between them
obtained from solving the Beltrami equation, and estimate the Beltrami coefficient.

There is a natural map from u : S(r1) → S(r2) given by the normal flow. More
precisely, let p ∈ S(r1). Then p′ = u(p) is the intersection point of S(r2) and the
geodesic perpendicular to S(r1) at p.

Lemma 3.3. The map u is k-quasi-conformal with k = λ0| tanh(r2)−tanh(r1)|
1−λ2

0
tanh(r2) tanh(r1)

.

Proof. Locally the metric on S(r1) is e2v′

dz′dz′. The second fundamental form is
[h′

ij(z
′, 0)] and we write the matrix e−2v′(z′)[h′

ij(z
′, 0)] as

(
a b
b c

)
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with λj as eigenvalues.
Therefore a + c = λ1 + λ2 and ac − b2 = λ1λ2.
The pull-back metric on S(r2) by u is then given by

(dx′, dy′)e2v′(z′)(cosh(r2 − r1)I + sinh(r2 − r1)e
−2v(z′)[h′

ij(z
′, 0)])2(dx′, dy′)T

= (dx′, dy′)e2v′(z′)

(
α + aβ bβ

bβ α + cβ

)2

(dx′, dy′)T

=: E′dx2 + 2F ′dxdy + G′dy2.

Here we write α = cosh(r2 − r1) and β = sinh(r2 − r1), and

E′ = e2v′(z′)(α2 + 2aαβ + β2(a2 + b2))

F ′ = e2v′(z′)(2bαβ + bβ2(a + c))

G′ = e2v′(z′)(α2 + 2cαβ + β2(c2 + b2)).

Now the metric E′dx2 +2F ′dxdy +G′dy2 can be written in the form w′(z′)|dz′ +
µ(z′)dz̄′|2. It is easy to verify

(3.3) E′G′ − F ′2 = e4v′(z′)(α + λ1β)2(α + λ2β)2,

and

(3.4) E′ + G′ + 2
√

E′G′ − F ′2 = e2v′(z′)(2α + (λ1 + λ2)β)2,

and

(3.5) E′ − G′ + 2
√
−1F ′ = e2v′(z′)β(2α + (λ1 + λ2)β)(a − c + 2b

√
−1).

Therefore, applying (3.2), we obtain

µ(z′) =
E′ − G′ + 2

√
−1F ′

E′ + G′ + 2
√

E′G′ − F ′2

=
β(a − c + 2

√
−1b)

2α + (λ1 + λ2)β
,(3.6)

and

|µ(z′)| =
β|λ2 − λ1|

|2α + (λ1 + λ2)β|

=
|λ2 − λ1|

|λ1 + λ2 + 2 coth(r2 − r1)|
.(3.7)

On the other hand, as in the formula (2.2), the principal curvatures
λ1(z, r1), λ2(z, r1) on S(r1) can be expressed in terms of the principal curvatures
of the minimal surface S: ±λ(z). Thus, we find

(3.8) |µ(z′)| =
λ(z)| tanh(r2) − tanh(r1)|
1 − λ2(z) tanh(r2) tanh(r1)

.

Since |µ(z′)| is an increasing function of λ for fixed r1 and r2, we now find

|µ(z′)| ≤ λ0| tanh(r2) − tanh(r1)|
1 − λ2

0 tanh(r2) tanh(r1)
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where λ0 again is the maximum of principal curvatures on S.
It is now easy to see that

λ0| tanh(r2) − tanh(r1)|
1 − λ2

0 tanh(r2) tanh(r1)
<

| tanh(r2) − tanh(r1)|
1 − tanh(r2) tanh(r1)

= | tanh(r2 − r1)| < 1,

and then u is λ0| tanh(r2)−tanh(r1)|
1−λ2

0
tanh(r2) tanh(r1)

−quasiconformal.

The Theorem 1.2 follows easily from the Lemma 3.3 and the Corollary 1.3 is
obtained by triangle inequality or taking r1 and r2 to −∞ and ∞.

4. Weil-Petersson potential. In this section, we prove the Theorem 1.4: the
induced area functional of minimal surfaces in the quasi-Fuchsian space is a potential
at the Fuchsian locus for the Weil-Petersson metric on Teichmüller space. It is natural
to consider the hyperbolic metrics on a surface Σ rather than the conformal structures
in the geometry of the Weil-Petersson metric. A key fact for our theorem is that
the second fundamental form of a minimal surface is the real part of a holomorphic
quadratic differential.

Let g0|dz|2 be the hyperbolic metric on (Σ, σ), where σ is a conformal structure
on Σ. By the Uniformization Theorem, the set of conformal structures and the set
of hyperbolic metrics are of one-to-one correspondence. The hyperbolic surface Σ
with metric g0|dz|2 can be immersed into the Fuchsian manifold Σ × R as a (totally
geodesic) minimal surface with the vanishing second fundamental form.

Lemma 4.1. ([Uhl83]) There is an open neighborhood U of 0 ∈ Q(σ) such that
for any αdz2 ∈ U , there exists a minimal surface Σ(αdz2), immersed in some quasi-
Fuchsian manifold such that the induced metric on Σ(αdz2) is e2ug0|dz|2 and the
second fundamental form of the immersion is the real part of αdz2.

Proof of Theorem 1.4. We start with the classical Gauss equation. Using the fact
that curvature of the hyperbolic metric g0|dz|2 is −1, one can rewrite Gauss equation
as the following quasi-linear elliptic equation:

(4.1) ∆g0
u + 1 − e2u − |α|2

g2
0

e−2u = 0,

where ∆g0
is the Laplace operator on the hyperbolic surface Σ with metric g0|dz|2.

Now consider a one-parameter family of Gauss equations for metrics on a minimal
surface in the conformal class of the hyperbolic metric g0|dz|2, and second fundamental
form ℜ(tαdz2) for a fixed holomorphic quadratic differential αdz2 ∈ Q(σ).

For each small t, the solution ut to

(4.2) ∆g0
ut + 1 − e2ut − |tα|2

g2
0

e−2ut

= 0.

gives rise to an immersed minimal surface Σ(tα) with principal curvatures in the range
of (−1, 1).

At t = 0, the maximum principle implies the solution to

∆g0
u0 = −1 + e2u0

is exactly u0 = 0, hence u0 = 0 corresponds to the totally geodesic case.
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The (induced) area functional of Σ(tαdz2) is given by

|Σ(tαdz2)| =

∫

Σ

e2ut

dAg0
.

We denote u̇ = ∂u
∂t
|t=0. Differentiating (4.2) respect to t and evaluate at t = 0,

we get

∆g0
u̇ − 2u̇ = 0.

By the maximum principle, we have

(4.3) u̇ = 0.

The first variation of the area is then

∂

∂t
|t=0(|Σ(tαdz2)|) =

∫

Σ

2e2u0

u̇dAg0
= 0.

Hence the area functional is critical at the Fuchsian locus.
We now consider the second variation, let tαdz2+sβdz2 ∈ U ⊂ Q(σ) with t, s ∈ C

and |t|, |s| small enough. The area of Σ(tαdz2 + sβdz2) is

|Σ(tαdz2 + sβdz2)| =

∫

Σ

e2u(t,s)dAg0
,

where u(t, s) satisfies

(4.4) ∆g0
u(t, s) + 1 − e2u(t,s) − |tα + sβ|2

g2
0

e−2u(t,s) = 0,

with u(0, 0) = 0.
Differentiating (4.4) respect to t and s and evaluating at t = s = 0, we obtain

(4.5) ∆g0

∂2u

∂s∂t
|t=s=0 − 2

∂2u

∂s∂t
|t=s=0 −

αβ

g2
0

= 0.

Here we also used (4.3). Integrating the two sides of (4.5), we find

0 =

∫

Σ

∆g0

∂2u

∂s∂t
|t=s=0dAg0

=

∫

Σ

2
∂2u

∂s∂t
|t=s=0dAg0

+

∫

Σ

αβ

g2
0

dAg0
.

Therefore

∂2

∂s∂t
|Σ(tαdz2 + sβdz2)||t=s=0

=

∫

Σ

4
∂u

∂s
|t=s=0

∂u

∂t
|t=s=0dAg0

+

∫

Σ

2
∂2u

∂s∂t
|t=s=0dAg0

= −
∫

Σ

αβ

g2
0

dAg0
,

here again we used (4.3). Now the second variation of the area functional is a constant
multiple of the Weil-Petersson pairing between holomorphic quadratic differentials
αdz2 and βdz2 by (2.4).
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REFERENCES

[Ahl61] L. V. Ahlfors, Some remarks on Teichmüller’s space of Riemann surfaces, Ann. of
Math. (2), 74 (1961), pp. 171–191.

[Ber60a] L. Bers, Quasiconformal mappings and Teichmüller’s theorem, Analytic functions,
Princeton Univ. Press, Princeton, N.J., 1960, pp. 89–119.

[Ber60b] ——–, Simultaneous uniformization, Bull. Amer. Math. Soc., 66 (1960), pp. 94–97.
[Bro03] J. F. Brock, The Weil-Petersson metric and volumes of 3-dimensional hyperbolic convex

cores, J. Amer. Math. Soc., 16:3 (2003), pp. 495–535 (electronic).
[BT08] M. J. Bridgeman and E. C. Taylor, An extension of the Weil-Petersson metric to

quasi-Fuchsian space, Math. Ann., 341:4 (2008), pp. 927–943.
[Chu76] T. Chu, The Weil-Petersson metric in the moduli space, Chinese J. Math., 4:2 (1976),

pp. 29–51.
[Eps84] C. L. Epstein, Envelopes of horospheres and weingarten surfaces in hyperbolic 3-space,

unpublished manuscript.
[Eps86] ——–, The hyperbolic Gauss map and quasiconformal reflections, J. Reine Angew. Math.,

372 (1986), pp. 96–135.
[FG85] C. Fefferman and C. R. Graham, Conformal invariants, Astérisque (1985), no. Nu-
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