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ON ASYMPTOTIC WEIL-PETERSSON GEOMETRY OF

TEICHMÜLLER SPACE OF RIEMANN SURFACES∗

ZHENG HUANG†

Abstract. We investigate the asymptotic behavior of curvatures of the Weil-Petersson metric in
Teichmüller space. We use a pointwise curvature estimate to study directions, in the tangent space,
of extremely negative curvature and directions of asymptotically zero curvatures.
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1. Introduction. A remarkable property of hyperbolic surfaces is that many
distinct complex structures, or equivalently hyperbolic structures, can be introduced
on a surface. The moduli problem of Riemann asks how many distinct complex
structures can exist on a closed surface, and this problem has been developed into the
modern theory of Teichmüller space.

In this paper, we assume Σ is a smooth, closed Riemann surface of genus g, with
n punctures. Teichmüller space Tg,n is the space of hyperbolic metrics (with constant
curvature −1) on Σ, where two hyperbolic metrics σ and ρ are equivalent if there is
a biholomorphic map between (Σ, σ) and (Σ, ρ) in the homotopy class of the identity
map. In this paper, we always assume dimCT = 3g − 3 + n > 1.

The cotangent space of Teichmüller space at (Σ, σ) is identified with QD(Σ), the
space of holomorphic quadratic differentials; and the tangent space at Σ is identified
with the space of so-called harmonic Beltrami differentials.

The Weil-Petersson metric on Teichmüller space is naturally defined by duality
from the L2 inner product on QD(Σ). This metric is considered as one of the natural
metrics on Teichmüller space. Every Weil-Petersson isometry of Teichmüller space is
induced by an element of the extended mapping class group when 3g− 3 + n > 1 and
(g, n) 6= (1, 2) ([15]). And the Weil-Petersson metric has many interesting geometric
properties: for example, it is a Riemannian metric with negative sectional curvature
([27] [23]); yet it is incomplete, since not every geodesic can be extended indefinitely,
the surface Σ developes a node when a geodesic cannot be further extended ([14]
[6] [26]); this metric is Kähler ([1]), and there is a negative upper bound −1

2π(g−1) ,

which only depends on the topology of the surface, for the holomorphic sectional
curvature and Ricci curvature ([27]); however, there are no negative upper bounds for
the sectional curvature ([11]). Moreover, when the complex dimension of Teichmüller
space is greater than 2, the Weil-Petersson metric is not Gromov hyperbolic ([4]).

Our goal in this paper is to investigate the asymptotic geometry of the Weil-
Petersson metric on Teichmüller space and give an estimate on the upper and lower
bounds for the Weil-Petersson sectional curvature at any point in Teichmüller space,
purely in terms of the systole: the length of the shortest geodesic on the surface:

Theorem 1.1. Let l be the systole on closed surface Σ, and K be the Weil-
Petersson sectional curvature of Teichmüller space T , there exists a constant C > 0
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such that

−(Cl)−1 ≤ K ≤ −Cl

Moreover, there are tangent planes with the Weil-Petersson curvatures of the orders
O(l) and comparable to l−1, and hence the Weil-Petersson sectional curvature has
neither negative upper bound, nor lower bound.

We will firstly prove a result on asymptotic holomorphic sectional curvature. Our
estimate indicates that the holomorphic sectional curvature tends to negative infinity
when a core geodesic on the surface is shortening and twisting at the same time. More
specifically, we show that

Theorem 1.2. There is no negative lower bound for the holomorphic sectional
curvature of the Weil-Petersson metric. Moreover, let l be the length of the shortest
geodesic along a path to the frontier of Teichmüller space, then there exists a family
of tangent planes with Weil-Petersson holomorphic sectional curvature of the order
comparable to l−1.

We realized that one of the difficulties in estimating curvatures is working with
the operator D = −2(∆ − 2)−1, which appears in Tromba-Wolpert’s curvature for-
mula. As pointed out in ([24]), there is a natural correspondence of the operator D
and local variations of the energy of a harmonic map between surfaces. By investigat-
ing harmonic maps from a nearly noded surface to nearby hyperbolic structures, in
[11], we showed that even though the sectional curvatures are negative, they are not
staying away from zero. More specifically, we detected an asymptotically flat tangent
plane, denoted by Ωl, spanned by two Beltrami differentials µ̇0 and µ̇1, resulting from
pinching two independent core geodesics on the surface.

Theorem 1 of [11]. The Weil-Petersson sectional curvature is not pinched from
above by any negative constant. Moreover, the Weil-Petersson sectional curvature of
Ωl is of the order O(l).

In theorem 1.2, we are detecting a tangent plane, spanned by Beltrami differentials
µ̇0 and iµ̇0, whose curvature is asymptotically negative infinity. Following a suggestion
of Scott Wolpert, we consider a family of tangent planes Ω′

l, spanned by iµ̇0 and µ̇1,
and find that

Theorem 1.3. Ω′
l is asymptotically flat, i.e., its Weil-Petersson curvature is of

the order O(l).

In other words, we are detecting another asymptotically flat tangent plane,
spanned by iµ̇0 and µ̇1. This asymptotic flatness results from pinching two non-
homotopic closed geodesics on the surface while performing infinitesimal twists on
one of them. Together with theorem 1 of ([11]), this suggests an asymptotic product
structure of Weil-Petersson metric, as pointed out by Wolpert ([28]). Similarly, we
also find:

Theorem 1.4. The plane Ω′′
l spanned by Beltrami differentials iµ̇0 and iµ̇1 is

asymptotically flat with respect to the Weil-Petersson metric, and its Weil-Petersson
sectional curvature is of the order O(l).

We notice that theorems 1.3, 1.4 and theorem 1 of ([11]) are theorems concerning
asymptotic flatness, and the path we take towards the frontier of Teichmüller space
(see definition of the frontier of Teichmüller space in §2.1) is to pinch two short
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independent geodesics on the surface. There is also a phenomenon of asymptotic
flatness when a separating geodesic on the surface is pinched. When Σ is a closed
surface with genus at least two and γ0 is a separating short geodesic on Σ with length
l. Let γ2 and γ3 be two closed geodesics on Σ which have fixed length l0 >> l, and
these two geodesics lie on different components of the shrinking curve γ0. We can
define a tangent plane Ω′′′

l , spanned by Beltrami differentials µ̇2 and µ̇3, where µ̇2

and µ̇3 are obtained from infinitesimal twists about curves γ2 and γ3, respectively.

Theorem 1.5. This plane Ω′′′
l is asymptotically flat with respect to the Weil-

Petersson metric, moreover, its Weil-Petersson sectional curvature is of the order
O(l).

Here is the more detailed content of this paper. We give the necessary background
in section 2. Section 3 is devoted to proving theorem 1.2. The discussion of this
purpose is broken into subsections: in §3.1, we study a harmonic mapping problem
between hyperbolic cylinders. The family of rotationally symmetric harmonic maps
will be an approximation to the actual family of harmonic maps restricted on the
pinching neighborhood. We will describe so called “model case one” in §3.2, namely,
we pinch one core geodesic of a cylinder into a point, and perform infinitesimal twists
about this geodesic, and study the asymptotic behavior of the harmonic maps between
cylinders. We will establish the estimates of terms in the curvature formula in model
case one; in §3.3, we construct families of maps which have small tension, and are close
to the harmonic maps resulting from pinching and twisting process in §3.2; finally in
§3.4, we prove theorem 1.2 based on the estimates in §3.2 and the construction in
§3.3. In section 4 we study the asymptotic flatness of the Weil-Petersson metric with
two nonhomotopic geodesics on the surface are shrinking. We describe model case
two in §4.1, estimate curvature terms in §4.2, and prove theorems 1.3 and 1.4 in §4.3.
The aim of section 5 is to prove curvature bounds for the Weil-Petersson metric. In
§5.1, we consider the asymptotic flatness when only one separating geodesic on the
surface is pinched, and prove theorem 1.5; We prove theorem 1.1 in §5.2.

The author expresses his deepest thanks to Mike Wolf for his mentorship, continu-
ous encouragement and many fruitful discussions. Theorem 1.1 and theorem 1.5 were
suggested to the author by Scott Wolpert and Yair Minsky, respectively. The author
would like to thank them for their generous help and helpful discussions related to
this work.

2. Harmonic Maps and Teichmüller Space. We will give some background
in this section.

2.1. Teichmüller Space of Riemann Surfaces. Recall that Σ is a fixed, ori-
ented, smooth surface of genus g ≥ 1, and n ≥ 0 punctures where 3g − 3 + n > 1. We
denote hyperbolic metrics on the surface Σ by σ|dz|2 and ρ|dw|2, where z and w are
conformal coordinates on Σ. On (Σ, σ|dz|2), we denote

∆ =
4

σ

∂2

∂z∂z̄
, K(ρ) = −

2

ρ

∂2

∂w∂w̄
logρ, K(σ) = −

2

σ

∂2

∂z∂z̄
logσ,

where ∆ is the Laplacian (with respect to σ), and K(ρ), K(σ) are curvatures of the
metrics ρ and σ, respectively.

By the uniformization theorem, the set of all similarly oriented hyperbolic struc-
tures M−1 can be identified with the set of all conformal (or complex) structures on
Σ with the given orientation. And Teichmüller space T is defined to be the quotient
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space

T = M−1/Diff0(Σ).

The moduli space of Riemann surfaces admits the Deligne-Mumford compactifi-
cation ([17]), and any element of the compactification divisor can be thought of as a
Riemann surface with nodes, a connected complex space where points have neighbor-
hoods complex isomorphic to either {|z| < ε} (regular points) or {zw = 0; |z|, |w| < ε}
(nodes). We can think of noded surfaces arising as elements of the compactification
divisor through a pinching process: fix a family of simple closed curves on the sur-
face Σ such that each component of the complement of the curves has negative Euler
characteristic. Topologically, the noded surface is the result of identifying each curve
to the node ([3]).

Teichmüller space T is a complex manifold when 3g−3+n > 1, and the cotangent
space at a point (Σ, σ) ∈ T is the space of holomorphic quadratic differentials Φdz2

on Σ ([1]). The Weil-Petersson metric on T is defined on QD(Σ) ∼= T ∗
ΣT by the

L2-norm:

||φ||2 =

∫

Σ

|φ|2

σ
dzdz̄

where σ|dz|2 is the hyperbolic metric on Σ. By duality, we obtain a Riemannian
metric on the tangent space to T .

Teichmüller space with Weil-Petersson metric is not complete ([6] [14], [26]). The
incompleteness is caused by pinching of at least one short geodesic on the surface. For
the surface with genus at least two, we define T̄ to be the Weil-Petersson completion
of T , and denote ∂T as the frontier set T̄ \T . Hence as shown in ([14]), every point
in ∂T represents a noded surface, i.e., the frontier set ∂T consists of a union of lower
dimensional Teichmüller spaces, each such space consists of topologically reduced
Riemann surfaces (noded surfaces), obtained by pinching nontrivial geodesics on the
surface.

The curvature tensor of the Weil-Petersson metric is given by the formula of
Tramba-Wolpert ([23], [27]):

Rαβ̄γδ̄ =

∫

Σ

D(µ̇α ˙̄µβ)µ̇γ ˙̄µδdA +

∫

Σ

D(µ̇α ˙̄µδ)µ̇γ ˙̄µβdA

where dA is the area element and µ̇’s are infinitesimal harmonic Beltrami differentials.
Here the operator D = −2(∆−2)−1. It is known that the operator D is a self-adjoint
compact integral operator with a positive kernel, and it is the identity on constant
functions.

Then the curvature is given by R/Π, where

R = R01̄01̄ − R01̄10̄ − R10̄01̄ + R10̄10̄

and

Π = 4 < µ̇0, µ̇0 >< µ̇1, µ̇1 > −2| < µ̇0, µ̇1 > |2 − 2Re(< µ̇0, µ̇1 >)2

= 4 < µ̇0, µ̇0 >< µ̇1, µ̇1 > −4| < µ̇0, µ̇1 > |2

The Weil-Petersson sectional curvature is negative ([27] [23]).
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2.2. Harmonic Maps and Local Variations. Our main method is to study
families of harmonic maps between degenerating Riemann surfaces. The method of
harmonic maps has been intensively studied as an important computational tool in
understanding the geometry of Teichmüller space ([12]). In particular, the second
variation of the energy of the harmonic map w = w(σ, ρ) with respect to the domain
structure σ (or image structure ρ) at σ = ρ yields the Weil-Petersson metric on T
([23], [24]), and one can also re-establish Tromba-Wolpert’s curvature tensor formula
of the Weil-Petersson metric from this method ([12], [24]).

For a Lipschitz map w : (Σ, σ|dz|2) → (Σ, ρ|dw|2), we define the energy density
of w at a point to be

e(w; σ, ρ) =
ρ(w(z))

σ(z)
|wz |

2 +
ρ(w(z))

σ(z)
|wz̄ |

2

and the total energy E(w; σ, ρ) =
∫

Σ e(w; σ, ρ)σdzdz̄.
A harmonic map is a critical point of the energy fuctional E(w; σ, ρ); it satisfies

the Euler-Lagrange equation, namely,

wzz̄ +
ρw

ρ
wzwz̄ = 0.

The Euler-Lagrange equation for the energy is the condition for the vanishing of
the tension, which is, in local coordinates,

τ(w) = ∆wγ +N Γγ
αβwα

i wβ
j = 0

It is classical ([2] [8] [10] [20] [19]) that given σ, ρ, there exists a unique harmonic
map w : (Σ, σ) → (Σ, ρ) homotopic to the identity of Σ, and this map is in fact a
diffeomorphism.

Naturally associated to a harmonic map w : (Σ, σ|dz|2) → (Σ, ρ|dw|2) is a
quadratic differential Φ(σ, ρ)dz2, called Hopf differential, which is holomorphic with
respect to the conformal structure of σ. This association of a quadratic differen-
tial to a conformal structure then defines a map Φ : T → QD(Σ) from Teichmüller
space T to the space of holomorphic quadratic differentials QD(Σ). This map Φ is a
homeomorphism ([24]).

Thus we have a holomorphic quadratic differential Φdz2 = ρwzw̄zdz2, and evi-
dently

Φ = 0 ⇔ w is conformal ⇔ σ = ρ.

where σ = ρ means that (Σ, σ) and (Σ, ρ) are the same point in Teichmüller space T .
Following Sampson ([19]), we define two auxiliary functions:

H = H(σ, ρ) =
ρ(w(z))

σ(z)
|wz|

2

L = L(σ, ρ) =
ρ(w(z))

σ(z)
|wz̄ |

2

The Euler-Lagrange equation implies that

∆logH = −2K(ρ)H + 2K(ρ)L + 2K(σ).

When we restrict ourselves to the situation when K(σ) = K(ρ) = −1, we will
have the following simple facts ([19], [20]):



464 Z. HUANG

• The energy density is e = H + L;
• The Jacobian is H−L;
• H > 0;
• The Beltrami differential µ = wz̄

wz
= Φ̄

σH ;
• ∆logH = 2H−2L−2, where H 6= 0; and ∆logL = 2L−2H−2, where H 6= 0.

Now we consider a family of harmonic maps w(t) for t small, where w(0) = id, the
identity map. Denote by Φ(t) the family of Hopf differentials determined by w(t). We
rewrite ∆logH = 2H− 2L− 2 as

∆logH(t) = 2H(t) −
2|Φ(t)|2

σ2H(t)
− 2

The maximum principle forces all the odd order t-derivatives of the holomorphic
energy H(t) to vanish, since the above equation only depends on the modulus of Φ(t)
and not on its argument([24]), and it is shown that H(t) is real-analytic in t ([25]).

For the family of harmonic maps w(t), the domain hyperbolic structure is fixed
and the target metric is changing. Wolf computed the t-derivative of various geometric
quantities associated with this family w(t), and we collect these local variational
formulas into:

Lemma 2.1. ([24]) For the above notations, we have
• H(t) ≥ 1, and H(t) ≡ 1 ⇔ t = 0;
• Ḣ(t) = ∂/∂tα|0 H(t) = 0;
• µ̇ = ∂/∂tα|0µ(t) = Φ̄α/σ;

• Ḧ(t) = ∂2

∂tα∂tβ̄ |0H(t) = D
ΦαΦβ̄

σ2 .

With this lemma, and recall that D = −2(∆−2)−1, we obtain a partial differential
equation about Ḧ(t) which will play an important role in the proof of our theorems:

(∆ − 2)(Ḧ(t)) = −2
ΦαΦβ̄

σ2
.

3. Holomorphic Sectional Curvature. In this section, we will focus on es-
timating the Weil-Petersson holomorphic sectional curvature, and prove theorem 1.2
(extreme negative curvatures).

We organize this section into following subsections. In §3.1, we will study har-
monic maps between hyperbolic cylinders, i.e., we consider a family of pertubations
of the identity map between two cylinders; in §3.2, we estimate terms in the curvature
formula in the model case one where the surface is a long cylinder; in §3.3, we con-
struct a family of C2,α maps between surfaces and show that the constructed maps
have small tension and are close to the harmonic maps we obtain from the pinching
and twisting process; in §3.4, we adapt the estimates in §3.2 and §3.3 to prove theorem
1.2.

For the sake of simplicity of exposition, we assume that our surface has no punc-
tures. We will discuss the case when finitely many punctures are allowed in §3.5.

3.1. Harmonic Maps between Cylinders. In this subsection, we consider
the asymptotics of harmonic maps, as pertubations of the identity map, between two
hyperbolic cylinders. In particular, using the notations in [11], we study the boundary
value problem of harmonically mapping the cylinder

M = [l−1sin−1(l), πl−1 − l−1sin−1(l)] × [0, 1]
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with boundary identification

[
sin−1(l)

l
,
π

l
−

sin−1(l)

l
] × {0} = [

sin−1(l)

l
,
π

l
−

sin−1(l)

l
] × {1}

where the hyperbolic length element on M is lcsc(lx)|dz|, to the cylinder

N = [L−1sin−1(L), πL−1 − L−1sin−1(L)] × [0, 1]

with boundary identification

[
sin−1(L)

L
,
π

L
−

sin−1(L)

L
] × {0} = [

sin−1(L)

L
,
π

L
−

sin−1(L)

L
] × {1}

where the hyperbolic length element on N is Lcsc(Lu)|dw|. Here l and L are the
lengths of the simple closed core geodesics in the corresponding cylinders.

Let w = u + iv be this harmonic map between cylinders M and N , where

u(l, L; x, y) = u(l, L; x), v(x, y) = y.

The Euler-Lagrange equation becomes

u′′ = Lcot(Lu)(u′2 − 1),

with boundary conditions u( sin−1(l)
l ) = sin−1(L)

L and u( π
2l ) = π

2L . Note that both M
and N admit an anti-isometric reflection about the curves { π

2l}×[0, 1] and { π
2L}×[0, 1].

Since the quadratic differential Φ = ρwzw̄z = 1
4L2csc2(Lu)(u′2−1) is holomorphic

in M , we have

0 =
∂

∂z̄
(ρ2wzw̄z) =

∂

∂x
(
1

8
L2csc2(Lu)(u′2 − 1)).

Therefore L2csc2(Lu)(u′2 − 1) = c0(l, L), where c0(l, L) is independent of x, and
c0(l, l) = 0 since u(x) is the identity map when L = l.

So we have

u′ =
√

1 + c0(l, L)L−2sin2(Lu)

with boundary conditions u( sin−1(l)
l ) = sin−1(L)

L and u( π
2l ) = π

2L . So the solution to
the Euler-Lagrange equation can be derived from the equation

∫ u

L−1sin−1L

dv
√

1 + c0(l, L)L2sin2(Lv)
= x − l−1sin−1(l),

where c0(l, L) is chosen such that

∫ π
2L

L−1sin−1L

dv
√

1 + c0(l, L)L2sin2(Lv)
=

π

2l
− l−1sin−1l.

It is not hard to show that when l → 0, the solution u(l, L; x) converges to
a solution u(L; x) to the “noded” problem, i.e., M = [1, +∞), where we require
u(L; 1) = L−1sin−1(L) and limx→+∞ u(L; x) = π

2L .
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This “noded” problem has the explicit solution as following ([25])

u(L; x) = L−1sin−1{
1 − (1−L)

(1+L)e
2L(1−x)

1 + (1−L)
(1+L)e

2L(1−x)
}

with the holomorphic energy

H0(L; x) =
L2x2

4
[
1 +

√

(1−L)
(1+L)e

L(1−x)

1 −
√

(1−L)
(1+L)e

L(1−x)
]2.

3.2. Model Case One. Consider the surface Σ which is developing a node, i.e.,
we are pinching one short closed geodesic γ0 on Σ to a point p0. We denote M0 its
pinching neighborhood, i.e., a cylinder described as M in §3.1 centered at γ0. In our
model case one, the surface is this cylinder M0 with core geodesic γ0.

We define M(l, θ) be the surface with two of the Fenchel-Nielsen coordinates,
namely, the hyperbolic length of γ0 being l and the twisting angle of γ0 being θ.
We obtain a point M(l) = M(l, 0) in Teichmüller space Tg. Note that as l tends to
zero, the surface is developing a node. Fix M(l), we vary the length of γ0 into length
L = L(t), where L(0) = l. Thus we obtain a family of harmonic maps W0(t) : M(l) →
M(L(t), 0) = M(L(t)). The t-derivative of µ0(t), the Beltrami differential of the the
family W0(t), at t = 0 represents a tangent vector, µ̇0, of Teichmüller space Tg at
M(l); And a tangent vector iµ̇0 is obtained by performing infinitesimal twists θ(t) on
the shrinking curve γ0, where θ(0) = 0, since d

dθ (eiθµ̇0)|θ=0 = iµ̇0. Hence these two
tangent vectors µ̇0 and iµ̇0 will span a tangent plane of the tangent space TM(l)Tg,
therefore we obtain a family, Ω∗

l , of tangent planes.

Theorem 3.1. The Weil-Petersson holomorphic sectional curvatures of Ω∗
l is of

the order comparable to l−1. Hence the Weil-Petersson curvatures tend to negative
infinity as l tends to zero.

It is easy to see that theorem 3.1 implies our theorem 1.2.
We denote φ0(t) as the Hopf differential corresponding to the cylinder map w0(t)

in M0. Here w0(t) : M0(l) → M0(L(t)) is a family of harmonic maps described as
w = u(x) + iy in §3.1. In other regions of the surface, we abuse our notations a little
bit and still use φ0 to denote the Hopf differential corresponding to harmonic map
W0(t). We also denote µ0 as the corresponding Beltrami differential to φ0.

We denote a = a(l) = l−1sin−1(l), and b = b(l) = πl−1 − l−1sin−1(l). And in
this paper, A ∼ B means A/C ≤ B ≤ CA for some constant C > 0.

So in M0, recalling that c0(l, L(t)) = L2csc2(Lu)(u′2 − 1) is independent of x,
we can choose L(t) so that d

dt |t=0c0(t) = d
dL |L=lc0(l, L) = 4. Thus we can assume

that φ̇0 = d
dt |t=0(

1
4c0(t)) = 1 in M0. We notice here ċ0 = d

dt |t=0 is never zero for all

positive l, otherwise, we would have ˙̄wz = 0 as φ̇ = σ ˙̄wz and hence w is a constant
map by rotational invariance of the map.

Note that most of the mass of |φ0| resides in the thin part associated to γ0, near
where the core geodesic γ0 is pinched ([16]), and that is why the estimate in the long
cylinder is critical in our calculation.

We will now estimate all terms in the curvature formula in this model case one
where we consider the surface as a long cylinder M0. In M0, the corresponding
harmonic Beltrami differential is

µ̇0 =
d

dt
|t=0(

wz̄

wz
) = ˙̄φ0/σ
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and |µ̇0|
2|M0

= |iµ̇0|
2
M0

= | ˙̄φ0/σ|2|M0
= l−4sin4(lx).

The Weil-Petersson holomorphic sectional curvature is given by the quotient
−R00̄00̄/|µ̇0|

4. And we will estimate 1/|µ̇0|
4 and |R00̄00̄| in the cylinder M0 in the

next two lemmas.

Lemma 3.2. 1/|µ̇0|
4 ∼ l6.

Proof. To show this lemma, we use |µ̇0|
2|M0

= l−4sin4(lx), and noticing that
a = a(l) = l−1sin−1(l), and b = b(l) = πl−1 − l−1sin−1(l), to find

< µ̇0, µ̇0 > |M0
=

∫

M0

|µ̇0|
2σdxdy

=

∫ 1

0

∫ b

a

|µ̇0|
2σdxdy

=

∫ 1

0

∫ b

a

l−2sin2lxdxdy

=
π

2
l−3 − l−3sin−1(l)

∼ l−3

Note that |µ̇0|
4 ∼ (< µ̇0, µ̇0 > |M0

)2 ∼ l−6, and this completes the proof of
Lemma 3.2.

Now we are left to estimate |R00̄00̄| =
∫

Σ
D(|µ̇0|

2)|µ̇0|
2σdxdy. The desired esti-

mate is to establish

Lemma 3.3.
∫

M0
D(|µ̇0|

2)|µ̇0|
2
dA ∼ l−7.

Proof. Firstly, from Lemma 2.1, we have

D(|µ̇0|
2) = −2(∆ − 2)−1 |φ̇0|

2

σ2
.

We recall in M0, the Hopf differential φ0 is corresponding to the cylinder map
w0(t) : (M0, σ) → (M0, ρ(t)), and |φ̇0| = 1. As in §2.2 and §3.1, we write the

holomorphic energy H = ρ(w(z))
σ(z) |wz |

2, therefore we can write D(|µ̇0|
2) = Ḧ. Then in

the cylinder M0, we have

(∆ − 2)Ḧ = −2
|φ̇0|

2

σ2
= −2l−4sin4(lx). (1)

A maximum principle argument implies that Ḧ is positive. This Ḧ converges
to the holomorphic energy Ḧ0 in the “noded” problem (of §3.1) when x is fixed but
sufficiently large in [a, π/2l]. This convergence guarantees that Ḧ is bounded on the
compacta in [a, b] and so we can assume that 0 < A1(l) = Ḧ(a) = Ḧ(l−1sin−1l) ∼ 1.
Then Ḧ(x) solves the following differential equation

(l−2sin2(lx))Ḧ′′ − 2Ḧ = −2l−4sin4(lx) (2)

with the conditions

Ḧ(l−1sin−1l) = A1(l), Ḧ
′(π/2l) = 0.
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Note that all the odd order t-derivatives of H(t) vanish and

J(x) =
sin2(lx)

2l4

is a particular solution to equation (2). Hence we can check, by the method of
reduction of the solutions, the general solution to equation (2) with the assigned
conditons has the form

Ḧ(l; x) = J(x) + A2cot(lx) + A3(1 − lxcot(lx))

where coefficients A2 = A2(l) and A3 = A3(l) are constants independent of x and we
can check, by substituting the solution into the assigned conditions, that A2 and A3

are of the order comparable to l−1.
We calculate the following

∫

M0

Ḧ(x)|µ̇0|
2σdxdy =

∫ 1

0

∫ b

a

Ḧ(x)(l−2sin2(lx))dxdy

=

∫ 1

0

∫ b

a

J(x)l−2sin2(lx)dxdy

+

∫ 1

0

∫ b

a

A2cot(lx)l−2sin2(lx)dxdy

+

∫ 1

0

∫ b

a

A3(1 − lxcot(lx))l−2sin2(lx)dxdy

∼ l−7 + O(l−4) + O(l−4)

∼ l−7

Therefore

∫

M0

D(|µ̇0|
2)|µ̇0|

2
σdxdy =

∫ b

a

Ḧ|µ̇0|
2
σdx

∼ l−7 (3)

This proves Lemma 3.3.

3.3. Construction of Maps. In last subsection, we estimated the terms in the
curvature formula in the model case one where the surface is a long cylinder. Essen-
tially, in the pinching neighborhood M0, we used the cylinder map w0 (rotationally
symmetric harmonic map) instead of the actual harmonic map W0 during the compu-
tation. Now we are in the general setting, i.e., the surface Σ is developing a node. In
this subsection, we will construct a family of maps G0(t) to approximate the harmonic
map W0(t), and the essential parts of this family are the identity map of the surface
restricted in the non-cylindral part and the cylinder map in the pinching neighbor-
hood. We will also show that this constructed family G0(t) is reasonably close to the
harmonic maps W0(t); hence we can use the estimates we obtained in the previous
subsection to the general situation.

We still set M0 to be the pinching neighborhood of the node p0. Also W0(t) is
the harmonic map corresponding to pinching γ0 in M0 into length L = L(t), where
L(0) = l, and twisting γ0 with angle θ(t), where θ(0) = 0. Let w0(t) be cylinder maps
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in model case one, we want to show that W0(t) is close to w0(t) in M0 and is close to
identity map outside of M0.

An important feature of twisting the core geodesic γ0 is that it will change the
values of the corresponding Ḧ on the boundary of the long cylinder M0. However,
we recall from last subsection that the convergence of Ḧ to Ḧ0 in the noded problem
guarantees Ḧ is bounded on the boundary of M0. Therefore we can still use model
case one to include the consideration of twisting the core geodesic, since we do not
concern the boundary values of Ḧ, as long as they are bounded. And in the compact
region, where is far away from the shrinking and twisting curve γ0, and changes of
value Ḧ will be small, as we will see in next subsection.

We denote subsets Σ0 = {p ∈ Σ : dist(p, ∂M0) > 1}, and define the 1-tube of
∂M0 as B(∂M0, 1) = {p ∈ Σ : dist(p, ∂M0) ≤ 1}, the intersection region between the
long cylinder M0 and compact region of the surface. We can construct a C2,α map
G0 : Σ → Σ such that

G0(p) =







w0(t)(p), p ∈ M0 ∩ Σ0

p, p ∈ (Σ0\M0)
gt(p), p ∈ B(∂M0, 1)

where gt(p) in B(∂M0, 1) is constructed so that it satisfies:
• gt(p) = p for p ∈ ∂(Σ0\(M0 ∪ B(∂M0, 1))), and gt(p) = w0(t)(p) for p ∈

∂(M0 ∩ Σ0);
• gt is the identity map when t = 0;
• gt is smooth and the tension of gt is of the order O(t).

We note that G0 consists of 3 parts. It is the cylinder map of M0 deep into
the cylinder region in M0 ∩ Σ0, the identity map in the compact region Σ0\M0, and
a smooth map in the intersection region B(∂M0, 1). Among three parts of the con-
structed map G0(t), two of them, the identity map and the cylinder map, are harmonic
hence have zero tension; thus the tension of G0(t) is concentrated in B(∂M0, 1). From
§3.2, for the cylinder map w0 = u(x)+ iy, we have u′ =

√

1 + c0(t)L−2sin2Lu, where
c0(0) = 0, ċ0(0) = 4. Hence for x ∈ [l−1sin−1(l), l−1sin−1(l) + 1],

w0,z(x, y) =
1

2
(u′(x) + 1) =

1

2
((1 + O(1)c0(t))

1

2 + 1) = 1 + O(1)t + O(t2)

|w0,z(x, y) − 1| = O(t) → 0, (t → 0)

|w0,zz̄(x, y)| = |
1

4
u′′(x)| = O(|Lcot(Lu)(u′2 − 1)|) = O(t).

Thus we can require that |gt,z| ≤ C2t and |gt,zz̄| ≤ C2t, and the constant C2 =
C2(t, l) is bounded in both t and l since the coefficient of t for c0(t) is bounded for
small t and small l. With the local formula of the tension in §2.2, we have τ(G0(t)),
the tension of G0(t) is of the order O(t). Note that these constructed maps G0(t) are
not necessarily harmonic.

Now we are about to compare the constructed family G0(t) and the family
of harmonic maps W0(t). To do this, we consider the following function Q0 =
cosh(dist(W0, G0)) − 1.

Lemma 3.4. dist(W0, G0) ≤ C3t in B(∂M0, 1), where the constant C3 = C3(t, l)
is bounded for small t and l.
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Proof. First, we claim that Q0 is a C2 function. Notice that both the harmonic
map W0(t) and the constructed map G0(t) are the identity map when t = 0, and both
families vary smoothly without changing homotopy type in t for sufficiently small |t|
([7]). For all l > 0, and for any ε > 0, there exists a δ such that for |t| < δ, we have
|W0(t) − W0(0)| < ε

2 and |G0(t) − G0(0)| < ε
2 . Therefore the triangular inequality

implies that |W0(t)−G0(t)| < ε. Since l is positive, the Collar Theorem ([5]) implies
that the surface has positive injectivity radius r bounded below, and we choose our
ε << r, then Q0 is well defined and smooth.

We follow an argument in [9]. For any unit v ∈ T 1(B(∂M0, 1)), the map G0 satifies
the inequality |‖dG0(v)‖ − 1| = O(t), hence |dG0(v)|2 > 1− ε0 where ε0 = O(t), then
we find that for any x ∈ Σ,

∆Q0 ≥ min{|dG0(v)|2 : dG0(v)⊥γx}Q

− < τ(G0),▽d(•, W0)|G0(x) > sinh(dist(W0, G0)) (4)

where γx is the geodesic joining G0(x) to W0(x) with initial tangent vector − ▽
d(•, W0)|G0(x) and terminal tangent vector ▽d(G0(x), •)|W0(x). If G0(t) does not
coincide with W0(t) on B(∂M0, 1), we must have all maxima of Q0(t) on the interior
of B(∂M0, 1), at any such maximum, we apply the inequality |dG0(v)|2 > 1 − ε0 to
(12) to find

0 ≥ ∆Q0 ≥ (1 − ε0)Q0 − τ(G0)(sinh(dist(W0, G0))

so that at a maximum of Q0, we have

Q0 ≤
τ(G0)sinhdist(W0, G0)

(1 − ε0)
.

We notice that Q0 is of the order dist2(W0, G0) and sinhdist(W0, G0) is of the
order dist(W0, G0), this implies that dist(W0, G0) is of the order O(t) in B(∂M0, 1),
which completes the proof of Lemma 3.4.

Remark 3.5. Lemma 3.4 implies that Q0(t) = O(t2) in B(∂M0, 1).

Note that B(∂M0, 1) contains the boundary of the cylinder M0 ∩ Σ0, which we
identify with [a+1, b−1]× [0, 1], where, again, a = a(l) = l−1sin−1(l), and b = b(l) =
πl−1 − l−1sin−1(l). While in the cylinder M0 ∩ Σ0, we have the inequality

∆Q0 ≥ (1 − ε0)Q0 − τ(G0)(sinh(dist(W0, G0))

= (1 − ε0)Q0 − τ(G0)(tanh(dist(W0, G0))(1 + Q0)

= (1 − ε0 − τ(G0))Q0 − τ(G0)(tanh(dist(W0, G0))

≥ 1/2Q0 − C4t
2

where the constant C4 is bounded for small t and l. Therefore we find that Q0(z, t)
decays rapidly in z = (x, y) for x close enough to π/2l. Hence we can assume that
dist(W0, G0) is at most of order C′t in [a + 1, b − 1], here C′ = C′(x, l) is no greater
that C5x

−2 for x ∈ [a+1, π/2l], and no greater than C5(π/l−x)−2 for x ∈ [π/2l, b−1],
where C5 is bounded for small t and l. Both maps W0 and G0 are harmonic in M0∩Σ0,
so they are also C1 close ([7]), i.e. we have |W0,z̄ − G0,z̄ | ≤ C5x

−2t for small t and l,

when x ∈ [a + 1, π/2l]. Thus we see that |Ẇ0,z̄ − Ġ0,z̄ | = C5x
−3, for x ∈ [a + 1, π/2l].

Also, |Ẇ0,z̄ − Ġ0,z̄ | = C5(π/l − x)−3, for x ∈ [π/2l, b− 1].
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As before we denote φ0(t) as the family of Hopf differentials corresponding to the
family of harmonic maps W0(t). We also denote µ0 as the corresponding Beltrami
differentials in M0∩Σ0. Write φG

0 = ρG0,z(t)Ḡ0,z(t). Notice that in M0∩Σ0, map G0

is the cylinder map hence harmonic, so φG
0 is the Hopf differential corresponding to

G0. When t = 0 we have W0 = G0 = identity and ρ = σ, hence we can differentiate
φG

0 = ρG0,z(t)Ḡ0,z(t) in t at t = 0, and find that |φ̇G
0 − φ̇W0

| = σ|Ẇ0,z̄ − Ġ0,z̄| ≤
C5l

2x−3csc2(lx) = O(1) for x ∈ [a + 1, π/2l], approaching zero as x tends to π/2l,
and |φ̇G

0 − φ̇W0
| ≤ C5l

2(π/l − x)−3csc2(lx) = O(1) for x ∈ [π/2l, b− 1]. Therefore we
have proved

Lemma 3.6. |φ̇G
0 − φ̇W0

| = O(1) for x ∈ [a + 1, b − 1].

Remark 3.7. Recall that our normalization makes φ̇W0
= 1 in [a, b], and φ̇G

0 is
actually never zero, Lemma 3.6 implies that φ̇G

0 is comparable to φ̇W0
.

3.4. Proof of Theorem 1.2. In last subsection, we constructed a family of
maps and found that these maps are reasonably close to the actual harmonic maps
between surfaces. Now we are ready to adapt the estimates in the model case one to
the general setting, and prove the theorem 3.1, which will imply theorem 1.2.

Proof of theorem 3.1. We notice that Lemma 3.2 still holds from triangle in-
equality and Lemma 3.6. It will be sufficient to show that Lemma 3.3 still holds, i.e.,
∫

Σ D(|µ̇0|
2)|µ̇0|

2
dA ∼ l−7, which implies desired curvature estimate immediately.

Now we are about to estimate
∫

Σ
D(|µ̇0|

2)|µ̇0|
2
σdxdy, which breaks into two in-

tegrals as follows:

∫

Σ

D(|µ̇0|
2)|µ̇0|

2dA =

∫

M0∩Σ0

D(|µ̇0|
2)|µ̇0|

2dA

+

∫

K

D(|µ̇0|
2)|µ̇0|

2dA (5)

where K is the compact set disjoint from M0 ∩ Σ0.

For the last integral, from previous discussion, because of the convergence of the
harmonic maps to the harmonic maps of “noded” problem, we have both |µ̇0| and
|µ̇1| are bounded. The maximum principle implies that D(|µ̇0|

2) = Ḧ ≤ sup{|µ̇0|
2}.

Note that K is compact, hence we have the second integral is of the order of O(1).

From Lemma 2.1, we have (∆ − 2)Ḧ = −2 |φ̇0|
2

σ2 , so we rewirte (5) as

∫

Σ

D(|µ̇0|
2)|µ̇1|

2σdxdy =

∫

M0∩Σ0

Ḧ|µ̇1|
2σdxdy + O(1) (6)

Recall that (∆ − 2)ḦG = −2
|φ̇G

0
|2

σ2 , where HG is the holomorphic energy corre-
sponding to the model case one when the harmonic map is the cylinder map, and
φG

0 is the quadratic differential corresponding to the constructed map G0. We also
denote µG

0 to be the harmonic Beltrami differential corresponding to φG
0 . Also recall,

from Lemma 3.6, that |φ̇0 − φ̇G
0 | = O(1) in M0 ∩ Σ0, here O(1) is bounded in l for

small l. So we can set some λ ∼ 1 (bounded in l for small l) such that |φ̇0|
2 < λ2|φ̇G

0 |
2

and at the boundary of M0 ∩ Σ0 satisfies Ḧ < λḦG. For example, we can take

λ = 1+max∂K( Ḧ
ḦG

, |φ̇0|

|φ̇G
0
|
), and λ ∼ 1 because at ∂K = ∂(M0 ∩Σ0), both Ḧ, ḦG, and



472 Z. HUANG

|φ̇0|

|φ̇G
0
|

are bounded. Therefore, we have

(∆ − 2)(Ḧ − λḦG) = 2
λ2|φ̇G

0 |
2 − |φ̇0|

2

σ2
> 0.

So (Ḧ − λḦG) is a subsolution to the differential equation (∆ − 2)Y = 0, both
with bounded boundary conditions. It is not hard to see that in the cylinder M0, the
solutions to (∆ − 2)Y = 0 have the form of Y (l; x) = B3cot(lx) + B4(1 − lxcot(lx)),
where constants B3 and B4 satisfy that B3 = O(l) and B4 = O(l). Hence in M0∩Σ0,
we have Ḧ ≤ λḦG + B3cot(lx) + B4(1 − lxcot(lx)). Now we find that,

∫

M0∩Σ0

Ḧ|µ̇0|
2dA ≤

∫

M0∩Σ0

(λḦG + Y (l; x))(|µ̇0|
2)dA

≤

∫

M0∩Σ0

λḦG(2|µ̇G
0 |

2
+ 2|µ̇0 − µ̇G

0 |
2)dA

+

∫

M0∩Σ0

Y (l; x)(2|µ̇G
0 |

2
+ 2|µ̇0 − µ̇G

0 |
2)dA

Recalling the computation in §3.3, we have the following:
∫

M0

(λḦG)|µ̇G
0 |

2σdxdy ∼ l−7

∫

M0

Y (l, x)|µ̇G
0 |

2σdxdy = O(l−2)

∫

M0∩Σ0

(ḦG + Y (l; x))(|µ̇0 − µ̇G
0 |

2)dA ∼ l−7

These add up to
∫

Σ D(|µ̇0|
2)|µ̇0|

2
σdxdy = O(l−7), with Lemma 3.2, the holomor-

phic sectional curvature is of the order O(l6)O(l−7) = O(l−1).
To obtain the inequality of the opposite direction, we need to bound the integral

∫

M0∩Σ0
Ḧ|µ̇0|

2
dA from below. Therefore we need a choice of a constant λ′ ∼ 1 such

that (Ḧ − λ′ḦG) is a supersolution to the differential equation (∆ − 2)Y = 0. It
is not hard to see that we can find a λ′ ∼ 1 (bounded in l for small l) such that
|φ̇0|

2 > λ′2|φ̇G
0 |

2 and at the boundary of M0 ∩ Σ0 satisfies Ḧ > λ′ḦG. Combining
(Ḧ−λ′ḦG) being a supersolution to the differential equation (∆−2)Y = 0 and above

estimates of the integrals, we find that the integral
∫

M0∩Σ0
Ḧ|µ̇0|

2
dA is actually of

the order comparable to l−1. This completes the proof of theorem 3.1 and theorem
1.2.

3.5. Surface with Punctures. We want to remark that the assumption on the
surface Σ being compact is not essential. In other words, theorems in this paper, are
still true when the surface Σ has finitely many punctures. Now we consider theorem
1.2 in the case of Σ being a punctured surface.

The existence of a harmonic diffeomorphism between punctured surfaces has been
investigated by Wolf ([25]) and Lohkamp ([13]). In particular, Lohkamp ([13]) showed
that a homeomorphism between punctured surfaces is homotopic to a unique har-
monic diffeomorphism with finite energy, and the holomorphic quadratic differential
corresponding to the harmonic map in the homotopy class of the identity is a bijec-
tion between Teichmüller space of punctured surfaces and the space of holomorphic
quadratic differentials.
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In this case, the set Σ\(M0 ∩ Σ0) is no longer compact. Let K0 be a compact
surface with finitely many punctures, and {Km} be a compact exhaustion of K0. We

now estimate
∫

K0
D(|µ̇0|

2)|µ̇0|
2
dA. Let H(t) be the holomorphic energy corresponding

to the harmonic map w(t) : (K0, σ) → (K0, ρ(t)), then H(t) is bounded from above
and below, and has nodal limit 1 near the punctures ([25]), hence |µ̇0|

2 has the order
o(1) near the punctures. To see this, we consider K0 as the union of Km and disjoint

union of finitely many punctured disks, each equipped hyperbolic metric |dz|2

z2log2z . Then

|µ̇0| = O(|zlog2z|) → 0 as z tends to the p uncture, since the quadratic differential
has a pole of at most the first order. We notice that ∂K0 is the boundary of the
cylinders, where the harmonic maps converge to a solution to the “noded” problem
as l → 0, hence D(|µ̇0|

2) = Ḧ(t) is bounded on ∂K0. Therefore we apply Omori-Yau
maximum principle ([18] [30]) to the differential equation (∆− 2)Ḧ = −2|µ̇0|

2 on K0

and obtain that sup(D(|µ̇0|
2)) ≤ max(sup(|µ̇0|

2), max(D(|µ̇0|
2))|∂K0

) = O(1). Hence
we have

∫

K0

D(|µ̇0|
2)|µ̇0|

2
dA ≤

∫

K0

sup(|µ̇0|
2)|µ̇0|

2
dA

≤ O(1)O(1)V ol(K0)

= O(1)

In other words, our proof carries over to the punctured case, which completes the
proof of theorem 1.2 in the general setting.

We note that similar argument can apply to the proof of other theorems of this
paper when finitely many punctures are allowed. For this reason, we will assume in
the rest of the paper that our surface has no punctures.

4. Asymptotic Flatness I: Two Curves Pinching. In this and next sections,
we aim to prove theorem 1.1. Firstly we want to discuss the asymptotic flatness of the
Weil-Petersson metric on Teichmüller space, when there are at most two curves on
the surface are shrinking. We deal with the two curves pinching case in this section.

As indicated in §2.1, the frontier space ∂T of Teichmüller space is a union of
lower dimensional Teichmüller spaces, each consists of noded surfaces obtained by
pinching nontrival geodesics on the surface. Hence to obtain two tangent vectors near
the infinity, at least one geodesic on the surface is shortening. In §4.1, we describe
model case two where the surface is a pair of cylinders; in §4.2, we prove theorem 1.3
in model case two; we give general proofs of theorems 1.3 and 1.4 in §4.3.

4.1. Model Case Two. In this subsection, following [11], we discuss the phe-
nomena of asymptotic flatness of the Weil-Petersson resulting from pinching two in-
dependent curves on the surface.

When we pinch two nonhomotopic curves γ0 and γ1 on surface Σ to two points,
say p0 and p1, the surface Σ is developing two nodes. We denote M0 and M1 pinching
neighborhoods for these two geodesics, i.e., two cylinders described as M in §3.1,
centered at γ0 and γ1, respectively.

We define M(l0, l1) be the surface with two of the Fenchel-Nielsen coordinates,
namely, the hyperbolic lengths of γ0 and γ1, are l0 and l1, respectively. When we
set the length of these two geodesics equal to l simultaneously, we will have a point
M(l) = M(l, l) in Teichmüller space Tg. As l tends to zero, the surface is developing
two nodes. At this point M(l), there are two tangent vectors iµ̇0 and µ̇1. Here µ̇0 is
the same as described in §3.2, i.e., we fix γ1 in M1 having length l, and pinch γ0 in M0
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into length L = L(t), where L(0) = l. So the t-derivative of µ0(t) at t = 0 represents
a tangent vector, µ̇0, of Teichmüller space Tg at M(l), and iµ̇0 is the tangent vector
obtained by performing infinitesimal twists on the curve γ0, as seen in §3.2. We
denote the resulting harmonic map by W0(t) : M(l, l) → M(L(t), l). Similarly when
we fix γ0 in M0 having length l, and pinch γ1 into length L = L(t), the t-derivative of
µ1(t) at t = 0 represents another tangent vector, µ̇1, at M(l); we denote the resulting
harmonic map by W1(t) : M(l, l) → M(l; L(t)). We obtain a family of tangent planes
Ω′

l, spanned by iµ̇0 and µ̇1.
Now we estimate the curvatures of Ω′

l to show:

Theorem 1.3. Ω′
l is asymptotically flat, i.e., its Weil-Petersson sectional curva-

ture is of the order O(l).

Again, as in §3.2, we will still use rotational symmetric harmonic maps to ap-
proximate harmonic maps in the cylinder regions. We describe our “model case two”:
the surface is a pair of hyperbolic cylinders M0 and M1, as we are pinching two inde-
pendent curves γ0 and γ1.

We denote φ0(t) as the Hopf differential corresponding to the cylinder map w0(t)
in M0, and φ1(t) as the Hopf differential corresponding to w1(t) in M1. Here w0(t) :
M0(l) → M0(L(t)) and w1(t) : M1(l) → M1(L(t)) are harmonic maps described as
w = u(x)+ iy in §3.1. We still use φ0 to denote the Hopf differential corresponding to
harmonic map W0(t) in M1, and φ1 as the Hopf differential corresponding to harmonic
map W1(t) in M0.

We still denote a = a(l) = l−1sin−1(l), and b = b(l) = πl−1 − l−1sin−1(l). Recall
from §3.2, we can assume that |iφ̇0| = 1 in M0, and also φ̇1 = 1 in M1. It is not hard
to see that |φ̇1||M0

= ζ(x, l) for x ∈ [a, b], where ζ(x, l) satisfies that ζ(x, l) ≤ C1x
−4

for x ∈ [a, π/2l], and ζ(x, l) ≤ C1(π/l − x)−4 for x ∈ [π/2l, b], and ζ(x, 0) decays
exponentially in [1, +∞]. Here C1 = C1(l) is positive and bounded as l tends to zero.
To see this, notice that φ̇1 is holomorphic and |φ̇1| is positive, so log|φ̇1| is harmonic in
the cylinder M0. Hence we can express log|φ̇1| in a Fourier series Σan(x)exp(−iny),
and we compute 0 = ∆log|φ̇1| = Σ(a′′

n − n2an)exp(−iny). We will see later on that
φ̇1 is close to 0 in M0. Hence we conclude the properties ζ has. Similarly, we assume
that |iφ̇0||M1

= ζ(x, l) for x ∈ [a, b].
Therefore the corresponding harmonic Beltrami differentials are:

|iµ̇0|
2|M0

= | ˙̄iφ0/σ|2|M0
= l−4sin4(lx), and |iµ̇0|

2|M1
= l−4sin4(lx)ζ2(x, l);

|µ̇1|
2|M0

= | ˙̄φ1/σ|2|M0
= l−4sin4(lx)ζ2(x, l), and |µ̇1|

2|M1
= l−4sin4(lx).

4.2. Estimates in Model Case Two. We recall from §2.1, the Tramba-
Wolpert curvature tensor formula is

Rαβ̄γδ̄ =

∫

Σ

D(µ̇α ˙̄µβ)µ̇γ ˙̄µδdA +

∫

Σ

D(µ̇α ˙̄µδ)µ̇γ ˙̄µβdA

and the curvature of Ω′
l is R/Π, where

R = R01̄01̄ − R01̄10̄ − R10̄01̄ + R10̄10̄

Π = 4 < iµ̇0, iµ̇0 >< µ̇1, µ̇1 > −4| < iµ̇0, µ̇1 > |2.

Now we estimate terms in the model case two where the surface is a pair of
cylinders. Similar to Lemma 2 of [11], we have
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Lemma 4.1. 1/Π ∼ l3.

Proof. As in §3.2, we have that < µ̇0, µ̇0 > |M0
∼ l−3. And using |µ̇1|

2|M0
=

l−4sin4(lx)ζ2(x, l), and ζ(x, l) ≤ C1x
−4 for x ∈ [a, π/2l], we have

< µ̇1, µ̇1 > |M0
=

∫

M0

|µ̇1|
2σdxdy

= 2

∫ 1

0

∫ π/2l

a

l−4sin4(lx)ζ2(x, l)σdxdy

≤ 2C2
1

∫ 1

0

∫ π/2l

a

l−2sin2(lx)x−8dxdy

= O(1)

Also | < iµ̇0, µ̇1 > | = |
∫

Σ
iµ̇0 ˙̄µ1dA|, hence,

| < iµ̇0, µ̇1 > |M0
= |

∫

M0

iµ̇0 ˙̄µ1σdxdy|

≤ C1

∫

M0

l−2sin2(lx)x−4dxdy

= O(1)

Note that Π ∼ (4 < iµ̇0, iµ̇0 >< µ̇1, µ̇1 > −4(| < iµ̇0, µ̇1 > |))2|M0
∼ l−3, which

completes the proof of Lemma 4.1.
From Lemma 4.1, we have

|R|/Π ∼ |R|/(l−3) ∼ |R|l3.

Now we are left to estimate |R|.

Lemma 4.2. |R| ≤ 8
∫

Σ
D(|iµ̇0|

2)|µ̇1|
2dA.

Proof. Note that D = −2(∆ − 2)−1 is self-adjoint, hence we have
∫

ΣD(|iµ̇0|
2)|µ̇1|

2
σdxdy =

∫

ΣD(|µ̇1|
2)|iµ̇0|

2
σdxdy

Therefore,

R = R01̄01̄ − R01̄10̄ − R10̄01̄ + R10̄10̄

= 2

∫

Σ

D(iµ̇0 ˙̄µ1)iµ̇0 ˙̄µ1σdxdy + 2

∫

Σ

D(µ̇1(−i ˙̄µ0))µ̇1(−i ˙̄µ0)σdxdy

−

∫

Σ

D(|iµ̇0|
2)|µ̇1|

2
σdxdy −

∫

Σ

D(|µ̇1|
2)|iµ̇0|

2
σdxdy

−

∫

Σ

D(iµ̇0 ˙̄µ1)µ̇1(−i ˙̄µ0)σdxdy −

∫

Σ

D(µ̇1(−i ˙̄µ0))iµ̇0 ˙̄µ1σdxdy

= −6

∫

Σ

D(µ̇0 ˙̄µ1)µ̇1 ˙̄µ0σdxdy − 2

∫

Σ

D(|iµ̇0|
2)|µ̇1|

2
σdxdy.

The last equality follows from that here µ̇0 and µ̇1 are real functions. And we have
|D(µ̇0µ̇1)| ≤ |D(|µ̇0|

2)|1/2|D(|µ̇1|
2)|1/2 from lemma 4.3 of [27]. Lemma 4.2 then fol-

lows.

Lemma 4.3.
∫

Σ
D(|iµ̇0|

2)|µ̇1|
2σdxdy ∼ l−2.
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Proof. The surface is a pair of two cylinders, so we need to estimates two integrals:
∫

M0
D(|iµ̇0|

2)|µ̇1|
2dA and

∫

M1
D(|iµ̇0|

2)|µ̇1|
2dA.

For the first integral
∫

M0
D(|iµ̇0|

2)|µ̇1|
2dA, we write D(|µ̇0|

2) = Ḧ, where H(t) is

the holomorphic energy for the family of harmonic maps w0(t), as in §3.2. Then in M0,

we have (∆ − 2)Ḧ = −2 |φ̇0|
2

σ2 = −2l−4sin4(lx). We recall that Ḧ is bounded on the

compacta in [a, b] and so we can assume that 0 < A1(l) = Ḧ(a) = Ḧ(l−1sin−1l) ∼ 1.
Then Ḧ(x) solves the differential equation

(l−2sin2(lx))Ḧ′′ − 2Ḧ = −2l−4sin4(lx)

with the conditions

Ḧ(l−1sin−1l) = A1(l), Ḧ
′(π/2l) = 0.

We remark here that infinitesimal twists only change the boundary values for Ḧ,
which will stay bounded.

We have solved above differential equation in §3.2, and the general solutions have
the following form

Ḧ(l; x) =
sin2(lx)

2l4
+ A2cot(lx) + A3(1 − lxcot(lx))

where coefficients A2 = A2(l) and A3 = A3(l) are constants that satisfy

A2 =
π

2
A3 ∼ l−1.

Hence the dominate term for Ḧ is sin2(lx)
2l4 , for small l. Noticing that ζ(x, l) decays

exponentially through [a, π/2l], we then estimate the first integral:

∫

M0

D(|µ̇0|
2)|µ̇1|

2
σdxdy =

∫

M0

Ḧ(x)|µ̇1|
2
σdxdy

=

∫ 1

0

∫ b

a

Ḧ(x)(l−2sin2(lx))ζ2(x, l)dxdy

∼

∫ π/2l

a

sin2(lx)

2l4
l−2sin2(lx)ζ2(x, l)dx

∼ l−2. (7)

Now let us look at the second integral
∫

M1
D(|µ̇0|

2)|µ̇1|
2σdxdy. Note that in M1, which

we identify with [a, b]× [0, 1], we have D(|µ̇0|
2) = Ḧ, here µ0(t) and H come from the

harmonic map W0(t) : M(l, l) → M(L(t), l), where |µ̇0||M1
= l−2sin2(lx)ζ(x, l), and

H(t) solves

(l−2sin2(lx))Ḧ′′ − 2Ḧ = −2l−4sin4(lx)ζ2(x, l) (8)

with the conditions

Ḧ(l−1sin−1l) = B1(l), Ḧ(π/l − l−1sin−1l) = B2(l).

Here B1(l) and B2(l) are positive and bounded as l tends to zero, since Ḧ converges
to the holomorphic energy in the “noded” problem (of §3.2, when M1 = [1,∞)). We
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recall that |φ̇1||M0
= ζ(x, l), where ζ(x, l) ≤ C1x

−4 for x ∈ [a, π/2l] and ζ(x, l) ≤
C1(π/l − x)−4 for x ∈ [π/2l, b].

Consider the equation

(l−2sin2(lx))Y ′′ − 2Y = 0 (9)

with the boundary conditions that satisfy

Y (l−1sin−1l) ∼ 1 and Y ′(π/2l) = 0.

We choose h(x) = −x−2 and claim that Ḧ − h is a subsolution to (9) for x ∈ [a, b].
To see this, noticing that 2|φ̇0|

2|M1
l−4sin4(lx) decays rapidly as x → b for small l, we

have

(l−2sin2(lx))(Ḧ − h(x))′′ − 2(Ḧ − h(x)) = (
6sin2(lx)

l2x4
−

2

x2
) − 2|µ̇0|

2 > 0 (10)

Notice that λY (x) solves the equation (9) if Y (x) does, for any constant λ. So
up to multiplying by a bounded constant, we have Y |∂M1

> (Ḧ − h(x))|∂M1
. Hence

Ḧ − h is a subsolution to (9) for x ∈ [a, b], while the solutions to (9) have the form

Y (l; x) = B3cot(lx) + B4(1 − lxcot(lx))

where constants B3 = B3(l) and B4 = B4(l) satisfy, from the boundary conditions
for the equation (9), that

B3 =
π

2
B4 ∼ l.

Therefore in [a, b], We have Ḧ ≤ h(x) + Y (x). Now,

∫

M1

Y (x)|µ̇1|
2
σdxdy =

∫ 1

0

∫ b

a

Y (x)(l−2sin2(lx))dxdy

=

∫ b

a

B3cot(lx)(l−2sin2(lx))dx

+

∫ b

a

B4(1 − lxcot(lx))(l−2sin2(lx))dx

= O(l−2) + O(l−2)

= O(l−2)

Now we compute the second integral:

∫

M1

D(|iµ̇0|
2)|µ̇1|

2
dA =

∫ 1

0

∫ b

a

Ḧ(x)|µ̇1|
2
dA

≤

∫ 1

0

∫ b

a

(Y (x) + h(x))|µ̇1|
2
σdxdy

= O(l−2) + O(l−1) = O(l−2). (11)

In other words, we have shown the first integral is comparable to l−2, and the second
integral is of the order O(l−2), and both are positive. This proves Lemma 4.3.
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4.3. Proof of Theorems 1.3 and 1.4. We are now ready to complete the
proof of theorem 1.3. Recall from §3.3, we constructed a family of maps G0(t) to
approximate W0(t). The map G0(t) consists of three parts: the cylinder map w0

of M0 deep into the cylinder region in M0 ∩ Σ0, the identity map in the compact
region Σ0\M0, and a smooth map interplaying with the identity map and w0 in the
intersection region B(∂M0, 1). Similarly, we obtain a family of maps G1(t) such that
it is w1 in M1 ∩ Σ1, the identity map in Σ1\M1, and a smooth map in B(∂M1, 1).
Here Σ0 = {p ∈ Σ : dist(p, ∂M0) > 1}, and B(∂M0, 1) = {p ∈ Σ : dist(p, ∂M0) ≤ 1}.

Proof of Theorem 1.3. Parallel to the discussion in §3.3, we know that both
families G0(t) and G1(t) are close to the families of harmonic maps W0(t) and W1(t),
respectively (Lemma 3.4). Also |φ̇G0

− φ̇W0
| = O(1) and |φ̇G1

− φ̇W1
| = O(1) both

hold for x ∈ [a + 1, b − 1] (Lemma 3.6).

It is not hard to see that Lemma 4.1 still holds, so we need to establish the
same estimate as in Lemma 4.3 in order to prove theorem 1.3 in the general case,
i.e., we need to estimate

∫

Σ D(|iµ̇0|
2)|µ̇1|

2σdxdy, which breaks into three integrals as
following:

∫

Σ

D(|iµ̇0|
2)|µ̇1|

2
σdxdy =

∫

M0∩Σ0

D(|iµ̇0|
2)|µ̇1|

2
σdxdy

+

∫

M1∩Σ1

D(|iµ̇0|
2)|µ̇1|

2
σdxdy

+

∫

K

D(|iµ̇0|
2)|µ̇1|

2σdxdy

=

∫

M0∩Σ0

Ḧ|µ̇1|
2
σdxdy

+

∫

M1∩Σ1

Ḧ|µ̇1|
2σdxdy + O(1). (12)

where K is the compact set disjoint from (M0 ∩ Σ0) ∪ (M1 ∩ Σ1).

Notice that ∂K = ∂((M0 ∩Σ0)∪ (M1 ∩Σ1)), so parallel to the discussion in §3.4,
the maximum principle will force that Ḧ ≤ λḦG + Y (l, x) in (M0 ∩Σ0) ∪ (M1 ∩Σ1),
for some bounded constant λ, where Y (l, x) = B3cot(lx) + B4(1 − lxcot(lx)) is the
solution to (∆ − 2)Y = 0, and constants B3 and B4 satisfy that B3 ∼ l and B4 ∼ l.
Apply this to (12):

∫

Σ

D(|µ̇0|
2)|µ̇1|

2dA =

∫

(M0∩Σ0)∪(M1∩Σ1)

Ḧ|µ̇1|
2dA + O(1)

≤

∫

(M0∩Σ0)

(λḦG + Y (l; x))(|µ̇1|
2
)dA

+

∫

(M1∩Σ1)

(λḦG + Y (l; x))(|µ̇1|
2
)dA + O(1)

≤

∫

M0

(λḦG + Y (l; x))(2|µ̇1|
2 + 2|µ̇1 − µ̇G

1 |
2)dA

+

∫

M1

(λḦG + Y (l; x))(2|µ̇1|
2

+ 2|µ̇1 − µ̇G
1 |

2)dA

+ O(1)
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From the calculation in §3.3, we have the following:

∫

M0

(λḦG)|µ̇G
1 |

2dA ∼ l−2,

∫

M1

(λḦG)|µ̇G
1 |

2σdxdy = O(l−2),

∫

M0

Y (l, x)|µ̇G
1 |

2σdxdy = O(1),

∫

M1

Y (l, x)|µ̇G
1 |

2σdxdy = O(l−2),

∫

M0∩Σ0

(ḦG + Y (l; x))(|µ̇1 − µ̇G
1 |

2)dA = o(l−2),

∫

M1∩Σ1

(ḦG + Y (l; x))(|µ̇1 − µ̇G
1 |

2)dA = o(l−2).

Applying these estimates to (12), we have

∫

Σ

D(|iµ̇0|
2)|µ̇1|

2dA = O(l−2).

This and Lemma 4.1 complete the proof of theorem 1.3.
To prove theorem 1.4, we consider the plane Ω′′

l , spanned by Beltrami differentials
iµ̇0 and iµ̇1. Again we find that Lemma 4.1 still holds, i.e., 1/Π ∼ l3, where Π = 4 <
iµ̇0, iµ̇0 >2< iµ̇1, iµ̇1 >2 −4| < iµ̇0, iµ̇1 > |2. A direct calculation shows that R is
given by

R = R01̄01̄ − R01̄10̄ − R10̄01̄ + R10̄10̄

= 2

∫

Σ

D(iµ̇0(−i) ˙̄µ1)µ̇0 ˙̄µ1dA + 2

∫

Σ

D(iµ̇1(−i ˙̄µ0))µ̇1( ˙̄µ0)dA

−

∫

Σ

D(|iµ̇0|
2)|iµ̇1|

2
dA −

∫

Σ

D(|iµ̇1|
2)|iµ̇0|

2
dA

−

∫

Σ

D(iµ̇0(−i) ˙̄µ1)iµ̇1(−i ˙̄µ0)dA −

∫

Σ

D(iµ̇1(−i ˙̄µ0))iµ̇0(−i) ˙̄µ1dA

= 2

∫

Σ

D(µ̇0µ̇1)µ̇1µ̇0dA − 2

∫

Σ

D(|iµ̇0|
2)|iµ̇1|

2dA.

Hence we have a result similar to that of Lemma 4.2:

Lemma 4.4. |R| ≤ 4
∫

Σ D(|iµ̇0|
2)|iµ̇1|

2
dA.

Now the curvature of Ω′′′
l is R/Π. An argument parallel to that of proving theorem

1.3 leads to a proof of theorem 1.4.

5. Asymptotic Flatness II: Curvature Bounds. The goal of this section is
to prove theorem 1.5 and, finally, theorem 1.1. We continue to discuss the asymptotic
flatness of the Weil-Petersson metric when there is only one shrinking geodesic on the
surface in §5.1, then give a proof of theorem 1.1 in §5.2.

In this section, we always use l to denote the length of the shortest geodesic on
the surface.
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5.1. One Curve Pinching. In this subsection, we assume that Σ is a closed
surface of genus g at least two, and γ0 is a closed separating short geodesic on the
surface Σ with length l. As l tends to zero, the surface is developing a separating node.
Let γ2 and γ3 be two closed geodesics on the different sides of curve γ0. Without loss
of generality, we assume l(γ2) = l(γ3) >> l.

As in previous sections, we denote M(l, θ2, θ3) as the surface with three of the
Fenchel-Nelsen coordinates, the hyperbolic length of γ0, the twisting angles of γ2 and
γ3, being l, θ2, θ3, respectively.

We denote M0 as a cylinder centered at γ0, while M2 and M3 are cylinders
centered at γ2 and γ3, respectively. Note that as the length of γ0 is kept very short,
the cylinder M0 becomes very long and similar to the cylinder described as M in §3.1.
Now we have two families of harmonic maps: the family W2(t) : M(l) → M(l, θ2(t), 0),
which fixes γ3, keeps γ0 very short at length l, and twists γ2 at angle θ2(t); and
the family W3(t) : M(l) → M(l, θ3(t), 0), which fixes γ2, keeps γ0 very short at
length l, and twists γ3 at angle θ3(t). We denote µ̇2 and µ̇3 as infinitesimal Beltrami
differentials corresponding to W2(t) and W3(t), respectively. Also φ̇2 and φ̇3 are
corresponding infinitesimal Hopf differentials. Now we obtain a tangent plane Ω′′′

l at
a point M(l) = M(l, 0, 0) in Teichmüller space, spanned by tangent vectors µ̇2 and
µ̇3, and we will show that

Theorem 1.5. This plane Ω′′′
l is asymptotically flat with respect to the Weil-

Petersson metric, moreover, its Weil-Petersson sectional curvature is of the order
O(l).

The curvature of Ω′′′
l is given by R/Π, where R = R23̄23̄ − R23̄32̄ − R32̄23̄ + R32̄32̄

and Π = 4 < µ̇2, µ̇2 >< µ̇3, µ̇3 > −2| < µ̇2, µ̇3 > |2 − 2Re(< µ̇2, µ̇3 >)2.
The essential parts on the surface for the curvature estimates are M0, M2 and

M3. As in previous sections, we will use rotationally symmetric harmonic maps wi(t)
to approximate Wi(t) in Mi, for i = 2, 3. We still denote the Hopf differentials of
wi(t) by φi(t) and corresponding Beltrami differentials by µi(t) for i = 2, 3.

Similar to the discussion in model cases one and two, the infinitesimal Hopf dif-
ferentials φ̇2(t) and φ̇3(t) are holomorphic. Since harmonic maps w2(t) and w3(t) are
rotationally symmetric, we can assume the infinitesimal Hopf differentials |φ̇2|M2

= 1,
|φ̇3|M3

= 1, while |φ̇2|M0
= η2(x, l), and |φ̇3|M0

= η3(x, l), where we consider
M0 as a cylinder characterized by [a, b] × [0, 1], and a = a(l) = l−1sin−1(l), and
b = b(l) = πl−1− l−1sin−1(l). Here, similar to ζ(x, l) from §4.1, the functions η2(x, l)
and η3(x, l) satisfy that η2(x, l) ≤ C1x

−4 for x ∈ [a, b], and η3(x, l) ≤ C1(b − x)−4

for x ∈ [a, b], and they decay exponentially in [1, +∞]. We note that, asymptotically,
cylinders M2 and M3 lie on different sides of M0. Therefore we can assume that
|φ̇2|M3

= O(l4) and |φ̇3|M2
= O(l4).

To prove theorem 1.5, we want to show firstly that Π is bounded (away from
zero). This is easy to see as, asymptotically, both φ̇2(t) and φ̇3(t) decay exponentially
in M0, and hence Π > Π|M0

is bounded from below by some positive constant. Now
we just have to show that |R| = O(l).

Lemma 5.1.
∫

M0
D(|µ̇2|

2)|µ̇3|
2
σdxdy = O(l).

Proof. We split the interval [a, b] into three parts: [a, l−1/4], [l−1/4, b− l−1/4] and
[b− l−1/4, b]. Recall that D(|µ̇2|

2) = ḦG, where ḦG is the holomorphic energy corre-
sponding to the family of harmonic maps w2(t) resulting from twisting the curve γ2.

Similar to the proof of Lemma 4.3, we compare ḦG with Y (l; x), where Y (l, x) =
B3cot(lx) + B4(1 − lxcot(lx)) is the solution to (∆ − 2)Y = 0 in [a, b] with constants
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B3 and B4 satisfying that B3 ∼ l and B4 ∼ l. Again, we find that Ḧ + x−2 is a
subsolution to (∆ − 2)Y = 0 for x ∈ [a, b]. Here the hyperbolic length element in M0

is lcsc(lx)|dz|.
In the first interval [a, l−1/4], noticing that |φ̇3| ≤ C1(b − l−1/4)−4 = O(l4), we

have

∫ l−1/4

a

D(|µ̇2|
2)|µ̇3|

2
σdx ≤

∫ l−1/4

a

(Y (x) − x−2)|µ̇3|
2σdx

=

∫ l−1/4

a

(Y (x) − x−2)|φ̇3|
2l−2sin2(lx)dx

= o(l).

In the second interval [l−1/4, b − l−1/4], we have

∫ b−l−1/4

l−1/4

D(|µ̇2|
2)|µ̇3|

2
σdx ≤

∫ b−l−1/4

l−1/4

(Y (x) − x−2)|µ̇3|
2σdx

≤

∫ b−l−1/4

l−1/4

(Y (x) − x−2)C2
1

(b − x)8
l−2sin2(lx)dx

= o(l).

In the third interval [b − l−1/4, b], noticing that D(|µ̇2|
2) ≤ Y (x) − x−2 ∼ l, we have

∫ b

b−l−1/4

D(|µ̇2|
2)|µ̇3|

2
σdx ≤

∫ b

b−l−1/4

(Y (x) − x−2)|µ̇3|
2σdx

=

∫ b

b−l−1/4

O(l)
C2

1

(b − x)8
l−2sin2(lx)dx

= O(l).

Combining these calculation, we complete the proof of Lemma 5.1.
To show |R| = O(l), we notice that |R| ≤ C′

∫

Σ
D(|µ̇2|

2)|µ̇3|
2
σdxdy for some

positive constant C′, as in the proof of Lemma 3 of [11] and Lemma 4.2. Hence we

need to calculate the integral
∫

Σ D(|µ̇2|
2)|µ̇3|

2
dA. Since γ0 is a separating curve, we

split this integral into two parts, one for each side of γ0, and we abuse our notation
to denote the side with curve γ2 by M2, and the other side with curve γ3 by M3.

Since M2 is compact, and |φ̇3|M2
= O(l4), we have the integral

∫

M2

D(|µ̇2|
2)|µ̇3|

2
σdxdy = O(l4) = o(l). (13)

Also M3 is compact, we have |φ̇3|M3
= O(1), while D(|µ̇2|

2)|M3
= ḦG|M3

is compa-
rable to ḦG|M0∩M3

, which is of the order O(lcsc(lb)) = O(1/b) = O(l), recalling that
b = b(l) = πl−1 − l−1sin−1(l). Thus

∫

M3

D(|µ̇2|
2)|µ̇3|

2
σdxdy = O(l). (14)

The estimate of Lemma 5.1, (13) and (14) complete the proof of theorem 1.5 when
we consider the family of harmonic maps being rotationally symmetric.
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Now we consider the families of harmonic maps which are no longer rotationally
symmetric. Since γ0 separates the surface, the cylinder M0 separates the surface into
two sides. We denote the side containing γ2 by M2, and the side containing γ3 by
M3. As we indicated, the infinitesimal Hopf differentials are exponentially small in
the thin part. Thus we can still assume that |φ̇2|M3

= O(l4) and |φ̇3|M2
= O(l4),

hence the term Π in the curvature formula is still bounded.
To compute the integral

∫

Σ D(|µ̇2|
2)|µ̇3|

2dA, we still denote the holomorphic en-

ergy of the family W2(t) by H(t), then D(|µ̇2|
2) = Ḧ will be dominated, as seen in the

argument in §3.4 after (6), by ḦM and Y (l, x) = B3cot(lx) + B4(1 − lxcot(lx)), the
solution to (∆− 2)Y = 0 in [a, b] with constants B3 and B4 satisfying that B3 = O(l)
and B4 = O(l), when we characterize M0 by [a, b] × [0, 1].

Now it is not hard to see that
∫

Σ2∪Σ3

D(|µ̇2|
2)|µ̇3|

2dA = o(l),

∫

[a,b−l1/4]×[0,1]

D(|µ̇2|
2)|µ̇3|

2dA = o(l).

While
∫

[b−l1/4,b]×[0,1]
D(|µ̇2|

2)|µ̇3|
2dA = O(l) as Y (l, x) ∼ lcot(lx) ∼ l when x ∈

[b − l1/4, b]. Therefore the integral
∫

Σ
D(|µ̇2|

2)|µ̇3|
2dA = O(l) and we complete the

proof of theorem 1.5.

Remark 5.2. If the shrinking curve γ0(l) is not separating, the twisting neigh-
borhoods M2 and M3 will lie on the same component in the limit of surfaces with one
shrinking curve as l tends to zero. It is not hard to see that K(Ω′′′

l ) is now bounded
away from zero.

Remark 5.3. Theorem 1.5 can be easily generalized to treat the case when multi-
ple closed geodesics are pinching and at least one of them is separating. Infinitesimal
twists about curves on different sides of a separating and shrinking curve will give a
family of asymptotically flat tangent planes.

5.2. Curvature Bounds. In this subsection, we prove theorem 1.1, i.e., we give
curvature bounds at any point in Teichmüller space.

We consider the lower bound part first. Recall from §3.4, we showed that the
Weil-Petersson holomorphic sectional curvature tends to negative infinity at the rate
of the order O(l−1). We note that, asymptotically, the absolute value of the sectional
curvature is dominated by diagonal terms. One way to see this, assume that ν̇0 and
ν̇1 are two tangent vectors at Σ in the tangent space of Teichmüller space, then, as
in lemma 4.3 of [27], we have |D(ν̇0 ˙̄ν1)| ≤ D(|ν̇0|

2)1/2D(|ν̇1|
2)1/2. Applying Schwarz

lemma, one finds that the absolute value of the curvature of the plane, spanned by
ν̇0 and ν̇1, is dominated by

∫

Σ
D(|ν̇0|

2)|ν̇1|
2dA/Π, where Π = 4 < ν̇0, ν̇0 >< ν̇1, ν̇1 >

−2| < ν̇0, ν̇1 > |2 − 2Re(< ν̇0, ν̇1 >)2.
If there is a lower bound for the length of the shortest closed geodesics on Σ, the

Weil-Petersson sectional curvature of Teichmüller space is bounded since all integrals
in curvature terms are bounded away from negative infinity and zero. Hence, to
consider large absolute value of the sectional curvature, we can assume one of the
vectors ν̇0 and ν̇1 is corresponding to a deformation of the length of a short geodesic
on the surface. Recalling that the Hopf differential not corresonding to pinching this
curve will be exponentially small in the thin part of this shrinking curve, so above
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integral
∫

Σ
D(|ν̇0|

2)|ν̇1|
2dA will be no more than the integral

∫

Σ
D(|ν̇0|

2)|iν̇0|
2dA,

which we estimated in the proof of theorem 1.2. Therefore the proof of theorem 1.2
implies the following theorem, which is the lower bound part of theorem 1.1, i.e.,

Theorem 5.4. There is a positive constant C such that the Weil-Petersson
sectional curvature K of Teichmüller space satisfies K ≥ −(Cl)−1.

The estimates in proving theorem 1.2 immediately imply the following result of
Schmuacher and Trapani:

Corollary 5.5. ([21], [22]) The sectional, Ricci and scalar curvature are as-

ymptotically bounded by
q

∑

i=1

log|ti|.

To show the upper bound part of theorem 1.1, we notice that the upper bounds
for asymptotically flat tangent planes Ωl in theorem 1 of [11], planes Ω′

l in theorem
1.3, planes Ω′′

l in theorem 1.4, and planes Ω′′′
l in theorem 1.5 are all of the order O(l).

We now want to show

Theorem 5.6. There exists a constant C′ > 0 such that the Weil-Petersson
sectional curvature K of Teichmüller space satisfies K ≤ −C′l.

We assume at least one core geodesics is shrinking on the surface. Let
(l1, θ1, l2, θ2, ..., l3g−3, θ3g−3) be the Fenchel-Nielsen coordinates at a point Σ in Te-
ichmüller space. It suffices to prove theorem 5.6 by assuming two tangent vectors ν̇0

and ν̇1 are infinitesimal Beltrami differentials rsulting from deformation of lengths of
core geodesics or deformation of twisting angles or both. Therefore we consider the
cases of one curve pinching and two curves pinching.

From remark 5.2, if both ν̇0 and ν̇1 are resulting from deformations of twisting
angles about independent core geodesics, then this shrinking curve, denoted by γ with
length l, can be assumed to be separating (in such case, we require the genus of the
surface is at least two). Therefore, from the proof of theorem 1.5, remark 5.2 and
remark 5.3, we have K(Span(ν̇0, ν̇1)) = O(l). Moreover, if we use notations in the
proof of Lemma 5.1, maximum principle will force D(|µ̇2 ˙̄µ3|) to be no greater than
the maximal value of |µ̇2 ˙̄µ3| on [a, b]. Therefore one sees that |

∫

Σ D(µ̇2 ˙̄µ3)µ̇3 ˙̄µ2dA| =

O(l2), and thus
∫

Σ D(|µ̇2|
2)|µ̇3|

2
σdxdy is indeed the dominate term in the curvature

of the plane spanned by µ̇2 and µ̇3. The first two integrals in the proof of Lemma
5.1 are of the order of o(l), while one finds the third integral is actually comparable
to l. To see this, for different choices of B3 ∼ l and B4 ∼ l for function Y (l, x) =
B3cot(lx) + B4(1 − lxcot(lx)) satisfying (∆ − 2)Y = 0, we find that Ḧ − x−2 is a
supersolution to (∆ − 2)Y = 0 for x ∈ [a, b]. Applying this to the calculation of the
third integral, and theorem 1.5, to conclude that K(Span(ν̇0, ν̇1)) ∼ l.

Now we consider K(Span(µ̇0, µ̇1)) in the case of two curves pinching. We have
shown, in theorems 1.3 and 1.4, that K(Span(µ̇0, µ̇1)) = O(l). We recall from previous
sections that R = R01̄01̄ − R01̄10̄ − R10̄01̄ + R10̄10̄, and the curvature is of the order
comparable to l3|R|.

From the proofs of theorems 1.3 and 1.4, the curvature is controled by two inte-
grals:

∫

Σ
D(|µ̇0|

2)|µ̇1|
2dA and |

∫

Σ
D(µ̇0 ˙̄µ1)µ̇1 ˙̄µ0dA|, when µ̇0 and µ̇1 both correspond

to curve shortening. Facts
∫

Σ
D(|µ̇0|

2)|µ̇1|
2dA ∼ l−2 and |

∫

Σ
D(µ̇0 ˙̄µ1)µ̇1 ˙̄µ0dA| ≤

∫

Σ D(|µ̇0|
2)|µ̇1|

2dA imply K(Span(µ̇0, µ̇1)) = O(l). To prove theorem 5.6, it
then suffices to show that |

∫

Σ
D(µ̇0 ˙̄µ1)µ̇1 ˙̄µ0dA| is sufficiently small comparing with

∫

Σ
D(|µ̇0|

2)|µ̇1|
2dA for small l.
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Let M0 and M1be the cylinder regions corresponding to shortening of curves γ0

and γ1, as in the proof of theorem 1.3. We find that

|

∫

M0

D(µ̇0 ˙̄µ1)µ̇1 ˙̄µ0dA| = O(1),

and

|

∫

M1

D(µ̇0 ˙̄µ1)µ̇1 ˙̄µ0dA| = O(1).

We only consider the integral on M0. Notice that |φ̇1| decays exponentially in M0, so
maximum principle forces|D(µ̇0 ˙̄µ1)| = O(1) (with respect to l) in M0. Then the first
claim follows from an easy calculation: |

∫

M0
µ̇1 ˙̄µ0dA| = O(1). Similarly, the claim on

M1 holds. Therefore we find

|

∫

Σ

D(µ̇0 ˙̄µ1)µ̇1 ˙̄µ0dA| = O(1).

Hence |R| ∼
∫

Σ D(|µ̇0|
2)|µ̇1|

2dA ∼ l−2 and curvature is comparable to l. This com-
pletes the proof of theorem 5.6.
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