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Abstract

I develop a translation procedure between λ-structures, which correspond to premice
in the Friedman-Jensen indexing convention on the one hand and s-structures, which are
essentially the same as premice in the Mitchell-Steel indexing scheme.

1 Introduction

In the course of the nineteen-nineties, two approaches for constructing extender models became
accepted as the most fruitful ones. They are known under the terms “s-indexing” and “λ-
indexing”. The former was created by William Mitchell and John Steel ([MS94]), the latter by
Sy Friedman and Ronald Jensen ([Jen97]).

Both approaches aim at constructing fine structural models that approximate the set theoretic
universe V very well, in the sense that as many large cardinals of V as possible remain large
cardinals in the model. Since the isolation of the question about the existence of 0] as a crucial
dichotomy, large cardinal axioms concerning the existence of elementary embeddings of (segments
of) the universe were focal. These can be coded by extenders, which makes possible a formulation
of these concepts within ZFC ([Mit79]). There are many different ways of coding such embeddings,
and consequently, there are many ways of defining an extender. This is one respect in which the
λ and the s approach differ.

These structures are of the form JEα where E codes a sequence of extenders. In s-indexing, the
index α of an extender on the sequence is the cardinal successor of the support in the extender
ultrapower of the structure cut back to α. In λ-indexing, α is the cardinal successor of the
image of the critical point under the extender ultrapower embedding, again computed within the
extender ultrapower. So the index of an extender in an s-indexed structure will be less than or
equal to the index of the “corresponding” extender in a λ-indexed structure. What can happen
is that certain extenders appearing on the sequence of a λ structure have no corresponding
extender on the sequence of the corresponding s-structure. But those extenders will be coded by
the extenders on the sequence of the corresponding s-indexed structure and appear after applying
the right extenders of the s-structure.

Up to now I was mainly talking about the extender sequences, and it was indicated that
there is a canonical way in which one can produce from a λ indexed sequence a corresponding
one in s indexing and vice versa. If one doesn’t demand of an extender sequence more than
the right indexing, some form of an initial segment condition (which is needed to show that the
comparison process terminates) and some level of coherence of the sequence, then this is not too
hard to see and also not new (albeit unpublished, but see [Ste00, remark before def. 2.6]).
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But I want a correspondence between the entire structures 〈JEα , F 〉 that are referred to as
premice both in the s- and the λ-approach. Taken literally, such a correspondence doesn’t exist,
but mainly for reasons of different tastes of the creators of the two theories - e.g., Mitchell-Steel
demand that proper initial segments of premice be solid, while Jensen omits this requirement.
Iterable premice are solid in both approaches, so that this difference vanishes if one looks at
the structures of real interest. So in order for a significant correspondence to exist, I will define
new structures. If possible, the requirements I make are weaker than the original ones, but still
sufficient to get the theory going. I call these structures λ- and s-structures.

The main problem when analyzing the structures is a property that one could call pre-
soundness: Proper segments of a λ- or s-structure have to be sound. So this property must be
preserved by the translation function. In order to prove this, one has to analyze definability in
the corresponding structures very closely; for instance, it is highly relevant which parameters are
necessary for the definition of a Σ1 set (in Section 8.3 I deal solely with the problem that in the
case that the heights of the structures considered are successor ordinals, an additional parameter
is needed in the translation of a Σ1 formula).

The aim of being less restrictive when defining λ- and s-structures cannot be realized in three
respects: Firstly, I demand that proper segments of λ-structures which are not of type III be
not only sound but also 1-solid (i.e., solid above the first projectum) – without this additional
assumption, it is not clear that the standard parameters of corresponding structures coincide,
which is crucial for our proof that soundness is preserved. I demand the same of s-structures,
and in this context, this is less than the usual requirement, namely full soundness and solidity.

Secondly, all active segments of s-structures have to be extendible. This means that applying
the top extender to such a structure, truncated at the cardinal successor of its critical point, has
to yield a well-founded model. In the original Mitchell-Steel approach, it is only demanded that
the height of the structure +1 be contained in the well founded part of the ultrapower of the full
structure. If the stronger requirement is violated, there obviously cannot be a corresponding λ
structure, since these are long coherent well founded structures. So this is a natural requirement.1

Since iterable premice in the sense of Mitchell-Steel (iterable even in the weakest possible sense)
obviously have this property, this is harmless, since, after all, iterable premice are the creatures
I care about most.

Thirdly, the λ-structures are equipped with an additional predicate which essentially makes
it possible to define the corresponding s structure within the λ structure, which is used for
translating Σ1 formulae. Section 3.3 deals with the fine structure of enhanced structures. Note
that this change of the definition only refers to the λ side, as does the first point.

The choice of the form of the initial segment condition for the structures at hand is somewhat
difficult. Both original approaches suffered initially of an erroneous formulation of this condition;
see [SSZ02] for the problems in the s approach, and [Jen99, §I] for a corrected formulation with
λ indexing. By now, there is a whole variety of different versions of the ISC, and for the current
paper, I came up with yet another one. The reason for this will become clear in the second part
of this paper, where it is shown that the translation functions map iterable structures to iterable
structures, with respect to appropriate notions of iterability. The philosophy is that I tried to
impose as few restrictions on the structures as possible.

I will also investigate classes of weaker structures (on both sides) between which there is
a one-to-one correspondence. Roughly, a “p” in the beginning (which stands for “potential”)
means that instead of “pre-soundness” and “pre-solidity” it is only required that proper segments

1The property of hereditary extendibility has another advantage: It enables us to give a simplified treatment
of iterations of s-structures: When forming an ultrapower of a type III structure I don’t have to deal with the
squash of the structure. Instead, I always pass over to the maximal extension. That these procedures yield the
same result is shown in the follow-up article to this paper.
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have a very good parameter (this guarantees that the structures are at least acceptable), and a
“P” (for “Pseudo-”) means that no ISC is required.

In section 8.2 it is shown that the translation functions manifest a correspondence between
pPλ- and pPs-structures, as well as between pλ- and ps-structures. The basic ingredients for
the proofs are developed in Section 6. In order to prove the corresponding result for Pλ and
Ps, or finally for λ- and s-structures, a lot more work has to be done. The problems have to do
with the additional parameters appearing in the translations of Σ1 formulae. The main obstacle
is to show that the standard parameters of corresponding structures (or, more precisely, their
(pseudo) Σ0-codes) coincide. This problem is solved in the rest of Section 8, and the desired
result is finally proved in Section 8.7. In the second part of this paper, I show that iterable
structures are mapped to iterable structures as well.

The reader should be familiar with Σ∗ fine structure, which can be applied to arbitrary
acceptable J-structures. In [MS94], a fine structure theory is used which is tailor-made for the
structures studied there. But the fine structural notions do not coincide, in general, with the
ones defined in the Σ∗ approach.2 The form of extender-ultrapowers chosen suits the Σ∗-fine
structure best, namely the ∗-extender-ultrapowers ([Jen97],[Zem02],[Zem97]). In [MS94], so-
called k-extender-ultrapowers are used, which could be imitated in the Σ∗-context but without
any particular gain. Since the Mitchell-Steel-premice, as defined in [Ste00] (as opposed to the
exhibition in [MS94]), are amenable, the Σ∗ theory is applicable, so there is no reason not to
apply it. It allows for a simpler and more uniform description of the process of a fine structural
iteration.

A word on notation: The terminology used is quite standard and follows [Jec03] or [Kan94].
Small Greek letters denote ordinals, that is, members of the class On. The least upper bound of
a set A of ordinals, lubA, is the least ordinal that’s strictly greater than all members of A. M
and N are reserved for models, |M | and |N | are their universes, ϕ and ψ usually are formulae,
V is the set theoretical universe and κ is always a cardinal, at least in a context-specific model.
Functions are identified with their graphs, where here, the second component of a pair in the
graph of f is in the domain, and the first component is the corresponding value from the range of
f . If x is a set, then ẋ is usually a predicate symbol which is interpreted by x (in a context-specific
model, in which x may be a proper class). I use lists quite frequently. Thus, ~x = x0, . . . , xn−1 is
an abbreviation, and doesn’t really denote a mathematical object. E.g., 〈~x〉 = 〈x0, . . . , xn−1〉 is
the ordered n-tuple. Sometimes I will just write a∩ ~x for the list a∩ x0, . . . , a∩ xn−1, etc. I set:
lh(~x) = n. I should also define: A J-structure is an amenable model of the form M = 〈J ~Aα , ~B〉 (i.e.,
~B ⊆ |M |). Note that J ~Aα = 〈|J ~Aα |, ~A ∩ |J

~A
α |〉. Hence, M = 〈|J ~Aα |, ~A ∩ |J

~A
α |, ~B〉. I set: ht(M) = α.

I would like to point out that there is an index at the end of the paper, for the reader’s
convenience. Instead of describing how the paper is organized, I also added a table of contents.

This paper is based on a part of my PhD Thesis which I wrote under the supervision of
Prof. Dr. Ronald Jensen. He stated the problem, advised me very well whenever I had questions,
and made doubts about the project that I had from time to time disappear. I am very grateful
for this.

2The structures studied in [MS94] are not amenable, hence the general fine structure theory is not applicable
to them. Instead of analyzing Σ1 definability in these structures, the authors introduce the class of rΣ1-formulae,
and investigate Σ1 definability. In a remark on p. 13, though, an alternative coding of the top extender is given
which yields amenable structures. Σ1 definability over these structures corresponds to rΣ1-definability over the
original structures; in [Ste00] the amenable coding is used. So the first projectum corresponds to the classical
one. In the appendix to §2 (p.24ff) of [MS94] it is shown that the n+ 1st projectum in the sense of Mitchell-Steel
coincides with the n+1st classical projectum if the structure is n-sound. Whenever in the Mitchell-Steel approach
fine structural extender-ultrapowers are formed, then the amount of soundness demanded is sufficient to ensure
that the projecta which are relevant for the ultrapower construction coincide with the classical ones. So the
differences in the fine structure are not of high relevance.
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2 Basics on extenders

In this section, I will fix notions and notations concerning extenders. I assume familiarity with
the concept of an extender, though. As references, one can consult [Zem02, P. 47-56] (here, the
focus is on extenders in the functional representation), [Kan94, 352-358] (for the hypermeasure
representation), [MS94, §1] (hypermeasure representation in a fine structural context), [Mit79]
(from here the concept originates).
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2.1 Extenders

The next definition captures the characteristic quantities of extenders used in the Jensen approach
to inner model theory.

Definition 2.1. Let F be an extender in the functional representation on M at 〈κ, γ〉. Then

(a) crit(F ) = κ.

(b) lh(F ) = γ.

(c) λ(F ) = π(κ), where π : M −→F N is the Σ0 extender embedding.3

(d) τ(F ) = (κ+)M .

I need notations for the switch from an extender in hypermeasure representation to the
corresponding extender in the functional representation, and vice versa.

Definition 2.2. Let F be an extender in functional representation at 〈κ, γ〉, where γ is primitive
recursively closed (p.r. closed, for short). Then the extender in hypermeasure representation
derived from F is

F h := {〈a, x〉 | ∃n < ω a ∈ [γ]n ∧ x ⊆ [κ]n ∧ a ∈ F (x)}.

I regard F as a function whose domain is contained in P(κ). Since γ was required to be p.r. closed,
F can be canonically extended to a function whose domain is a subset of

⋃
n<ω P(κn), so that

the above definition makes sense – see [Zem02, P. 48].
E is an extender in hypermeasure representation, if there is an extender F in functional

representation s.t. E = F h. For such an extender E, set:

crit(E) = crit(F ), lh(E) = lh(F ),
λ(E) = λ(F ), τ(E) = τ(F ),

(E)a := {x ⊆ [crit(E)]n | a ∈ F (x)} for a ∈ [lh(E)]n.

Finally, the extender in functional representation derived from E, Ef, is

Ef(x) = {α < lh(E) | x ∈ (E)α}.

Here, x ∈ dom(E) :=
⋃
α<lh(E)((E)α ∪ {crit(E) \ y | y ∈ (E)α}). I identified [κ]1 with κ here.

Definition 2.3. Let F be an extender in functional representation and α an ordinal. Then F |α,
the truncation of F to α, is the function with domain dom(F ), defined by

(F |α)(x) = F (x) ∩ α.

If F is given in hypermeasure representation, then set:

F �α := {〈a, x〉 | 〈a, x〉 ∈ F ∧ a ⊆ α}.

Definition 2.4. Let F be an extender on M at 〈κ, γ〉. Let π : M −→F N be the extender-
embedding. An ordinal δ ∈ N is a generator of F iff there is no function f ∈M with f : κn −→ κ
and there are no ordinals α1, . . . , αn < δ such that π(f)(~α) = δ. I denote the set of generators
of F by genF , and define the support of F to be

s(F ) := lub(τ(F ) ∪ genF );

this quantity is also called the natural length of F . Further, let s+(F ) := (s(F )+)N ; so in the
terminology of Mitchell-Steel, s+(F ) is the length of the trivial completion of F .

3For extenders appearing in weak j-pre-premice (see Definition 3.6), this is equivalent to the definition λ(F ) =
F (κ), since these extenders are whole (in the sense of [Jen97, Chapter 1, p. 14]).
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2.2 Extender Ultrapowers

Again, the following definition’s main purpose is the introduction of some notation. For an
introduction to the formation of extender ultrapowers, the reader may consult the references
given above.

Definition 2.5. Let F be an extender at 〈κ, λ〉 on M . The the Σ0-extender ultrapower of M
by F is defined as follows. Set:

Γ(M,κ) := |M | ∩ (
⋃
n∈ω

κn |M |),

D(M,κ, λ) := {〈~α, f〉 | f ∈ Γ(M,κ) ∧ ∃n < ω dom(f) = κn ∧ ~α ∈ λn}.

If F is given in functional representation, an equivalence relation '0 on D(M,κ, λ) is defined by:

〈~α, f〉 '0 〈~β, g〉 ⇐⇒ ≺~α, ~β� ∈ F ({≺~γ, ~δ� < κ | f(~γ) = g(~δ)});

it should be clear how one proceeds if one uses extenders in hypermeasure representation. Denote
the equivalence class of 〈~α, f〉 as [~α, f ]. Then let

ID(M,F ) := {[~α, f ] | 〈~α, f〉 ∈ D(M,κ, λ)}.

Further, define binary relations I and E on ID(M,F ) by setting:

[~α, f ]I[~β, g] ⇐⇒ 〈~α, f〉 '0 〈~β, g〉,
[~α, f ]E[~β, g] ⇐⇒ ≺~α, ~β� ∈ F ({≺~γ, ~δ� < κ | f(~γ) ∈ g(~δ)}).

Then Ult(M,F ) is isomorphic to 〈ID(M,F ), I, E〉, and its well founded part is transitive. Hence,
Ult(M,F ) is uniquely determined if 〈ID(M,F ), I, E〉 is well founded. I write π : M −→F N to
express that N = Ult(M,F ) and π is the extender embedding.

The construction of the ∗-extender ultrapower is completely analogous. For details, the reader
is referred to [Zem02, Chapter 3] and [Jen97, §2].

Definition 2.6. Let F be an extender at 〈κ, λ〉 on the J-structure M . Then the ∗-extender
ultrapower of M by F (or the fine structural extender ultrapower) is defined as follows. Let
Γ∗(M,κ) to be the set of functions f from κm to |M | (for some m < ω), so that either f ∈ |M |,
or f is a good Σ(n)

1 (M) function, for an n < ω with ωρn+1
M > κ. Now D∗(M,κ, λ), '∗, ID∗(M,F )

are defined like D(M,κ, λ), ', ID(M,F ), respectively, where Γ(M,κ) has to be replaced by
Γ∗(M,κ) always. I write Ult∗(M,F ) for the ∗-extender ultrapower. The notation π : M −→∗F N
then says: N = Ult∗(M,F ), and π is the corresponding embedding.

3 The structures

3.1 Extender structures

Definition 3.1. A model M = 〈JAα , ~B, F 〉 is an extender structure iff 〈JAα , ~B〉 is acceptable and
amenable, and either F is a pre-extender 4 in functional or hypermeasure representation on M
so that (crit(F )+)M exists, or if F = ∅. If F is a pre-extender, M is active, otherwise it is
passive. In the active case, F is called the top extender of M (in short: EMtop). Let κ = crit(F )
and τ = (κ+)M . Further, for ξ ∈ [τ, s(F )], define πξ = πMξ and [M ]ξ, as follows:

4A pre-extender F satisfies all requirements an extender has to fulfill, except that the extender product of M
by F doesn’t have to be well founded. But lh(F ) has to be contained in the well founded part of the extender
product. See [MS94, §1].
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• πξ : 〈JAτ ,
−→

B ∩ |JAτ |〉 −→F |ξ M
′,

• [M ]ξ := 〈M ′, πξ�P(κ)〉,

if this structure is well founded. Otherwise, [M ]ξ is undefined. For ξ, ζ ∈ [τ, s(F )] with ξ < ζ,
so that [M ]ξ and [M ]ζ are defined, there is a canonical embedding

σξ,ζ = σMξ,ζ : [M ]ξ −→ [M ]ζ , defined by σξ,ζ(πξ(f)(~α)) = πζ(f)(~α),

for 〈~α, f〉 ∈ D(JE
M

τ , κ, ξ). Now the maximal continuation M̂ of M is:

M̂ :=

 M if M is passive,
[M ]s(F ) if this structure is defined,
undefined otherwise.

M is called continuable, if M̂ is defined. If M is active and continuable, and M̂ = 〈M ′, F ′〉, then
F ′ is the maximal continuation of EMtop. I write ÊMtop for that extender. I also write Mpassive for
the structure 〈JAα , ~B, ∅〉. Finally, given an active extender structure M , set:

λ(M) = λ(EMtop), s(M) = s(EMtop),
τ(M) = τ(EMtop), κ(M) = crit(EMtop),

and if M is continuable, then let s+(M) = (s(M)+)M̂ , where, as usual, this is the height of M̂
if there is no cardinal above s(M) in M̂ . Call s(M) the natural length of M .

Remark 3.2. It follows from an observation of Sy Friedman that [M ]ξ is always amenable; see
the proof of [Jen97, §1, Lemma 4].

Definition 3.3. Let M = 〈JAα , ~B, F 〉 be an active extender structure, where F is given in
hypermeasure representation. Then the amenable coding F c = F cMpassive of F is defined to be
the set of quadruples 〈γ, ξ, a, x〉 ∈ |M | with the following properties:

1. γ > s(F ).

2. crit(F ) < ξ < crit(F )+M .

3. F ∩ ([s]<ω × JE
M

ξ ) ∈ JE
M

γ .

4. 〈a, x〉 ∈ F ∩ ([γ]<ω × JE
M

ξ ).

I also define (∅)c := ∅.

3.2 pPs-structures

Definition 3.4. Let E = 〈Eβ | β ≤ ωα〉 be a sequence s.t. for β ≤ ωα either Eγ = ∅, or Eγ is
a pre-extender in hypermeasure representation. Set:

A = AE := {〈β, z〉 | z ∈ Eβ}.

If M is a structure of the form 〈JAEδ , ~B〉, then let EM := E�δ.
N is a potential Pseudo-s-structure (pPs-structure), if the following conditions are satisfied,

for a suitable sequence as above:
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1. For γ ≤ α let N ||γ := 〈JAE�γ
γ , (Eωγ)c

J
AE�γ
γ

〉 be the truncation of N to γ. Then N = N ||α.

Moreover, the structure Ñ ||γ := 〈JAE�γ
γ , Eωγ〉 is a continuable extender structure. I will

write [N ||γ]δ, π
N ||γ
δ , σN ||γδ,µ , N̂ ||γ to denote the corresponding objects defined with respect

to Ñ ||γ. Using this convention, I can define: λ(γ)N = λ(N ||γ), τ(γ)N = τ(N ||γ), etc. If
Eγ 6= ∅, then γ = ωγ, and E�γ = EUlt(N ||γ,Eγ)�(γ + 1).

2. If N ||γ is active, then Eγ is a pre-extender of length γ in hypermeasure representation,

and γ = (s(Eγ)+)N̂ ||γ .

3. For γ < α, R∗N ||γ 6= ∅, if N ||γ is acceptable.

Remark 3.5. N ||γ is amenable, for all γ ≤ ωα, as shown in [MS94, p. 13, Remark] or [Ste00,
p. 13-14].

From 3. it follows by induction on γ ≤ α, that N ||γ is acceptable. The proof that L is
acceptable and sound (see [Zem02, Lemma 1.10.1-2]) can be used for this – soundness is more
than needed as induction hypothesis for the proof to go through. Since the general fine structure
theory presupposes acceptability of the structures, so does the notion of a very good parameter
in 3.

3.3 Enhancement Functions

It turned out that the desired correspondence between the Friedman-Jensen and the Mitchell-
Steel style premice does not hold literally. The Friedman-Jensen type premice have to be en-
hanced by an additional predicate. So one has to pass to an expansion of these structures. Such
an expansion alters in general the whole definability analysis of the model, in particular, the
projecta, the reducts, hence the entire fine structure. In this section, a general criterion for when
such an enhancement yields fine structural structures is developed, before defining the concrete
enhancement to work with in the next section.

Definition 3.6. Let Ē = 〈Eγ | γ ≤ ωα〉 be a sequence s.t. for γ ≤ ωα either Eγ is an extender
in functional representation, or Eγ = ∅. If Eγ is an extender, then let γ = ωγ. Set:

E = {〈ν, ξ,X〉 | ξ ≤ ν ≤ ωα ∧ ξ ∈ Eν(X)}.

Then M = 〈JEα , Eωα〉 is a weak Jensen-pre-premouse (weak j-ppm), if the following conditions
are satisfied:

(a) For γ ≤ α let M ||γ := 〈JEγ , Eωγ〉 be the truncation of M to γ. Then M ||γ is a continuable

extender structure, and M ||γ = M̂ ||γ.

(b) For γ < α, R∗M ||γ 6= ∅, if M ||γ is acceptable.5

Set EM = Ē�OnM . I also write s(γ)M , s+(γ)M , etc. for s(M ||γ), s+(M ||γ), etc., if M ||γ is
active.

Lemma 3.7. Let M be an active, weak j-ppm. Then |M | = h1
M (s(M)), in particular ωρ1

M ≤
s(M). Moreover, if µ < ν ≤ ht(M), then s+(µ)M 6= s+(ν)M .

5See the remark concerning item 3 in definition 3.4.
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Proof. Using the top extender of M , it is possible to define without parameters a Σ1-surjection
from D(M,κ(M), s(M)) ⊆ |M ||s(M)| onto |M |: 〈~α, f〉 7→ πMs (f)(~α). Since this result is well
known, I omit the exact analysis of the complexity of this definition – see [Jen97, §1, S. 13]. In
order to see the second part of the claim, note that it follows that (s(µ)M , µ] ∩ CardM ||ν = ∅.
But s+(ν)M ∈ CardM ||ν . So s+(ν)M is either ≤ s(µ)M , or > µ, while s+(µ)M ∈ (s(µ)M , µ].

What has to be done in the following is not just to look at an expansion of one particular
model. Instead, every weak j-ppm has to be assigned its additional predicate. I will in the
following describe a class of functions which I call enhancement functions. It is rich enough for
my purposes, and contains only functions that behave nicely. What matters is that the functions
in question “commute with the formation of fine structural extender ultrapowers”.

Definition 3.8. An enhancement is a function of the form A = 〈AM | M is a weak j-ppm 〉
with the following properties:

(a) (Closure) AM ⊆ {λ ∈M | λ is a limit ordinal ∨ λ = 0} and AM is closed in OnM .

(b) ( Π1−definability) Let M = 〈JEα , Eωα〉. Then AM is uniformly Π1(JEα ).

(c) (Coherency) If ωβ ∈ AM , then AM ∩ ωβ = AM ||β .

Let M = 〈JEα , Eωα〉 be a weak j-ppm. The enhancement associated to M via A is the structure
M∗ = M∗A := 〈JEα , Eωα, AM 〉.

In the following, fix an enhancement A.

Lemma 3.9. Let M be a weak j-ppm. Then M∗A is amenable.

Proof. Let u ∈ M . It must be shown that AM ∩ u ∈ M . Let β = sup{ν | ων ∈ AM ∩ u}. Then
AM ∩ u = AM ||β ∩ u ∈M, since ωβ ∈ AM (by (a)), and since AM is Π1(M ||β) by (b) – the first
identity follows from (c).

Lemma 3.10. Let π : 〈M,AM 〉 −→F 〈N,A〉, N transitive. Then A = AN .

Proof. (1) A ⊆ AN .
Proof of (1). This is because π, being an extender-ultrapower embedding, is Σ1-preserving.
More precisely, let ϕ be the uniform Π1(M)−definition of A, and let Ȧ be a unary predicate
symbol, which is interpreted in M∗ as AM . Then:

M∗ |= ∀x (Ȧ(x) −→ ϕ(x)).

This statement is Π1(M∗). So it is preserved by π, and hence it holds in N∗ := 〈N,A〉. Since ϕ
is a definition of A uniform for weak j-ppm, this means that A ⊆ AN . 2(1)

(2) Let α ∈ AM . Then A ∩ π(α) = AN ∩ π(α).

Proof of (2). This is an immediate consequence of part (c) of definition 3.8. Letting α = ωᾱ,

A ∩ π(α) = π(AM ∩ ωᾱ) = π(AM ||ᾱ) = AN ||π(ᾱ) = AN ∩ π(α)

by (1), as π(α) ∈ A ⊆ AN . 2(2)

If AM is cofinal in OnM , then A is cofinal in OnN , by (2), since π is cofinal. So in this
case, the lemma is clear. So let AM be bounded in OnM . By Definition 3.8, part (a), I can
set: α = maxAM . The statement “α = max Ȧ” is Π1(M∗), so this formula holds in N of π(α).
Because ȦN = A, this shows that π(α) = maxA. Using (1) and (2), it follows that

π(AM ∩ (α+ 1)) = AN ∩ (π(α) + 1).

Moreover, π(AM ∩ (α+ 1)) = π(AM ) = A. So A = AN ∩ (π(α) + 1). Thus, it suffices to show:
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(3) AN ⊆ π(α) + 1.

Proof of (3). Assume the contrary. Let β be minimal s.t. π(α) < ωβ ∈ AN . Set:

Z := {ξ | π(ξ) ≤ β} and β̄ := supZ.

(3.1) π(β̄) > β.

Proof of (3.1). First, I am going to show that π(β̄) 6= β. To see this, assume that π(β̄) = β.
Then π(ωβ̄) = ωβ ∈ AN , i.e. N |= ϕ[ωβ̄], and this implies by the preservation properties of π
that M |= ϕ[ωβ̄], hence ωβ̄ ∈ AM . But then ωβ̄ ≤ α, i.e. ωβ = π(ωβ̄) ≤ π(α), contradicting our
choice of β.

Now assume that π(β̄) ≤ β, hence, by the above, π(β̄) < β. Then π(β̄ + 1) = π(β̄) + 1 ≤ β,
so β̄ + 1 ∈ Z. But β̄ = supZ, hence β̄ + 1 ≤ β̄, a contradiction. 2(3.1)

(3.2) AN ∩ ωπ(β̄) ⊆ AN ||π(β̄).

Proof of (3.2). This is trivial, as ϕ is a uniform Π1-definition of A which doesn’t use the top
extender predicate. Hence, Π1−reflection can be applied. 2(3.2)

Now, ωβ < ωπ(β̄) and ωβ ∈ AN . So, ωβ ∈ AN ∩ ωπ(β̄) ⊆ AN ||π(β̄), by (3.2). Since
π(α) < ωβ ∈ AN ||π(β̄) it follows that

N |= (∃γ > π(α) ϕ(γ))
π(JE

M

β̄
)
.

This formula is Σ0 in π(α) and π(JE
M

β̄
). Hence, it follows that

M |= (∃γ > α ϕ(γ))
JE

M

β̄

.

So let α < γ ∈ AM ||β̄ . It then follows that π(γ) ∈ AN ||π(β̄), and that π(α) < π(γ). Since
JE

N

β ⊆ JE
N

π(β̄)
, I can again apply Π1 reflection to see that ωβ ∩ AN ||π(β̄) ⊆ AN ||β . But since

ωβ ∈ AN , it follows that AN ||β = AN ∩ ωβ. Now, γ ∈ AM ||β̄ . So γ is a limit ordinal. Let
γ = ωγ′. Then γ′ < β̄. So π(γ′) ≤ β, because β̄ = supZ. But π(γ′) 6= β, since ωγ′ = γ > α, so
that ωγ′ /∈ AM , but ωβ ∈ AN . Hence, it follows that π(γ′) < β, and hence, π(γ) = π(ωγ′) < ωβ.

So we get: π(α) < π(γ) < ωβ ∩ AN ||π(β̄) ⊆ AN ||β = ωβ ∩ AN . But this contradicts the
minimality of ωβ with the property that π(α) < ωβ ∈ AN , because π(γ) has this property too,
and π(γ) < ωβ.

Note that the proof used only that π is cofinal and Σ0-preserving.

Lemma 3.11. Let M be a weak j-ppm, and let π : 〈M,AM 〉 −→∗F 〈N,A〉 or π : 〈M,AM 〉 −→F

〈N,A〉. Let N be transitive. Then A = AN .

Proof. If π is a Σ0-extender embedding, then lemma 3.10 gives the claim. Otherwise, π is even
Σ2-preserving, because ωρ1

M > crit(F ) (now [Zem02, Lemma 3.1.11] can be applied). So the
claim is a consequence of the uniform Π1 definability of AM .

Lemma 3.12. Let N be a weak j-ppm. Let π : 〈M,A〉 −→Σ1 〈N,AN 〉, M transitive. Then M
is a weak j-ppm, and A = AM .

Proof. It suffices to show that A = AM ; that M is a weak j-ppm is well known. For this, two
directions have to be shown: If a ∈ A, then π(a) ∈ AN , i.e., N |= ϕ[a], where ϕ is a uniform Π1

definition of AN . Hence, it follows that M |= ϕ[a], and this means by uniformity of the definition
that a ∈ AM . Vice versa, if a ∈ AM , then M |= ϕ[a], hence N |= ϕ[π(a)]. By uniformity of ϕ
it follows that π(a) ∈ AN , i.e.: 〈N,AN 〉 |= Ȧ(π(a)), where Ȧ is a symbol for AN . Since π is an
embedding, 〈M,A〉 |= Ȧ(a), and this means a ∈ A.
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3.4 pPλ-structures

In this section I will describe the enhancement function which will yield the expanded weak
j-ppm corresponding to s-structures. I will also derive some of its basic properties.

Definition 3.13. Let M be a weak j-ppm. Then let DM be the set defined by:

DM := {τ ∈M | (Lim(τ) ∨ τ = 0) ∧
¬(∃ν ∈M EMων 6= ∅ ∧ s+(ν)M < τ ≤ ν)}.

For ν, γ ≤ ht(M), say that ν hides γ in M iff M ||ν is active and s+(ν)M < γ ≤ ν. So DM

consists of 0 and those limit ordinals of M that are not hidden by any ν < ht(M).

Lemma 3.14. The function 〈DM |M is a weak j-ppm 〉 is an enhancement.

Proof. Letting M be a weak j-ppm, let’s verify properties (a)-(c) of Definition 3.8:
Closure: Let τ ∈ M be a limit point of DM . Assume τ not to be an element of DM . Then let
ν ∈ M have the property that s+(ν)M < τ ≤ ν. As τ is a limit point of DM , we can choose
τ̄ in such a way that s+(ν)M < τ̄ ∈ DM ∩ τ . But then s+(ν)M < τ̄ < ν, hence τ̄ /∈ DM , a
contradiction.
Π1−definability: By definition, τ belongs to DM iff the following formula holds in M :

(Lim(τ) ∨ τ = 0) ∧ ∀ν ∀x(x = 〈JE
M

ν , EMν 〉 is active → ((τ ≤ s+(ν))x ∨ τ /∈ x)).

Since ”x = 〈JEMν , EMν 〉“ is Σ1(M), this definition is clearly Π1.
Coherency: Let ωβ ∈ DM . It has to be shown that ωβ∩DM = DM ||β . The direction from left to
right is trivially satisfied: One just has to apply Π1−reflection, since the uniform Π1−definition
of DM makes no use of the top extender predicate. Suppose the other direction of this inclusion
fails. Pick τ ∈ DM ||β \DM . Since τ /∈ DM , ν can now be chosen so that s+(ν)M < τ ≤ ν. It
follows that ν ≥ ωβ, because otherwise we would get that s+(ν)M = s+(ν)M ||β , which implies
that τ is not an element of DM ||β . But then s+(ν)M < ωβ ≤ ν, so ωβ /∈ DM , a contradiction.

Definition 3.15. A potential Pseudo-λ-structure (pPλ-structure) is a structure of the form
〈M,DM 〉, where M is a weak j-ppm, and for every α < ht(M), R∗〈M ||γ,DM||γ〉 6= ∅. For a pPλ-
structure P = 〈M,DM 〉 let P− := M , and for α < ht(M) let P ||α = 〈M ||α,DM ||α〉. Finally,
I use the notations ht(P ), EPtop, λ(P ), etc. for ht(P−), EP

−

top , λ(P−), etc. In connection with
pPλ-structures I will use a language with an additional predicate symbol Ḋ, and interpret it by
ḊP = DP .

Lemma 3.16. Let M be a pPλ-structure, α ∈ OnM a limit ordinal and α /∈ DM . Then there is a
maximal ν ∈M such that s+(ν)M < α ≤ ν. This ν has the additional property that ν+ω ∈ DM ,
if ν + ω ∈M .

Proof. By definition of DM there is a ν ∈ M which hides α. To see that there is a maximal ν
with this property, note that if ν < ν′ and both hide α, it follows that

s+(ν′)M < s+(ν)M ,

since s+(ν′)M ∈ α ∩ CardM ||ν
′

and (s(ν)M , ν] ∩ CardM ||ν
′

= ∅, because ωρ1
M ||ν ≤ s(M ||ν); see

Lemma 3.7. So an increasing ω-sequence of ordinals hiding α would yield a descending ω-sequence
of ordinals. So let ν ∈ M be maximal hiding α. Suppose ν + ω /∈ DM . Then let ν′ hide ν + ω.
Then ν′ hides α too, for the above reason. This contradicts the maximality of ν.
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Lemma 3.17. Let M be a pPλ-structure s.t. ht(M) is a limit ordinal. Then DM is closed and
unbounded in OnM .

Proof. This is an immediate consequence of Lemma 3.16.

Definition 3.18. For a pPλ-structure M , let 〈ηMξ | ξ < otp(DM )〉 be the monotone enumeration
of DM .

Lemma 3.19. Let M be a pPλ-structure and ξ + 1 < otp(DM ). Then:

(a) If ηMξ = s+(ν)M , for some ν ∈M , then ηMξ+1 = ν + ω.

(b) If ηMξ 6= s+(ν)M for all ν ∈M , then ηMξ+1 = ηMξ + ω.

Proof. Set α := ηMξ . First let α = s+(ν)M for a (unique) ordinal ν ∈ M . Then obviously,
(α, ν] ∩DM = ∅, as all elements of this interval are hidden by ν. I show now:

(∗) ν is the maximal ordinal hiding α+ ω.

Proof of (∗). Suppose ν′ > ν and ν′ hides α + ω. Then s+(ν′)M ≤ s(ν)M < α < ν′, as
(s(ν)M , ν] ∩ CardM ||ν

′
= ∅. So α is hidden by ν′, i.e., α /∈ DM . 2(∗)

So by Lemma 3.16, ν + ω ∈ DM , and hence ηMξ+1 = ν + ω. Now let α 6= s+(ν)M for all
ν ∈ M . Again, (α, α + ω) ∩ DM = ∅. It remains to be shown that α + ω ∈ DM . Assume the
contrary. Then let ν hide α + ω. Since s+(ν)M is a cardinal in M ||ν and s+(ν)M < α + ω, it
follows that s+(ν)M ≤ α. But by assumption, s+(ν)M 6= α, so s+(ν)M < α. But then ν hides
α, contradicting that α ∈ DM .

Lemma 3.20. Let M be a pPλ-structure and s+ = s+(γ)M ∈ DM (γ ≤ ht(M)). Then s+ is a
limit point of DM .

Proof. Otherwise it would be the case that s+ = ηMξ+1 for some ξ. Since s+ is a cardinal in M ||γ,
s+ 6= α+ ω (s+ > ω). But by Lemma 3.19, every ηMξ+1 is of the form α+ ω for some α. Hence,
s+ 6= ηMξ+1.

Lemma 3.21. Let M be a pPλ-structure. Then the sequence 〈ηMξ | ξ < otp(DM )〉 is a Σ1(M)-
function.

Proof. The idea is of course to define ηM by: γ = ηMξ ⇐⇒ M |= ∃f (ψ(f)∧ γ = f(ξ)), where

ψ = (“f is a function” ∧ dom(f) ∈ On ∧
∀α ∈ dom(f) (Ḋ(f(α)) ∧

(∀δ < α f(α) > f(δ)) ∧
(∀µ < f(α)∃ν < α (Ḋ(µ)→ µ = f(ν))))).

Obviously then, ψ is a Σ0−formula, and hence the formula defining ηM is Σ1, as wished. I
show by induction on µ that there are arbitrarily long proper initial segments of ηM ||µ in M ||µ,
finishing the proof. If this holds for µ, this means in particular that ηM ||µ is Σ1(M ||µ) (even
without using the top extender predicate). In the successor step this is easy to see, since

ηM ||µ+1 =


ηM ||µ ∪ {〈ωµ,dom(ηM ||µ)〉} If M ||µ is passive,
ηM ||µ If M ||µ is active and

s+(µ)M = µ,
ηM ||µ�otp(DM ) If M ||µ is active and

s+(µ)M < µ.
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We know that ηM ||µ ∈M ||µ+ 1, because it is definable in M ||µ.
At limit stages λ, by Lemma 3.17, DM is unbounded in OnM , and hence it follows from

coherency of DM that

DM ||λ =
⋃

ωµ∈DM

DM ||µ, and hence ηM ||λ =
⋃

ωµ∈DM

ηM ||µ.

Again, the inductive hypothesis gives: ηM ||µ ∈M ||(µ+ 1) ⊆M ||λ for µ < λ by definability.

Definition 3.22. Let M = 〈JEα , F 〉 be a weak j-ppm. Set:

D∗M :=
{
DM if F = ∅,
DM \ (s+(α)M , α) otherwise.

So if N = 〈JEα+1, ∅〉 and M = N ||α, then D∗M = DN ∩ ωα.

Definition 3.23. For two pPλ-structures (or j-ppm) M and N let the relation <0 be defined
by:

M <0 N ⇐⇒ M = Npassive 6= N ∨ ∃β < ht(N) M = N ||β.

Obviously, <0 is well founded, since M <0 N <0 N
′ =⇒ M ∈ N ′.

Lemma 3.24. For every weak pPλ-structure (or j-ppm) M , M = h1
M (D∗M ).

Proof. I prove the lemma by <0-induction on M . Let D∗M ⊆ X and M |X ≺Σ1 M . I must show
that X = M . The base case M = 〈∅, ∅, ∅〉 (this triple stands for 〈|M |, EM , EMtop〉) is clear.

Case 1: M is a <0-successor.
Case 1.1: M = 〈JEα+1, ∅〉.
Then D∗M = DM and D∗M ||α = DM ∩ ωα.
Case 1.1.1: M ||α is active.
Then ωα = α. We have: D∗M ||α ⊆ DM ⊆ X.

(1) α ∈ X.

Proof of (1).
Case 1: s+(α)M = α.
Then DM = D∗M = D∗M ||α ∪ {ωα}, hence obviously α ∈ D∗M ⊆ X.
Case 2: s+(α)M < α.
Then s+(α)M = max(D∗M ||α), and D∗M ||α = DM = D∗M . Hence s := s+(α)M ∈ D∗M ⊆ X.

We have:
M |= ∃x∃µ x = M ||µ ∧ (s = s+(µ))x.

This statement is Σ1 in s, hence valid in M |X as well. Let x and µ be elements of X witnessing
this. Then x = M ||µ, hence s = s+(µ)M = s+(α)M , and hence µ = α ∈ X. I used Lemma 3.7
here. 2(1)

(2) (M ||α)|X ≺M ||α.

This is an immediate consequence of the fact that α ∈ X. Firstly, it follows that M ||α, being Σ1-
definable from α, is an element of X. In order to show that (M ||α)|X ≺M ||α, I verify Tarski’s
criterion. So let M ||α |= (∃y ϕ)[a1, . . . , an], where ϕ is some formula and ~a ∈ X∩|M ||α|. Then

M |= (∃y y ∈ |M ||α| ∧ ϕM ||α)[~a].
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Since “(y ∈ M ||α ∧ ϕM ||α)(y)[~a]” is a Σ0−formula in the parameters M ||α, a1, . . . , an ∈ X and
M |X ≺Σ1 M , it follows that there is a b ∈ X so that

M |= (b ∈ |M ||α| ∧ ϕM ||α[b, a1, . . . , an]).

Hence b ∈ X ∩ |M ||α|, and since the above formula is Σ0 and M is transitive, it follows that
M ||α |= ϕ[b, a1, . . . , an], so that b verifies the Tarski criterion. 2(2)

Since D∗M ||α ⊆ DM = D∗M ⊆ X, it follows inductively that |M ||α| ⊆ X. But since M ||α ∈ X
as well, it follows that M ⊆ X ⊆ M , because |M | = rud E�ωα,Eωα(|M |), and because every
function rudimentary in E�ωα, Eωα is Σ0 in E�ωα, Eωα.

Case 1.1.2: M ||α is passive.
Then ωα ∈ DM , since there can be no ν ∈ M with s+(ν)M < ωα ≤ ν, because if there

were, then it would have to be the case that ν = α, but α indexes no extender in M . Hence
ωα ∈ D∗M ⊆ X, and one can argue as in case 1.1.1.

Case 1.2: M = 〈JEα , F 〉, F 6= ∅.
Then D∗M = DM \ (s+(α)M , α). So if s+(α)M = α, then D∗M = DM = D∗Mpassive ⊆ X.

Obviously, Mpassive|X ≺Σ1 M
passive, and it follows in this case inductively that X = |Mpassive| =

|M |.
Now let s+(α)M < α. Then s+(α)M ∈ D∗M ⊆ X. So the proof of (2) shows:

(M ||s+(α)M )|X ≺M ||s+(α)M .

By coherency, DM ||s+(α)M = DM ∩s+(α)M = D∗M ∩s+(α)M . Hence it follows that DM ||s+(α)M ⊆
X, and the induction hypothesis can be applied in order to deduce that |M ||s+(α)M | ⊆ X. In
particular, s+(α)M ⊆ X. But M = h1

M (s+(α)M ) – in fact, we even know that M = h1
M (s(α)M );

see Lemma 3.7. Hence |M | ⊆ X.
Case 2: M is a limit point of <0.
Then M = 〈JEλ , ∅〉, where λ is a limit. For ωα ∈ DM = D∗M ,

DM ||α = D〈JEα ,∅〉 = DM ∩ ωα

and ωα ∈ X, hence (M ||α)|X ≺M ||α (see (2)), where D∗M ||α ⊆ DM ||α ⊆ X, hence by induction
hypothesis, |M ||α| ⊆ X. This holds whenever ωα ∈ DM . But by Lemma 3.17, DM is unbounded
in OnM , and hence |M | ⊆ X, which is what was to be shown.

Corollary 3.25. Let M be a pPλ-structure. Then ρ1
M ≤ otp(D∗M ).

Proof. By Lemma 3.21, the monotone enumeration of DM is a Σ1(M)-function, so this is true
in particular for the monotone enumeration of D∗M , since this is an initial segment of DM . So
D∗M ⊆ h1

M (otpD∗M ). But by Lemma 3.24, h1
M (D∗M ) = |M | (this is even true for M−), hence the

claim follows because h1
M (D∗M ) ⊆ h1

M (otp(D∗M )), since then we have a Σ1(M)-surjection from
ω · otp(D∗M ) onto |M |.

Corollary 3.26. Let M be a pPλ-structure. Then h1
M (otp(D∗M )) = |M |. If M is active, then

h1
M (∪otp(D∗M )) = |M |.

Proof. That h1
M (otp(D∗M )) = |M | follows from the identity h1

M (D∗M ) = |M |, using the fact that
ηM is Σ1(M) – see the proof of Lemma 3.25. Now let M be active. If s+(M) = ht(M), then
D∗M = DM is unbounded in M . So since Mpassive is a ZF−-model, it follows that otp(D∗M ) =
ht(M), hence a limit ordinal. So in this case, otp(D∗M ) = ∪otp(D∗M ), and we’re done.

So let’s suppose that s+(M) < ht(M). Then s+(M) = max(D∗M ), because s+(M) ∈ DM (as
s+(M) is a cardinal in M). Hence by Lemma 3.20, s+(M) is a limit point of DM , and hence of
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D∗M . Now let ξ ∈ D∗M be chosen in such a way that s(M) ≤ ξ < s+(M). Then s+(M) is the
least cardinal in M greater than ξ. As s+(M) < ht(M), it follows that s+(M) < λ(M), and λ is
a cardinal of M that surely is an element of h1

M (D∗M ∩ s+(M)) (because λ = EMtop(crit(EMtop))).
Using λ and ξ, we can now define s+ in a Σ1 way: It is the least cardinal of JE

M

λ greater than ξ.
Hence s+(M) ∈ h1

M (D∗M \ {s+(M)}). This means that h1
M (D∗M ) = h1

M (D∗M \ {s+(M)}) = |M |,
and this yields the second part of the claim immediately, again using the fact that the monotone
enumeration of DM is Σ1(M).

3.5 The s′-initial segment condition

Because the extenders appearing in pPλ- and pPs-structures are indexed differently, and because
the index is essential for the choice of the extenders applied in coiterations, it follows that if one
translates coiterations of pPs-structures into coiterations of pPλ-structures, the outcome will be
iterations which are not necessarily normal in the sense of λ indexing. So a modified notion of
normality will be used on the λ-side, which imitates the way normal iterations on the s-side are
formed. Such a notion has been developed by Jensen already, and these iterations are called
s-iterations. The idea is that every extender appearing in the sequence of a Jensen-premouse is
assigned an additional iteration index which determines to which model in an iteration tree the
extender must be applied. These s-iterations call for an appropriate initial segment condition
which is preserved by them, which guarantees that coiterations terminate, and which is not
unduly restrictive.

This condition has to satisfy two requirements that are tightly connected to the notion of
a normal iteration. Firstly, it must guarantee that the coiteration (which is normal) of two
coiterable structures terminates. The second requirement is really contained in the first one: As
the argument showing that coiterations terminate is applied to normal iterates of the premice
involved, the initial segment condition must be preserved under normal iterations.

I am first aiming at finding a tailor-made minimal initial segment condition. It is a slight
modification of the variant given in [Jen01].6 First, a definition is needed, though.

Definition 3.27. Let F be a pre-extender in functional representation. Then ξ is a cutpoint of
F iff ξ = s(F |ξ).7

Definition 3.28. Let M be an active extender structure. M satisfies the minimal s′-initial
segment condition (s′-MISC), iff, letting F := EMtop, for every cutpoint ξ ∈ [τ(F ), s(F )) of F ,
(ξ+)M 6= (ξ+)[M ]ξ .

If M satisfies the s′-MISC, then obviously, (ξ+)M > (ξ+)[M ]ξ . Modulo the modification of
the minimal s-ISC, the s-ISC itself remains practically unchanged, compared to [Jen01, Chapter
1, p. 4] – only the broader context of pPs-structures leads to a more general formulation:

Definition 3.29. Let M be a potential Pseudo-λ- or s-structure. The s′-initial segment con-
dition (s′-ISC) for M says that for every α ≤ ht(M) with F = EMα 6= ∅ and each cutpoint
ξ ∈ [τ(F ), s(F )) of F ,

(a) If [M ||α]ξ satisfies the s′-MISC, then [M ||α]ξ ∈ M̂ ||α.

(b) If [M ||α]ξ satisfies the s′-MISC and ξ′ ∈ [τ(F ), ξ) is such that [M ||α]ξ′ satisfies the s′-MISC,
then [M ||α]ξ′ ∈ [M ||α]ξ.

6The modification was necessary since I was looking for an ISC which is a consequence of the present version
of Steel’s ISC from [Ste00, Def.2.4., item 3].

7In order to avoid possible confusions, I maybe should have referred to these ordinals as s-cutpoints. But since
only this kind of cutpoints will play a role, I opted for a somewhat slicker terminology.
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Definition 3.30. Let M be an active extender structure. Set:

CM = {ξ | τ ≤ ξ < s(M), ξ is a cutpoint of EMtop

and [M ]ξ satisfies the s′-MISC }.

3.6 Potential λ- and s-structures

Definition 3.31. A potential λ-structure (pλ-structure) is a potential Pseudo-λ-structure, that
satisfies the s′-ISC. Analogously, a potential s-structure (ps-structure) is a potential Pseudo-s-
structure that satisfies the s′-ISC.

Now I will introduce the different types of structures, which are most important in connection
with pPs-structures.

Definition 3.32. Let M be an active pPs- or pPλ-structure. Then M is of...

...type I iff s(M) = τ(M),
...type II iff s(M) = ξ + 1 for some ξ,

...type III iff τ(M) < s(M) is a limit ordinal.

3.7 Σ0-codes

In the following, the Σ0-codes of the structures involved will be introduced. I follow [Ste00, Def.
2.11], but will need several variants of the codes defined there. First, I am going to define the
Pseudo-Σ0-codes of pPs- and pPλ-structures.

Definition 3.33. Let L be the language of set theory with additional symbols Ė, Ḟ , κ̇ and ṡ.
Let N = 〈JEα , F 〉 be a pPs-structure. Then its Pseudo-Σ0-code, C̃0(N), is an L-structure, which
is defined as follows:

1. If N is passive, then C̃0(N) has the universe |JEα |, κ̇C̃0(N) = ṡC̃0(N) = 0, ĖC̃0(N) = E�α and
Ḟ C̃0(N) = ∅.

2. If N is active of type I or II, then C̃0(N) has the universe |JEα | again, but in that case,
κ̇C̃0(N) = crit(F ), ṡC̃0(N) = s(F ), ĖC̃0(N) = E�ωα and Ḟ C̃0(N) = F .

3. If N is active of type III, then the universe of C̃0(N) is |N̂ |, κ̇C̃0(N) = crit(F ), ṡC̃0(N) = 0,
ĖC̃0(N) = EN̂�ht(N̂) and Ḟ C̃0(N) = EN̂top.

In addition, I define C̃0(N)sq, the squashed-Pseudo-Σ0-code of N , as follows: If N is passive
or active of type I or II, then C̃0(N)sq = C̃0(N). If, on the other hand, N is active of type
III, then let s = s(F ). The universe of C̃0(N)sq is then |JEs |, κ̇C̃0(N)sq

= crit(F ), ṡC̃0(N)sq
= 0,

ĖC̃0(N)sq
= E�s and Ḟ C̃0(N)sq

= F h�s = {〈α,X〉 | α ∈ (F f(X)) ∩ s}.8
Analogously, I define C̃0(N̂) as follows.

1. If N is passive, then C̃0(N̂) = C̃0(N).

8In accordance with [Ste00] one really would have to define:

Ḟ C̃0(N)sq = {〈a,X〉 | ∃n < ω a ∈ sn ∧X ⊆ [κ̇C̃0(N)sq ]n ∧ a ∈ F f(X)}.

But the above coding doesn’t contain less information and is easier to work with.
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2. If N is active of type I or II, then C̃0(N̂) has universe |N̂ |, and I set: κ̇C̃0(N̂) = crit(F ),
ṡC̃0(N̂) = s(F ), ĖC̃0(N̂) = EN̂�ht(N̂) and Ḟ C̃0(N̂) = EN̂top .

3. If N is active of type III, then C̃0(N̂) = C̃0(N).

Here are the corresponding codes for (Pseudo)-λ-structures:

Definition 3.34. Let L̃ be the language of set theory with additional symbols Ḋ, Ė, Ḟ , κ̇ and
ṡ. Let M = 〈JEα , F,DM 〉 be a pPλ-structure. Then its Pseudo-Σ0-code, C̃0(M) is the L̃-structure
defined as follows. The universe of C̃0(M) is |C̃0(M)| = |JEα | and ḊC̃0(M) = DM , and

1. If M is passive, then κ̇C̃0(M) = ṡC̃0(M) = 0, ĖC̃0(M) = E�ωα and Ḟ C̃0(M) = ∅.

2. If M is active of type I or II, then κ̇C̃0(M) = crit(F ), ṡC̃0(M) = s(F ), ĖC̃0(M) = E�ωα and
Ḟ C̃0(M) = F .

3. If M is active of type III, then κ̇C̃0(M) = crit(F ), ṡC̃0(M) = 0, ĖC̃0(M) = E�ωα and
Ḟ C̃0(M) = F .

It is shown in the second part of this paper that for every pPλ-structure M of type II, the
set CM has a maximum. With the proofs given there it follows that the same is true for pPs-
structures. Alternatively, one may apply Lemma 4.16 in order to prove this for every ps-structure
which has a Λ-image. Finally one shows that every pPs-structure has an image. So I can define:

Definition 3.35. For a pPλ- or pPs-structure M of type II, let qM := F |maxCM .

Remark 3.36. For a pλ-structure M of type II, qM ∈M , as M satisfies the s′-ISC, which implies
that even [M ]maxCM ∈M . Correspondingly, for a ps-structure N of type II, qN ∈ N̂ .

In order to make sure that transitivized Σ1-elementary submodels of pλ-structures satisfy the
s′-ISC, in the case of an active type II pλ-structure M , I have to demand that qM be an element
of the submodel. For this reason, it is frequently convenient to work with structures equipped
in this case with the constant q̇M = qM . This way, one arrives at the Σ0-code of potential
λ-structures. In the case of active s-structures N of type II, the additional complication arises
that qN may be an element of |N̂ | \ |N |. In order to deal with this problem, I follow [Ste00,
p. 14-15] in a form suitable for the present context.

Definition 3.37. Let M be an acceptable, amenable J-structure and F an extender on M . Let
κ = crit(F ) and τ = (κ+)M . Let

Γ′(M,F ) =
⋃
n<ω

{〈a, f〉 | f : [κ]n −→ |M | ∧ f ∈ |JE
M

τ | ∧ a ∈ [lh(F )]n}.

Define a well order ≺M on Γ′(M,F ) as follows:

〈a, f〉 ≺M 〈b, g〉 ←→ f <M g ∨ (f = g ∧ a <lex b).

Here, <M is the canonical Σ1-well order of M .

Definition 3.38. Let L∗ be the language of set theory with additional symbols Ė, Ḟ , κ̇, ṡ and
q̇. Let N = 〈JENα , F 〉 be a potential s-structure. Then its Σ0-code, C0(N), is the L∗-structure
defined as follows:

1. If N is passive or active of type I or III, then C0(N) is defined like C̃0(N), where, in addition,
q̇C0(N) = ∅.
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2. If N is active of type II, then, again, C0(N) is defined like C̃0(N), with the addition that
q̇C0(N) is defined as follows.

q̇C0(N) := the ≺N -minimal pair 〈a, f〉 ∈ Γ′(N) with the property that
πNs(N)(f)(a) = EN̂top|η, where η = max(CN ).

The squashed Σ0-Code C0(N)sq is defined correspondingly, as follows: If N is passive or active
of type I or II, then C0(N)sq = C0(N). If, on the other hand, N is active of type III, then C0(N)sq

is defined like C̃0(N)sq, with the addition that q̇C0(N)sq
= ∅.

Analogously, I define C0(N̂) as follows:

1. If N is passive or active of type I or III, then C0(N̂) is defined like C̃0(N̂), with the addition
that q̇C0(N̂) = ∅.

2. If N is active of type II, then C0(N̂) is defined like C̃0(N̂), with the addition that

q̇C0(N̂) = qN̂ = EN̂top|η, where η = maxCN .

Again, the corresponding codes for potential λ-structures are needed.

Definition 3.39. Let L̃∗ be the language of set theory with additional symbols Ḋ, Ė, Ḟ , κ̇, ṡ and
q̇. Let M = 〈JEMα , F 〉 be a potential λ-structure. Then its Σ0-code, C0(M), is the L̃∗-structure
defined as follows:

1. If M is passive or active of type I or III, then C0(M) is defined like C̃0(M), with the addition
that q̇C0(M) = ∅.

2. If M is active of type II, then C0(M) is defined like C̃0(M), with the addition that q̇C0(M) :=
qM .

3.8 (Pseudo-)λ- and (Pseudo-)s-structures

Now I can finally define the structures that will be the protagonists.

Definition 3.40. A Pseudo-λ-structure (Pλ-structure) is a potential Pseudo-λ-structure M
with the property that for every α < ht(M), the structure C̃0(M ||α) is sound and 1-solid.9

Analogously, a Pseudo-s-structure (Ps-structure) is a potential Pseudo-s-structure N with the
property that for every α < ht(M), the structure C̃0(N ||α) is sound and 1-solid. The definition
of s- and λ-structures is like that of Ps- and Pλ-structures, with C̃0 replaced by C0, and with the
addition that the s′-ISC must be satisfied.10

4 The Translation Functions

In this section, I am going to define the functions S and Λ that map potential Pseudo-λ-structures
to potential Pseudo-s-structures and vice versa.

9In the literature, this property is often referred to as solid above ωρ1M . For a definition, see 8.15.
10If Q is an active pλ- or ps-structure of type III that is sound, then Q is 1-solid, because in this case,

pQ,1 = p0Q = ∅. This is shown in the second part of this paper. So one wouldn’t have to explicitly demand

1-solidity of active type III-segments of λ- or s-structures. The s′-ISC is essential for this argument, though. The
corresponding statement need not be true for Pλ- or Ps-structures.
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4.1 From pPλ-structures to pPs-structures...

Definition 4.1. S(M) is defined for potential Pseudo-λ-structures M by <0 −recursion (see
Definition 3.23) as follows:

Case 1: M = 〈∅, ∅, ∅, ∅〉.
Then S(M) = 〈∅, ∅, ∅〉.
Case 2: M = 〈JEα+1, ∅, D〉.
Assume S(M ||α) = 〈JE′α′ , E′ωα′〉. Let F be the pre-extender in hypermeasure-representation

with the property that E′ωα′ = F c, if Eωα 6= ∅. Otherwise, let F = ∅. Now let Ẽ = E′∪{〈F, α′〉}
and set S(M) = 〈JẼα′+1, ∅〉, if this is a pPs-structure.11In the future, I shall write for this:
S(M) = S(M ||α) + 1. If 〈JẼα′+1, ∅〉 is not a pPs-structure, then S(M) remains undefined.

Case 3: M = 〈JEα , F,DM 〉, where F 6= ∅.
Then S(M) is defined if

(a) S(〈JEα , ∅, DM 〉) = 〈JE′α′ , ∅〉 for some E′, α′.

(b) |JE′α′ | = |JEα | (in particular, α = α′).

(c) Let κ = crit(F ) and τ = (κ+)M . Then Ult(JE
′

τ , F ) = JE
′

α′ , and E′s+(α)M = ∅.

If these conditions are satisfied, then, letting s+ := s+(α)M , I define

S(M) = 〈JE
′

s+(α)M , ((F |s
+)h)c

JE
′

s+
〉,

otherwise S(M) remains undefined.
Case 4: M = 〈JEα , D, ∅〉, where α is a limit ordinal.
Then S(M) is defined if the following hold:

(a) For β < ht(M), S(M ||β) is defined and a potential Pseudo-s-structure.

(b) For ωβ, ωβ′ ∈ DM with β < β′, it follows that S(M ||β) <′ S(M ||β′), that is, ht(S(M ||β)) <
ht(S(M ||β′)) and ES(M ||β)�OnS(M ||β) = ES(M ||β′)�OnS(M ||β).

If these conditions are satisfied, set S(M) :=
⋃
ωβ∈DM S(M ||βpassive) in the obvious sense, i.e.,

E′ =
⋃
ωβ∈DM ES(M ||β), α′ =

⋃
ωβ∈DM ht(S(M ||β)), and S(M) = 〈JAE′α′ , ∅〉; for the definition of

AE′ , see Definition 3.4. Otherwise, S(M) remains undefined.

Remark 4.2.

1. Let M be active, α = ht(M), and S(M) be defined. In the notation of Definition 4.1, case
3, we then have |Ŝ(M)| = |JE′α′ | = |JEα | = |M | because of (b) and (c).

2. If N = S(M) is defined, then N is a pPs-structure. In case 2 of the above definition, this
was explicitly demanded. It follows that this is true in case 4 as well, and in case 3 the
only additional condition that must be satisfied is coherency. But this follows, using (b)
and (c), from case 3 – see Def. 3.4.

3. If M is a passive pPλ-structure of limit height, so that for all M̄ <0 M , S(M̄) is defined,
then the conditions (a) and (b) from case 4 are met, i.e. S(M) is defined.

11In order to make the definition more readable, I don’t distinguish between E and AE here.
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Proof of 3. Condition (a) follows from observation 2. It remains to verify weak monotonicity
(b). Firstly, it is easy to see that ht(S(M)) ≤ ht(M), if S(M) is defined. Now it suffices to show
for an arbitrary pPλ-structure M :

If S(M) is defined, then for β < β′ with ωβ, ωβ′ ∈ DM : S(M ||β) <′ S(M ||β′).
Assume the contrary. Then let M be a <0-minimal counterexample. Obviously M 6=

〈∅, ∅, ∅, ∅〉. Let M = 〈JEµ , F,D〉.
Case 1: µ = µ̄+ 1.
Let β < β′, ωβ, ωβ′ ∈ D, and set M̄ = M ||µ̄.
Case 1.1: M̄ is active and s+ := s+(M̄) < µ̄.
In this case, D = DM̄ ∩ (s+ + 1). Hence ωβ, ωβ′ ∈ DM̄ . I.e., by minimality of M , S(M ||β) =

S(M̄ ||β) <′ S(M̄ ||β′) = S(M ||β′), so M was not a counterexample after all.
Case 1.2: Case 1.1 fails.
Then D = DM̄ ∪ {ωµ̄}. If ωβ′ < ωµ̄, then one can again use minimality of M as in Case 1.1.

So let ωβ′ = ωµ̄. As ωβ < ωβ′, it follows that ωβ ∈ DM̄ . Now two subcases are needed in order
to capture every possibility of the definition of S(M̄) = S(M ||µ̄):

Case 1.2.1: µ̄ = µ̃+ 1.
If ωµ̃ ∈ DM ||µ̄, then

S(M ||β) ≤′ S(M ||µ̃) <′ S(M ||µ̄) = S(M ||β′),

as is immediate from the definition of S. So let ωµ̃ /∈ DM ||µ̄. Then s+(µ̃)M < µ̃ and DM ||µ̄ =
DM ||µ̃ ∩ (s+(µ̃)M + 1). As s+(µ̃)M ∈ DM ||µ̃, and since ωβ ∈ DM ||µ̄, it follows that

S(M ||β) ≤′ S(M ||s+(µ̃)M ).

So it suffices to show that S(M ||s+(µ̃)) <′ S(M ||µ̄). Using the notation introduced in case 2 of
the definition of S, we get:

(∗) S(M ||µ̄) = S(M ||µ̃) + 1
= 〈(S(M ||µ̃passive)||s+(µ̃)M )2

0, ((E
M
µ̃ |s+(µ̃)M )h)c

S(M ||µ̃)passive〉+ 1;

here, let (·)2
0 be the projection onto the first coordinate. But

S(M ||µ̃passive) =
⋃

ωγ∈DM||µ̃

S(M ||γ)passive
,

and s+(µ̃)M ∈ DM ||µ̃. Hence, S(M ||s+(µ̃)) <′ S((M ||µ̃)passive). But, as noted in the beginning,
ht(S(M ||s+(µ̃))) ≤ s+(µ̃)M . So

S(M ||s+(µ̃)) ≤′ S((M ||µ̃)passive)||s+(µ̃)M <′ S(M ||µ̄),

as wished; I used (∗) in the last step.
Case 1.2.2: µ̄ is a limit ordinal and M̄ is passive.
As ωβ ∈ DM̄ , it follows from the limit case of the definition of S(M̄) that S(M ||β) <′ S(M̄).
Case 1.2.3: µ̄ is a limit ordinal and M̄ is active.
Since Case 1.1 was excluded in Case 1.2, it follows that s+(µ̄)M = µ̄. Then (S(M̄))passive =

S(M̄passive), and by Case 1.2.2 S(M ||β) <′ S(M̄passive). Hence S(M ||β) <′ S(M̄).
Case 2: µ is a limit ordinal.
Case 2.1: M is passive.
Let β < β′ be s.t. ωβ, ωβ′ ∈ D. As D is unbounded in OnM , ωγ ∈ D can be chosen in such

a way that β′ < γ. Then DM ||γ = D ∩ ωγ, hence ωβ, ωβ′ ∈ DM ||γ . Since M ||γ <0 M , it follows
by minimality of M that this case cannot occur.
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Case 2.2: M is active.
Then let M̄ := Mpassive. Let β < β′ and ωβ, ωβ′ ∈ DM . We have that DM = DM̄ , and

hence, S(M ||β) = S(M̄ ||β) <′ S(M̄ ||β′) = S(M ||β′) by minimality of M , and thus this case is
excluded as a possibility as well.

Lemma 4.3. Let M be a pPλ-structure for which N = S(M) exists. Let α < ht(M). Then the
following are equivalent:

1. There is no µ ≤ ht(M) such that M ||µ is active and s+(M ||µ) ≤ α < µ.

2. S(M ||α) is a segment of N .

In particular, this is true if M ||α is active and s+(M ||α) ∈ DM .

Proof. For the direction from 1. to 2. one shows by induction on β ∈ (α,ht(M)] that S(M ||α) is
a segment of S(M ||β). The other direction is obvious.

Lemma 4.4. If M is a pPλ-structure with S(M) defined, then ht(Ŝ(M)) = otp(DM ).

Proof. The claim is proven by <0 −induction on M .
Case A: M = 〈∅, ∅, ∅, ∅〉.
This case is trivial.
Case B: M = 〈JEMα+1, ∅, D〉.
Case B.1: M ||α is passive.
Then otp(D) = otp(DM ||α) + 1 = ht( ̂S(M ||α)) + 1 = ht(S(M)) = ht(Ŝ(M)).
Case B.2: M ||α is active.
Let s = s+(α)M . By definition of S(M) it follows that S(M) = Ŝ(M) and ht(S(M)) = s+ 1.

I distinguish two subcases.
Case B.2.1: s < α.
Then D = DM ||α \ (s, α). By Lemma 3.17, DM ||s is unbounded in OnM ||s. As s < α and s is

a successor cardinal in M ||α, it follows easily that otp(DM ||s) = s. Moreover, s ∈ DM ||α (for the
same reason), hence it follows from coherency that DM ||s = DM ||α∩s. We get: D = DM ||s∪{s},
i.e., otp(D) = s+ 1 = ht(Ŝ(M)).

Case B.2.2: s = α.
Then DM ||α+1 = DM ||α∪{ωα}, so otp(DM ) = otp(DM ||α)+1 = ht(Ŝ(M ||α))+1 = ht(Ŝ(M)).
Case C: M is active.
Let M = 〈JEα , F,D〉. Further, let M̄ = 〈JEα , ∅, D〉 (note that D = DM = DM̄ ). Remark 4.2

and case 3 of Definition 4.1 entail that |M | = |Ŝ(M)| = |S(M̄)|. In particular, it follows that

α = ht(M) = ht(Ŝ(M)) = ht(Ŝ(M̄)). Since M̄ <0 M , it follows by our inductive hypothesis that

ht(Ŝ(M)) = ht(Ŝ(M̄)) = otp(DM̄ ) = otp(DM ).

Case D: M is passive, and ht(M) is a limit.
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Then M is a limit of <0. We have: Ŝ(M) = S(M) =
⋃
ωµ∈DM S(M ||µpassive). Hence, due to

property (b) of case 4 of the definition of S, the height of S(M) is a limit ordinal, and

ht(S(M)) =
⋃

ωµ∈DM

ht(S(M ||µpassive))

=
⋃

ωµ∈DM

otp(DM ||µ)

=
⋃

ωµ∈DM

otp(DM ∩ ωµ)

= otp(DM ).

So, inductively, ht(S(M ||µpassive)) = otp(DM ||µ).

Corollary 4.5. Let M be a pPλ-structure for which N = S(M) exists. Then

ht(N) =
{

otp(DM ) if M is passive,
∪ otp(D∗M ) otherwise.

Thus, by Corollary 3.26, h1
M (ht(N)) = |M |.

Proof. If M is passive, then N is passive as well, and the corollary follows from Lemma 4.4:
otp(DM ) = ht(N̂) = ht(N).

So assume now that M is active. Then ht(N) = s+(M), by definition of S. If s+(M) < OnM ,
then D∗M = DM ||s+(M) ∪ {s+(M)}. Further, DM ||s+(M) is unbounded in s+(M), and one can
deduce that otp(DM ||s+(M)) = s+(M). Hence s+(M) = ∪otp(D∗M ) = ht(N), as wished. On the
other hand, if s+(M) = OnM , then D∗M = DM , and s+(M) = ht(S(M)) = ht(S(Mpassive)) =
otp(DMpassive) = otp(DM ) = otp(D∗M ) = ∪otp(D∗M ).

4.2 ...and back to pPλ-structures

In this section, the inverse function Λ of S is introduced. It will be defined by recursion on the
following relation.

Definition 4.6. For two potential Pseudo-s-structures M and N , let M <1 N iff

(∃ξ < ht(N) M = N ||ξ) ∨ (N is active and M = N̂passive).

Remark 4.7. Let M0, M1 and M2 be potential Pseudo-s-structures.

(a) If M0 is active and M1 <1 M0, then M1 is either a segment of M0, or M1 = M̂0

passive
.

(b) If M0 is passive and M1 <1 M0, then M1 is a segment of M0.

(c) If M0 and M1 are passive and M2 <1 M1 <1 M0, then M2 <1 M0 and M2 < M1 / M0.12

Lemma 4.8. The relation <1 is well founded and set-like.
12M /N means that M is a proper initial segment of N .
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Proof. Assuming<1 to be ill founded, let 〈Mi | i < ω〉 be descending in<1. LetA = {i |Mi is active }.
By Remark 4.7(b), A is unbounded in ω, since otherwise, if j were s.t. A ⊆ j < ω, then 〈Mj+i |
i < ω〉 would be descending in ∈. So let a : ω −→ A be the monotone enumeration of A. It is
now easy to see that M̂a(i) 3 M̂a(i+1), for all i < ω:

If a(i+ 1) = a(i) + 1, then by Remark 4.7 (a), Ma(i+1) is a segment of Ma(i), since obviously,

Ma(i+1) 6= M̂a(i)

passive
; Ma(i+1) is active. By coherency, Ma(i+1) is a segment as well, and hence

an element of M̂a(i)

passive
. But the latter structure is a model of ZFC−, and so it follows by

replacement that M̂a(i+1) ∈ M̂a(i)

passive
as well.

Otherwise, a(i) + 1 < a(i + 1). For j ∈ [a(i) + 1, a(i + 1)), Mj is passive, hence it follows
from part (c) of Remark 4.7 that Ma(i) >1 Ma(i)+1 >1 Ma(i+1). Again, as Ma(i)+1 is passive, the
fact that Ma(i+1) <1 Ma(i)+1 entails that Ma(i+1) is a proper segment of Ma(i)+1. Now there are
two cases: If Ma(i)+1 is a proper segment of Ma(i), then Ma(i+1) is a proper segment of Ma(i),

and it follows as before that M̂a(i+1) ∈ M̂a(i). Otherwise, M̂a(i)

passive
= Ma(i)+1 3Ma(i+1), and

from this, it follows also that M̂a(i+1) ∈ M̂a(i), as claimed. Thus, 〈M̂a(i) | i < ω〉 is a descending
∈-sequence again, a contradiction.

This shows that <1 is well founded. To see that it is set-like, note that if P <1 M , then
P ∈

⋃
α≤ht(M)(M̂ ||α ∪ {M̂ ||α}).

Definition 4.9. The function Λ is defined by <1-recursion as follows.
Case 1: N = 〈∅, ∅, ∅〉.
Then Λ(N) := 〈∅, ∅, ∅, ∅〉.
Case 2: N = 〈JEα+1, ∅〉.
Let Λ(N ||α) = 〈JE′α′ , F,D〉. Then set

Ẽ := E′_〈α′, F 〉 = E′ ∪ {〈α′, β,X〉 | β ∈ F (X)},

and let M ′ := 〈JẼα′+1, ∅〉. Define Λ(N) := 〈M ′, DM ′〉 if this is a pPλ-structure. Otherwise, Λ(N)
remains undefined.

Case 3: N = 〈JEα , F 〉, where F 6= ∅.
Then let N̂ = 〈JE′α′ , F ′〉 and N̄ = N̂passive. Then Λ(N) is defined if Λ(N̄) is defined, and if

the following conditions are satisfied:

(a) |N̄ | = |Λ(N̄)|.

(b) 〈Λ(N̄), F ′〉 = ̂〈Λ(N̄), F ′〉.

In this case, letting Λ(N̄) = 〈JẼα̃ , ∅, D〉, define Λ(N) := 〈JẼα̃ , F ′, D〉.
Case 4: N = 〈JEα , ∅〉, where α is a limit ordinal.
Then Λ(N) is defined, provided the following conditions are met:

(a) For all γ < α, Λ(N ||γ) is defined and a potential Pseudo-λ-structure.

(b) For γ < δ < α, Λ(N ||γ) is a segment of Λ(N ||δ).

If this is the case, let M ′ :=
⋃
γ<α Λ(N ||γ), in the obvious sense, i.e., |M ′| =

⋃
γ<α |Λ(N ||γ)|,

EM
′

=
⋃
γ<αE

Λ(N ||γ), and M ′ := 〈|M ′|, EM ′〉. Set: Λ(N) := 〈M ′, ∅, D〈M ′,∅〉〉.

Remark 4.10. If Λ(N) = M is defined, then M is a pPλ-structure.
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Lemma 4.11. Let M be a pPλ-structure for which S(M) is defined. Then Λ(S(M)) is defined,
too, and Λ(S(M)) = M . In particular, S is injective.

Proof. The proof is by <0-induction on M .
Case 1: M = 〈∅, ∅, ∅, ∅〉.
Then S(M) = 〈∅, ∅, ∅〉, and by definition of Λ, Λ(〈∅, ∅, ∅〉) = M .
Case 2: M = 〈JEµ+1, ∅, DM 〉.
Then let M̄ := M ||µ. Since S(M) is defined, so is S(M̄). Moreover, by definition of S,

S(M) = S(M̄) + 1. Inductively, Λ(S(M̄)) = M̄ . Hence, Λ(S(M)) = Λ(S(M̄) + 1) = M̄ + 1 = M ,
since this clearly is a pPλ-structure.

Case 3: M = 〈JEµ , F,DM 〉, where F 6= ∅.
Let M̄ := Mpassive <0 M . Since S(M) is defined, so is S(M̄). Noting that ht(M̄) = ht(S(M̄)),

it follows inductively that Λ(S(M̄)) = M̄ . By Definition 4.1, Case 3, (c), Ŝ(M) = 〈S(M̄), F 〉. So
according to the definition of Λ, Λ(S(M)) is defined, and

Λ(S(M)) = 〈Λ(Ŝ(M)
passive

)−, E Ŝ(M)
top , DΛ(S(M̄))〉 = 〈M,F,DM 〉 = M.

Case 4: M = 〈JEµ , ∅, DM 〉, where µ is a limit.
Then S(M ||α) is defined for every α < ht(M). Set:

D̃ := {ζ < OnM | (ζ = 0 ∨ Lim(ζ)) ∧
¬(∃δ ≤ ht(M) EMδ 6= ∅ ∧ s+(δ)M ≤ ζ < δ)}

Let 〈η̃ξ | ξ < otp(D̃)〉 be the monotone enumeration of D̃. For ξ < otp(D̃), define η̄ξ by ωη̄ξ = η̃ξ.
Then it follows by <0-induction on M that:

• ht(S(M)) = otp(D̃).

• For ξ < otp(D̃), S(M)||ξ = S(M ||η̄ξ).

• D̃ is cofinal in OnM (like the proof of Lemma 3.17).

So by induction hypothesis, for all ξ < ht(S(M)), Λ(S(M)||ξ) = Λ(S(M ||η̄ξ)) = M ||η̄ξ is defined.
Hence Λ(S(M)) is defined, and Λ(S(M)) =

⋃
ξ<otp(D̃) Λ(S(M)||ξ) =

⋃
ξ<otp(D̃)M ||η̄ξ = M .

Towards formulating the converse of this, let’s define:

Definition 4.12. For a pPλ- or pPs-structure M , set IM := {ν | EMων 6= ∅}.

Lemma 4.13. Let N be a pPs-structure for which Λ(N) is defined. Then S(Λ(N)) is defined as
well, and S(Λ(N)) = N . In particular, Λ is injective.

Proof. The proof is by <1-induction on N , analogous to 4.11. The base and successor cases are
as unproblematic as before, so I restrict attention to the limit case. Let N = 〈JEα , ∅〉, where α is
a limit. Using a slightly sloppy notation, we then have Λ(N) =

⋃
ν<α Λ(N ||ν). Let M = Λ(N).

(∗) If µ ∈ ht(N) \ IN , then ω · ht(Λ(N ||µ)) ∈ DM .

Proof of (∗). Λ(N ||µ) = M ||µ′ for some µ′ < ht(M) by Case 4(b) of definition 4.9. By induction
hypothesis, S(M ||µ′) = N ||µ is a segment of N . Hence, by Lemma 4.3, there is no ν ≤ ht(M)
with s+(M ||ν) ≤ ωµ′ < ν. But as µ′ /∈ IM , it follows that ωµ′ ∈ DM : Otherwise there would
be a ν′ ∈ IM with s+(M ||ν′) < ωµ′ ≤ ν′, that is, s+(M ||ν′) < ωµ′ < ν′, and such a ν′ doesn’t
exist, as was pointed out. 2(∗)

Hence S(Λ(N)) = S(M) =
⋃
ωµ∈DM S(M ||µpassive) =

⋃
µ∈ht(N)\IN S(Λ(N ||µ)) = N .
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Definition 4.14. Let S(M) be defined. Then

S0(M) := ht(S(M)) and Ŝ0(M) := ht(Ŝ(M)).

Lemma 4.15. Let S(M) be defined. Then the following hold:

(a) If IM ∩ ht(M) is unbounded in ht(M), or if M is active, then

|S(M)| = |JE
M

S0(M)|, and |Ŝ(M)| = |JE
M

Ŝ0(M)
| = |M |.

(b) If M is passive and IM is bounded in ht(M), then either IM = ∅ and |M | = |S(M)| =
|Ŝ(M)|, or, letting ν̄ = sup IM ,

|S(M ||ν̄)| = |S(M)||S0(M ||ν̄)| = |JE
M

S0(M ||ν̄)|.

(c) If M is a model of KP, then |S(M)| = |M |.

(d) If S(M) is a model of KP, then M is Σ1(S(M)).13Moreover, Λ� <1“{S(M)} is (uniformly)
Σ1(S(M)).

Proof. The proof is by <0-induction on M again. Let N = S(M).
If M satisfies (a)-(c), then it is fairly easy to see that (d) holds as well: If N = S(M) is a

model of KP then N is passive, and ht(N) is a limit (or equal to 1, in which case there is nothing
to show). That die the restriction of Λ to the set of <1-predecessors of N can be defined over N
in a Σ1 way follows from the observation that the map x 7→ (<1“{x}) is a Σ1(N) function, and
from the fact that the recursion in Definition 4.9 is Σ1(N), too. I use the recursion theorem for
KP as stated in [Bar75].

Thus, Λ(N)− is Σ1(N), too, which is obvious from Definition 4.1, Case 4. In order to define
DM in N in a Σ1 way, note that for α < ht(N) the structure Λ(N ||αpassive) is a segment of
M , so that ωht(Λ(N ||αpassive)) ∈ DM . Hence, using the coherency of enhancements, we get the
following Σ1 definition:

ξ ∈ DM ⇐⇒ ∃α < ht(N) ξ ∈ DΛ(N ||αpassive).

I now prove that M satisfies (a)-(c) as well, inductively assuming that all <1-predecessors of M
satisfy (a)-(d).

Case 1: M = 〈∅, ∅, ∅〉.
Trivial.
Case 2: M = 〈JEMν̄+1, ∅, DM 〉.
Inductively, the claims hold for M ||ν̄ already. As IM is bounded in ht(M) and M is passive,

and since M is not a model of ZF−, (a) and (c) are vacuously true. So let ν̃ = sup IM . If ν̃ = 0,
and hence IM = ∅, then the claim is obvious again. So let ν̃ > 0. Now IM ||ν̃ is unbounded in
ν̃, or M ||ν̃ is active, and I can make use of the inductive hypothesis that (a) holds for M ||ν̃. If
M ||ν̃ is passive, then

|S(M ||ν̃)| = | ̂S(M ||ν̃)| = |M ||ν̃|, and S0(M ||ν̃) = ν̃.

If M ||ν̃ is active, then

|S(M ||ν̃)| = |M ||s+(M ||ν̃)|, and S0(M ||ν̃) = s+(M ||ν̃).
13This is to say that |M |, EM , EM

top, DM are Σ1(S(M)).
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So I have to show that |S(M)||S0(M ||ν̃)| = |S(M ||ν̃)|. But this is clear, since by Lemma 4.3,
S(M ||ν̃) is a segment of S(M).

Case 3: M = 〈JEMν , F,DM 〉, where F 6= ∅.
Then the second part of (a) follows by Remark 4.2, part 1. But the first part follows as well,

because |S(M)| = |Ŝ(M)||s+(M)|, hence S0(M) = s+(M). Let s+ := s+(M). Since s+ is a

cardinal in M , this is true in Ŝ(M), too. It follows that |Ŝ(M)||s+| = H
Ŝ(M)
s+ = HM

s+ = |M ||s+|.
Claims (b) and (c) are vacuously true for M .

Case 4: M = 〈JEMν , ∅, DM 〉, where ν is a limit ordinal.
If IM is bounded in ν, (b) is shown just as in Case 2, and for (a), nothing is to be shown. I

prove (c). If IM = ∅, the claim is trivially true. So let IM 6= ∅ and ν̃ = sup IM . If ν̃ < ht(M),
then by (b),

|S(M ||ν̃)| = |M ||S0(M ||ν̃)|.
Since in M there are no extender indices above ν̃, it’s easy to see that for 1 ≤ δ < ν − ν̃,

S(M ||(ν̃ + δ)) = 〈JE
′

S0(M ||ν̃)+δ, ∅〉,

where I let S(M ||ν̃) = 〈JE′S0(M ||ν̃), E
′
ωS0(M ||ν̃)〉.

(∗) |JE′S0(M ||ν̃)+δ| ⊆ |J
EM

ν̃+δ| ⊆ |JE
′

ν̃+δ+1|.

Proof of (∗). The first inclusion follows from the fact that |S(M ||γ)| ⊆ |M ||γ| (see the proof of
Lemma 5.15). For the second inclusion, I distinguish two cases:

If ν̃ /∈ IM , then by (a),
|S(M ||ν̃)| = | ̂S(M ||ν̃)| = |M ||ν̃|,

i.e., EM ⊆ |S(M ||ν̃)| and ES(M) ⊆ |M ||ν̃|. By (d), EM is even Σ1(S(M ||ν̃)), hence EM ∈ N ||ν̃+1.
In fact, it follows by induction on δ < ν that |JE′ν̃+δ| = |JE

M

ν̃+δ|.
Now let ν̃ ∈ IM . It has to be checked that EM ∈ |N ||ν̃|. To this end, let β = τ(M ||ν̃)++M ||ν̃ .

Then |M ||β| = |S(M ||β)| = |S(M ||ν̃)||β|, as β ≤ s+(M ||ν̃). So M ||τ ∈ |N ||ν̃|. By coherency of
M ||ν̃, this means that M ||ν̃passive = Ult(M ||τ, EMν̃ ) ∈ N ||ν̃ + 1, since ES(M ||ν̃)

top codes EMν̃ and is
an element of |N ||ν̃|. The rest of the claim follows by induction on δ. 2(∗)

Now let M be a model of KP. Then ν − ν̃ = ν and S0(M ||ν̃) + ν = ν. Hence, S0(M) =
ht(M) = ν, since

|S(M)| =
⋃

1≤δ<ν−ν̃

|S(M ||ν̃ + δ)| =
⋃

1≤δ<ν−ν̃

|JE
′

S0(M ||ν̃)+δ| = |J
E′

ν |.

So it follows from (∗) that |M | = S(M)| = |Ŝ(M)|, which proves (c).
Now let IM be unbounded in ht(M). I have to prove (a) and (c). In the current case it

suffices to prove (a), though, because M is passive, and so S(M) = Ŝ(M) = |M | follows from
(a). So I have to show |S(M)| = |M |. To this end, I show that for every α < ν there exists an
α′ < ν s.t. α ≤ α′ and |M ||α′| = |S(M)||α′|. So let α < ν be given. By Lemma 3.17, DM is
unbounded in ν, so let ωβ ∈ DM \ α. It follows that

(+) ∀γ ∈ IM \ (β + 1) s+(γ)M ≥ ωβ,

as otherwise s+(γ)M < ωβ < γ for some γ, and hence ωβ is not in DM .
Now let γ ∈ IM \ (β + 1) be the unique γ with

s+(γ)M = min{s+(δ)M | δ ∈ IM \ (β + 1)}.
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Then s+(γ) ∈ DM by choice of γ, and by (+), α < ωβ ≤ s+(γ). Now s+(γ)M is a successor
cardinal in the ZF− model M̄ := 〈JEMγ , ∅, DM̄ 〉, and hence M ||s+(γ)M is a ZF− model as well, if
s+(γ)M < γ. Hence in this case, as (c) is true for M ||s+(γ)M , and s+(γ)M ∈ DM ,

|M ||s+(γ)M | = |S(M ||s+(γ)M )| = |S(M)||s+(γ)M |.

On the other hand, if s+(γ) = γ, then the above follows from (a) and from the fact that in this
case γ ∈ DM , since then |S(M ||γ)| = | ̂S(M ||γ)| = |M ||γ| (the last identity holds by (a)).

Lemma 4.16. Let M be a pPλ-structure, for which N = S(M) exists. If M is active, then
CM = CN̂ = CN . Moreover, N̂ and N satisfy the s′-ISC iff M does.

Proof. Let’s turn to the first part. So let M be active.

(1) For α < s(M), |[M ]α| = |[N̂ ]α| = |[N ]α|.

Proof of (1). Let τ = τ(M). Then τ = τ(N) = τ(N̂), and as N ||τ = S(M ||τ), it follows by
Lemma 4.15 that |N ||τ | = |S(M ||τ)| = |M ||τ |. Since moreover EN̂top = EMtop, the first identity is
immediate, as for the definition of [M ]α and [N ]α only Σ0-extender ultrapowers were used. But
(ENtop)f = EN̂top|s+(M), hence the second identity follows as well. 2(1)

Now I can show directly that CM = CN̂ : Let ξ ∈ CM . Then τ ≤ ξ < s(M), ξ is a cutpoint
of EMtop, and [M ]ξ satisfies the s′-MISC. As EMtop = EN̂top, ξ is a cutpoint of EN̂top, too. It remains
to be shown that [N̂ ]ξ satisfies the s′-MISC. To this end, let ζ ∈ [τ([N̂ ]ξ), ξ) be a cutpoint of

E
[N̂ ]ξ
top = E

[M ]ξ
top . Since [M ]ξ satisfies the s′-MISC, it follows that (ζ+)[M ]ζ < (ζ+)M . But since

|M | = |N̂ |, keeping (1) in mind, it follows that

(ζ+)[N̂ ]ζ = (ζ+)[M ]ζ < (ζ+)M = (ζ+)N̂ .

The inclusion CN̂ ⊆ CM is proven entirely analogously, and that CN = CN̂ can be shown in the
same way, making use of acceptability of N̂ .

I’m left to show that the s′-ISC carries over from M to N and N̂ , and vice versa. Since both
directions can be treated in the same way, I just prove the direction from M to N and N̂ . To see
that it carries over to N̂ , assume the contrary. Let M be a counterexample of minimal height.
Obviously then M is active. Let N = S(M). All proper segments of N̂ are S-images of proper
segments of M , and thus satisfy the s′-ISC. It suffices therefore to verify those parts of the s′-ISC
which refer to N̂ . So let ξ ∈ CN be given. Then by the first part, ξ ∈ CM , too. And as M satisfies
the s′-ISC, it follows that [M ]ξ ∈ |M |. Hence EN̂top|ξ = EMtop|ξ ∈ |M | = |N |. But in N̂passive,

[N̂ ]ξ is definable from EN̂top|ξ, and hence, [N̂ ]ξ ∈ |N̂ |. Further, I have to show that [N̂ ]ξ′ ∈ |[N̂ ]ξ|,
given that τ ≤ ξ′ < ξ and [N̂ ]ξ′ satisfy the s′-MISC. From (1) it follows that in this case, [M ]ξ′
satisfies the s′-MISC as well. Thus, [M ]ξ′ ∈ |[M ]ξ|, i.e., EN̂top|ξ′ = EMtop|ξ′ ∈ |[M ]ξ| = |[N̂ ]ξ| (the
latter again by (1)), and this means that [N̂ ]ξ′ ∈ |[N ]ξ|, as before. Hence, N̂ satisfies the s′-ISC.
That N does too can be shown analogously. Hence, M was no counterexample after all, so there
are none.

5 Translating Σ1-formulae

In order to be able to accurately analyze the relationship between projecta and standard param-
eters in a pPλ structure and its S-image (if existent), a deep understanding of Σ1-definability

27



in these structures is essential. Such an analysis has to be undertaken in order to derive one of
the main results of this work, namely that the (Pseudo)-λ-structure has an S-image, which is
a (Pseudo)-s-structure, and vice versa. I shall develop a method for translating Σ1-formulae in
this section.

5.1 Successor levels of premice

If M is a pPλ- or pPs-structure of height α + 1, then the first step for translating Σ1-formulae
will be to express that formula over the structure M ||α; the translation procedure will then be
defined by recursion. So names for the members of M ||(α+ 1) are needed:

Definition 5.1. Let ~̇A = Ȧ1, . . . , Ȧl be a list of predicate symbols. Since I shall be working
with transitive structures that are closed under ordered pairs, one may restrict to unary predicate
symbols. The set C( ~̇A) of codes for functions rudimentary in ~̇A is defined by the following clauses.

(a) For all n ∈ ω \ {0} and k, l < n, the following symbols are codes for an n-ary function

rudimentary in ~̇A: πnk , p
n
k,l, δ

n
k,l.

(b) The symbol fȦk is a code for a 1-ary function rudimentary in ~̇A (1 ≤ k ≤ l).

(c) If f is a code for an n-ary function rudimentary in ~̇A, then so is un[f ].

(d) If h is a code for an m-ary function rudimentary in ~̇A and h0, . . ., hm−1 are codes for

n-ary functions rudimentary in ~̇A, then h ◦ (h0, . . . , hm−1) is a code for an n-ary function

rudimentary in ~̇A (m,n ≥ 1).

Let’s turn to the interpretation of such codes. Fix sets (or classes) ~A := A1, . . . , Al. Given a

code t for an n-ary function in C( ~̇A), I define its interpretation, val ~A[t] : Vn −→ V by recursion
on t as follows.

(a) Let n ∈ ω \ {0}, k, l < n.

(1) val
~A[πnk ](a0, . . . , an−1) = ak.

(2) val
~A[pnk,l](a0, . . . , an−1) = {ak, al}.

(3) val
~A[δnk,l](a0, . . . , an−1) = ak \ al.

(b) val
~A[fȦk ](a) = Ak ∩ a (1 ≤ k ≤ l).

(c) Let f be a code for an n-ary function rudimentary in ~̇A for which val
~A[f ] has been defined

already. Then val
~A[un[f ]](a0, . . . , an−1) =

⋃
b∈a0

val
~A[f ](b, a1, . . . , an−1).

(d) Let h be a code for an m-ary function rudimentary in ~̇A, and let h0, . . ., hm−1 be codes

for n-ary functions rudimentary in ~̇A, such that val ~A[h] and val
~A[h0], . . ., val ~A[hm] have

already been defined. Then, for ~a = a0, . . . , an−1,

val
~A[h ◦ (h0, . . . , hm−1)](~a) = val

~A[h](val ~A[h0](~a), . . . , val ~A[hm−1](~a)).
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In order to avoid a possible confusion, since there are conflicting definitions in the literature,
it should be pointed out that by rud ~A(X) I mean the closure of X ∪ {X} under functions
rudimentary in ~A. That’s what I refer to as the ~A-rudimentary closure of X. So every element
of rud ~A(X) is of the form f(~a,X), where f is a function rudimentary in ~A and ~a ∈ X. This is
the motivation for the following two definitions which basically introduce names for the members
of rud ~A(X).

Definition 5.2. Fix predicate symbols ~̇A. The set T( ~̇A) of terms rudimentary in ~̇A is defined to

consist of pairs t = 〈c, 〈~x〉〉, where c ∈ C( ~̇A) is a code for an n-ary function and ~x = 〈x0, . . . , xn−1〉
is an n-tuple, such that, for i < n, either xi is a variable, or xi = Φ for a fixed new constant
symbol Φ. The set of free variables of t, Fr(t) is defined to be {xi | xi 6= Φ}.

Evaluations of rudimentary terms are now computed relative to a given interpretation of the
predicate symbols and a given interpretation of a universe.

Definition 5.3. I evaluate a rudimentary term t = 〈c, 〈x0, . . . , xn−1〉〉 ∈ T( ~̇A) in a structure
M = 〈X, ~A〉 as follows. Let a be an assignment in X whose domain contains the free variables
of t. Define an extension ã of a by setting:

ã(x) =
{
a(x) if x 6= Φ, x ∈ dom(a),
X if x = Φ.

Then valM [t](a) := (val ~A[c])(ã(x0), . . . , ã(xn−1)). If M̃ = 〈M, ~B〉 is a structure enhanced by
additional predicates, then valM̃ [t](a) = valM [t](a).

The following Lemma is from [Fuc09]. It applies almost immediately if M ||α is passive, since
in that case, EM ⊆ |M ||α|.14

Lemma 5.4. Fix two lists of predicate symbols, ~̇A and ~̇B. Then there is a recursive function
T = T ~̇A; ~̇B

with the following property:

Let ~A and ~B be interpretations of ~̇A and ~̇B. Let X be a transitive set closed under functions
rudimentary in ~A, and let ~A, ~B ⊆ X. Set X ′ = rud ~A(X), and define M := 〈X, ~A, ~B〉, M ′ :=
〈X ′, ~A, ~B〉. Let ϕ be a Σ0-formula with free variables v0,. . ., vn−1. Let a = {i0, . . . , im−1} ∈ [n]m.
For each j < m, let tj ∈ T( ~A), such that no free variable of tj occurs as a bound variable in ϕ.

Then ψ := T (ϕ, vi0 , t0, . . . , vim−1 , tm−1) is a Σω-formula with the following property: If ~w =
w0, . . . , wm′−1 is an enumeration of {vk | k ∈ n\a}, then the set of free variables of ψ is contained
in {~w} ∪

⋃
j<m Fr (tj) (here, repetitions may occur). Further, for any assignment b of the free

variables of ψ with values in X,

M ′ |= ϕ[b′] ⇐⇒ M |= ψ[b],

where b′ = b[(vi0/valM [t0](b)), . . . , (
vim−1 /valM [tm−1](b))]. Hence, one might very well write:

ψ = ϕ((vi0 /t0), . . . , (vim−1/tm−1)).

If α indexes an extender in M , a more specialized translation function, which I shall develop
later, is called for. In preparation of a version which is suitable for pPλ-structures, I note the
following.

14For pPλ-structures M , the predicate DM deserves extra attention, though.
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Lemma 5.5. Let M = JEα+1 be a pPλ-structure, so that F := Eα 6= ∅. Then |M | is the closure
of |M ||α| ∪ {|M ||α|} under rudimentary functions, the function fE�α and the function fF . Here,
fZ denotes the function x 7→ Z ∩ x.

Proof. Let A be the closure of |JEα | ∪ {|JEα |} under rudimentary functions and the function fE .
Hence A = |M |. Let B =the closure of |JEα | ∪ {|JEα |} under rudimentary functions, the function
fE�α and the function fF . It has to be shown that A = B.

A ⊆ B Obviously it suffices to show that B is closed under fE . I show that E ∈ B, from
which this follows. We have:

E = E�α ∪ {〈α, δ, x〉 | δ ∈ F (x)}︸ ︷︷ ︸
F ′

.

Since E�α ⊆ |M ||α|, it follows that E�α = fE�α(|JEα |) ∈ B. So it suffices to show that F ′ ∈ B.
In order to see this, I will define a series of obviously rudimentary functions, which I will use to
get a rud function, which, when applied to the right elements of B, takes the value F ′. Set

f0(a, δ, y, x, c) :=
{
{〈δ, y, x〉} if δ ∈ y ∧ 〈y, x〉 ∈ c,
∅ otherwise.

This is a definition by cases, and the relation determining the case is rud, hence so is the function
- see [Jen72, p. 234, Properties 1.2.(e) and 1.1.(c),(d)]. Note that a is but a “dummy”-argument.
Now set

f1(a, c) :=
⋃

δ,y,x∈a

f0(a, δ, y, x, c).

Again, f1 is rud by the last scheme in [Jen72, P. 233, Definition in §1]. The function

f2(z) := 〈(z)3
0, (z)

3
2〉

is rud by [Jen72, P.234, Properties 1.3.(a) & 1.1.(d)]. Now we have in general that if g is rud,
then so is the function x 7→ g“x: g“x =

⋃
y∈x{g(y)}. Hence, I can define:

f3(x) := f2“x,

in order to get yet another rud function. Now set f4 = f3 ◦ f1. Then:

f4(|JEα |, F ) = f3(f1(|JEα |, F ))
= f2“f1(|JEα |, F )

= f2“(
⋃

δ,y,x∈|JEα |

f0(|JEα |, δ, y, x, F ))

= f2“{〈δ, y, x〉 | δ ∈ y ∧ 〈y, x〉 ∈ F}
= f2“{〈δ, y, x〉 | δ ∈ y = F (x)}
= G := {〈δ, x〉 | δ ∈ F (x)}.

Hence G ∈ B and E�α ∈ B, and hence, E = ({α} ×G) ∪ E�α ∈ B, which was to be shown.
B ⊆ A For this direction, I am going to show that A is closed under fE�α and fF . The

former is trivial, as E�α ∩ z = E ∩ |JEα | ∩ z ∈ A for z ∈ A. In order to see the latter, I will show
that F ∈ A. Again, I define some functions which are rud in E.

g0(γ, δ, x, u) :=
{
{γ} if 〈δ, γ, x〉 ∈ fE(u),
∅ otherwise.
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Further:
g1(δ, u, x) :=

⋃
γ∈u

g0(γ, δ, x, u).

Hence

g1(α, |JEα |, x) =
{
F (x) if defined,
∅ otherwise.

Now set:
g2(δ, u, x) := {〈g1(δ, u, x), x〉} and g3(δ, u, v) :=

⋃
x∈v

g2(δ, u, x).

Then g3 is rud in E, and obviously, g3(α, |JEα |, |JEα |) = F ∈ A, as was to be shown.

Lemma 5.6. The function x 7→ On ∩ x is rud. Fix a rudimentary code cOn for this function.

Proof. The function g, defined by

g(z) :=
{
{z} if z ∈ On
∅ otherwise.

is rud, since it is defined by cases, and the relation determining the case is Σ0. But then
On ∩ x =

⋃
z∈x g(z), which shows that this function is rud.

Lemma 5.7. There is a recursive function Tλ with the following property: Let M ′ := 〈JEα+1, ∅, DM ′〉
be a pPλ-structure. Set D = DM ′||α. Let M = M ′||α, and set M̃ = 〈JEα+1, ∅, D〉. Let ϕ be a
Σ0-formula in the language of set theory with additional predicate symbols Ė, Ḟ and Ḋ. Let
v0, . . . , vn−1 be the free variables of ϕ. Let a = {i0, . . . , im−1} be an m-element subset of n.
For each j < m, let cj be a code for an nj-ary function rud in Ė, Ḟ , and xj0, . . . , x

j
nj−1 a

list of symbols so that each xjk is either a variable symbol or a fixed constant symbol Φ. Let
ψ := Tλ(ϕ, vi0 , c0, 〈~x0〉, . . . , vim−1 , cm−1, 〈~xm−1〉). Then ψ is a Σω-formula s.t. the following
holds:

If ~w = w0, . . . , wm′−1 is an enumeration of {vk | k ∈ n \ a}, then the set of free variables of
ψ is contained in {~w} ∪ {xjk | j < m ∧ k < nj ∧ xjk 6= Φ} (here, repetitions are allowed).

Let b be an assignment of the free variables of ψ with values from |M |. Define b′ : Fr (ψ) ∪
{Φ} → |M | ∪ {|M |} by: b′ := b ∪ {〈|M |,Φ〉}. Then

M̃ |= ϕ[(vi0 /valE�α,F [c0](b′(~x0))), . . . , (
vim−1/valE�α,F [cm−1](b′(~xm−1))), (~w/b(~w))]
⇐⇒

M |= ψ[b].

Moreover

M̃ |= (∃vi0 ϕ)[(vi1/valE�α,F [c1](b′(~x1))) . . . (vm−1/valE�α,F [cm−1](b′(~xm−1)))(~w/b(~w))]
⇐⇒

∃c ∈ C(Ė, Ḟ )
(
c is a code for a 2-ary function ∧

M |= (∃z Tλ(ϕ, vi0 , c, 〈z,Φ〉, vi1 , cm−1, 〈~x1〉, . . . , vm−1, cm−1, 〈~xm−1〉))[b]
)
,

where z is a new variable.
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Proof. The starting point is a Σ0-formula ϕ in the language of M ′. But as ḞM
′

= ∅ (the height
of M ′ is a successor ordinal), it is obvious how to transform ϕ into an equivalent Σ0-formula ϕ′

in which Ḟ does not occur anymore - just replace “Ḟ (v)” with “v 6= v”.
Now I define a preliminary transformation T̄ (ψ) by induction on formulae ψ in which Ḟ does

not occur, as follows (I want to express ϕ, where Ė is interpreted as Ē := E�ωα and Ḟ as
F := Eωα):

Fix new variables z and z′. Later z will be replaced by |JEα | and z′ by ωα.
If ϕ ≡ Ė(v), then set:

T̄ (ϕ) := Ė(v) ∨ (∃δ, x, y ∈ z v = 〈z′, δ, x〉 ∧ Ḟ (y, x) ∧ δ ∈ y).

The other atomic formulae remain unchanged – Note that Ḟ does not occur. The inductive steps
are as usual; this atomic case is the only true change that is made. So far, we have for ~a ∈ |M̃ |:

M̃ |= ϕ[(~v/~a)] ⇐⇒ M̃ |= ϕ′[~a]

⇐⇒ 〈|JEα+1|, Ē, F,D〉 |= T̄ (ϕ′)[(~v/~a), (z
′
/ωα), (z/|JEα |)].

Now let cOn ∈ C be the code from Lemma 5.6. Let a, vi0 , . . ., vim−1 , c0, . . ., cm−1, ~x0, . . ., ~xm−1,
~w, b and b′ as in the statement of the Lemma. Then

M̃ |= ϕ[(vi0 /valĒ,F [c0](b′(~x0))), . . . , (
vm−1/valĒ,F [cm−1](b′(~xm−1))),

(~w/b(~w))]
⇐⇒ 〈|JEα+1|, Ē, F,D〉 |= T̄ (ϕ′)[(vi0 /valĒ,F [c0](b′(~x0))), . . . ,

(vm−1/valĒ,F [cm−1](b′(~xm−1))),
(z/valĒ,F [π1

0 ](|JEα |)), (
z′/valĒ,F [cOn](|JEα |)),

(~w/b(~w))]
⇐⇒ 〈|JEα |, Ē, F,D〉 |= TĖ,Ḟ ;Ḋ

(
T̄ (ϕ′), vi0 , c0, 〈~x0〉, . . . , vm−1, cm−1, 〈~xm−1〉,
z, π1

0 ,Φ, z
′, cOn,Φ

)
[b]

The last equivalence follows from Lemma 5.4. It is applicable, since |JEα | is closed under functions
which are rud in Ē and F , and because by Lemma 5.5, |JEα+1| is precisely the closure of |JEα | ∪
{|JEα |} under all functions that are rud in Ē and F . In the third line, note that π1

0 is a rudimentary
code for the identity.

The second part of the Lemma now follows from the first, making use of the fact that every
element of |JEα+1| is of the form g(a, |JEα |), for a function g which is rud in Ē and F . This
traces back to lemma 5.5 and the fact that a list of arguments a0, . . . , an−1 ∈ |JEα | can be
coded by one, namely 〈a0, . . . , an−1〉 ∈ |JEα |, so that it can be rudimentarily decoded by the
component functions (·)ni . Moreover, |JEα | is needed as an argument at most once, since if
b ∈ |JEα+1| is of the form g′(a, |JEα |, . . . , |JEα |), where g′ is rud (in E,F ), then the function defined
by g(x, y) = g′(x, y, . . . , y) is rud too, and g(a, |JEα |) = b. If, on the other hand, |JEα | does not
occur as an argument at all, then one can always add “dummy”-arguments.

Corollary 5.8. There is a recursive function T̄λ with the following property:
Let M = 〈JEα+1, ∅〉 be a weak j-ppm. Let D = DM ||α. Set F := Eωα and Ē := E�ωα. Let ϕ(~x)
be a Σn-formula. Then T̄λ(ϕ) is again a Σn-formula with two additional free variables, so that
for arbitrary elements ~a of |M |,

〈M,D〉 |= ϕ[~a] ⇐⇒ 〈|M |, Ē, F,D〉 |= T̄λ(ϕ)[~a, ωα, |JEα |].

(In fact, one could replace D by an arbitrary predicate contained in M ||α.)
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Proof. The definition of the transformations T̄λ(ϕ) = T̄ (ϕ′) from the previous proof can be
expanded to arbitrary formulae.

Similar constructions yield the corresponding results for pPs-structures.

Lemma 5.9. There is a recursive function Ts with the following property: Let N ′ := 〈JEα+1, ∅〉
be a pPs-structure. Let N = N ′||α. Let ϕ be a Σ0-formula in the language of set theory
with additional predicate symbols Ė and Ḟ . Let v0, . . . , vn−1 be the free variables of ϕ. Let
a = {i0, . . . , im−1} be an m element subset of n. For each j < m, let cj be a code for an nj-ary
function rud in Ė, Ḟ , and xj0, . . . , x

j
nj−1 a list s.t. each xjk is either a variable symbol or a fixed

constant symbol Φ. Let ψ := Ts(ϕ, vi0 , c0, 〈~x0〉, . . . , vim−1 , cm−1, 〈~xm−1〉).
Then ψ is a Σω-formula s.t. the following holds:
If ~w = w0, . . . , wm′−1 is an enumeration of {vk | k ∈ n \ a}, then the set of free variables of

ψ is contained in {~w} ∪ {xjk | j < m ∧ k < nj ∧ xjk 6= Φ}.
Let b be an assignment of the free variables of ψ with values from |N |. Define b′ : Fr (ψ) ∪

{Φ} → |N | ∪ {|N |} by: b′ := b ∪ {〈|N |,Φ〉}. Then

N ′ |= ϕ[(vi0/valE�α,F [c0](b′(~x0))), . . . , (
vim−1 /valE�α,F [cm−1](b′(~xm−1))), (~w/b(~w))]
⇐⇒

N |= ψ[b].

Moreover,

N ′ |= (∃vi0 ϕ)[(vi1 /valE�α,F [c1](b′(~x1))) . . . (vm−1/valE�α,F [cm−1](b′(~xm−1)))(~w/b(~w))]
⇐⇒

∃c ∈ C(Ė, Ḟ )
(
c is a code for a 2-ary function ∧

N |= (∃z Ts(ϕ, vi0 , c, 〈z,Φ〉, vi1 , cm−1, 〈~x1〉, . . . , vm−1, cm−1, 〈~xm−1〉))[b]
)
,

where z is a new variable.

Proof. The proof bears no new ideas.

Corollary 5.10. There is a recursive function T̄s with the following property:
Let N = 〈JEα+1, ∅〉 be a pPs-structure. Let F := Ḟ C̃0(N ||α) and Ē := E�ωα. Let ϕ(~x) be a

Σn-formula. Then T̄s(ϕ) is again a Σn-formula with two additional free variables so that for
arbitrary elements ~a of |N |,

N |= ϕ[~a] ⇐⇒ 〈|N |, Ē, F 〉 |= T̄s(ϕ)[~a, ωα, |JEα |].

Proof. As before.

5.2 Σ1-definability in pPs-structures and their maximal continuations

For the rest of this section, fix an active pPs-structure N = 〈JEs+ , F
c〉 (where F be an extender

of length s+(F ) in the functional representation) and set:

τ = τ(F ) κ = κ(F )
s = s(F ) λ = λ(F )
π = πNs N̂ = 〈JE′ν , F̂ 〉
D = D(N ||τ, κ, s+) ID = ID(N ||τ, F )
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Hence F = F̂ |s+. For the definitions of D(N ||τ, κ, s+) and ID(N ||τ, F ), see Section 2.5.
In order to see the rough approach for translating formulae between N and N̂ , let ϕ = ϕ(~x)

be a Σ1-formula, and ~ξ < s+. The idea is to make use of the  Loś theorem, in order to express
over N that ϕ is true in N̂ of ~ξ:

N̂ |= ϕ[~ξ] ⇐⇒ ∃β < τ 〈JE
′

π(β), F̂ ∩ JE
′

π(β)〉 |= ϕ[~ξ]

⇐⇒ N |= ∃β < τ ∃t1, t2 ∈ D ([t1] = π(JEβ ) ∧ [t2] = F̂ ∩ π(JEβ )

∧ID |= (〈t1, t2〉 |= ϕ[~ξ∗])),

where ξ∗ = 〈ξ, id〉. I used the notation of Definition 2.5 here, as well as the fact that Σ0-extender
product embeddings are cofinal. I deal with the problem of expressing “[t] = F̂ ∩ π(JEβ )” over N
first.

(1) Let β < τ . Let then c = cβ be the <JEτ
-minimal surjection from κ onto P(κ)∩ JEβ , and for

x ∈ P(κ) ∩ JEβ , let
fx := 〈〈x, x ∩ γ〉 | γ < κ〉.

Further, define Z = Zβ : κ −→ |N ||τ | by:

Z(ν) = Zβ(ν) := {fc(µ)(ν) | µ < ν}.

Then π(Z)(κ) = F̂ ∩ π(JEβ ).

Proof of (1). It is obvious that Z ∈ |N ||τ |. In the course of the proof, several functions are
going to be defined, for which this is just as obvious. There, like here, a more explicit argument
showing this is omitted.

Two directions have to be verified. For the inclusion from left to right, let π(g)(~γ) ∈ π(Z)(κ),
where 〈~γ, g〉 ∈ D. Let ~γ ∈ (s+)n. Then

〈~γ, κ〉 ∈ F ({〈~µ, ν〉 | g(~µ) ∈ Z(ν)}︸ ︷︷ ︸
A

).

Define a function δ : κn+1 −→ (κ+ 1) by:

δ(~µ, ν) :=
{
ν̄ if 〈~µ, ν〉 ∈ A and ν̄ is minimal with g(~µ) = fc(ν̄)(ν),
κ otherwise.

Then A = {〈~µ, ν〉 | δ(~µ, ν) < κ ∧ g(~µ) = fc(δ(~µ,ν))(ν)}; hence, setting h(~ζ, ξ, θ) := fc(δ(~ζ,ξ))(θ),

A = {〈~µ, ν〉 | δ(~µ, ν) < κ ∧ g(~µ) = h(~µ, ν, ν)}.

As 〈~γ, κ〉 ∈ F (A), it follows that:

N̂passive |= π(δ)(~γ, κ) < λ ∧ π(g)(~γ) = π(h)(γ, κ, κ).

We have:
JEτ |= ∀~µ, ν < κ δ(~µ, ν) < κ −→ δ(~µ, ν) < ν,

hence
N̂passive |= ∀~µ, ν < λ π(δ)(~µ, ν) < λ −→ π(δ)(~µ, ν) < ν.
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Because π(δ)(~γ, κ) < λ, we know that π(δ)(~γ, κ) < κ. Now let ζ = π(δ)(~γ, κ). Then

N̂passive |= π(g)(~γ) = π(f)π(c)(ζ)(κ).

Obviously π(c) is a surjection from λ onto P(λ) ∩ JE
′

π(β), and for θ < κ:

π(c)(θ) = π(c)(π(θ)) = π(c(θ)), and hence, π(c)(θ) ∩ κ = c(θ) = π(c(θ)) ∩ κ.

So, π(g)(~γ) = π(f)π(c)(~ζ)(κ) = 〈π(c)(ζ), π(c)(ζ) ∩ κ〉 = 〈π(c(ζ)), c(ζ)〉 = 〈F̂ (c(ζ)), c(ζ)〉. Thus,

π(g)(~γ) ∈ F̂ , and because
∀δ, θ < λ π(f)π(c)(δ)(θ) ∈ JE

′

π(β),

it follows that π(g)(~γ) ∈ JE
′

π(β) as well.

For the other direction, let 〈a, b〉 ∈ F̂ ∩ JE
′

π(β). Then

(a) a = π(b).

(b) b ∈ JEβ ∩ P(κ)
(because a = π(b) ∈ π(JEβ ∩ P(κ))).

Hence 〈a, b〉 = π(fb)(κ). Now let γ < κ be minimal such that b = c(γ). For γ < ν < κ, it follows
by definition of Z that

fc(γ)(ν) ∈ Z(ν).

Hence
(γ, κ) ⊆ {ν | fc(γ)(ν) ∈ Z(ν)},

i.e.,
{γ} × (γ, κ) ⊆ {〈β, ν〉 | fc(β)(ν) ∈ Z(ν)},

and correspondingly,

F ({γ} × (γ, κ))︸ ︷︷ ︸
={γ}×(γ,λ)

⊆ F ({〈β, ν〉 | fc(β)(ν) ∈ Z(ν)}).

Hence 〈γ, κ〉 ∈ F ({〈β, ν〉 | fc(β)(ν) ∈ Z(ν)}). This means that π(f)π(c)(γ)(κ) ∈ π(Z)(κ). But

π(f)π(c)(γ)(κ) = 〈π(c)(γ), π(c)(γ) ∩ κ〉 = 〈π(c(γ)), c(γ)〉 = 〈π(b), b〉 = 〈a, b〉.

Hence 〈a, b〉 ∈ π(Z)(κ), as claimed. 2(1)

(2) Let tβ = 〈κ, Zβ〉, where Zβ is defined as in (1). Then the function β 7→ tβ is Σ1(JEτ ).
According to (1), [tβ ] = F̂ ∩ JE

′

π(β).

Proof of (2). Obvious. 2(2)

The next step that has to be done is to express over N the Σ1-satisfaction relation of the
term model ID. So let t1, . . . tn ∈ D be terms, and let a Σ1 formula ψ with n free variables be
given. Let ti = 〈~γi, gi〉. Then by the  Loś theorem for extender products:(

ID |= ψ[~t]
)
⇐⇒

(
〈 ~γ1, . . . , ~γn〉 ∈ F ({〈 ~µ1, . . . , ~µn〉 | JEτ |= ψ[g1( ~µ1), . . . , gn( ~µn)]})

)
.

(3) The relation {〈d, b〉 | ∃n < ω d ∈ (s+)n ∧ b ∈ P(κn) ∩N ∧ d ∈ F (b)} is Σ1(N).
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Proof of (3). Clearly, d ∈ F (b) ⇐⇒ ∃γ∃ξ 〈γ, ξ, d, b〉 ∈ F c; see Definition 3.3. 2(3)

Since the parameters τ and κ are definable over N (using the predicate F c) by a Σ1-formula,
(1) can be transformed into a Σ1-formula. One arrives at:

Lemma 5.11. There are recursive functions d and d s.t. the following holds for every active
pPs-structure N :

(a) Let ϕ(v1, . . . , vn) be a Σ1-formula in the language of N . Then d(ϕ) is a Σ1-formula in the
same language, s.t. for arbitrary ~ξ ∈ OnN ,

N̂ |= ϕ[~ξ] ⇐⇒ N |= d(ϕ)[~ξ].

(b) Let F = ENtop and τ = τ(F ). Let π : JE
N

τ −→F JE
N̂

ν be the canonical embedding, and let
ϕ(v1, . . . , vn) be a Σ1-formula in the language of N . Then for arbitrary 〈~αi, f i〉 s.t. f i ∈ D
and ~αi < s (i = 1, . . . , n):

N̂ |= ϕ[π(f1)(~α1), . . . , π(fn)(~αn)] ⇐⇒ N |= d(ϕ)[〈~α1, f1〉, . . . , 〈~αn, fn〉].

(c) Let ϕ(v1, . . . , vn) be a Σ1-formula in the language L of C̃0(N). Then d(ϕ) is a Σ1-formula
in the same language, s.t. for arbitrary ~ξ ∈ OnN ,

C̃0(N̂) |= ϕ[~ξ] ⇐⇒ C̃0(N) |= d(ϕ)[~ξ].

(d) If N is a ps-structure and ϕ(v1, . . . , vn) is a Σ1-formula in the language L∗ of C0(N)15,
then d(ϕ) is a Σ1-formula in the same language s.t. for arbitrary ~ξ ∈ OnN ,

C0(N̂) |= ϕ[~ξ] ⇐⇒ C0(N) |= d(ϕ)[~ξ].

Proof. Part (a) follows from (1)-(3) and the remark preceding them. For part (b), one just has
to change the beginning of the above argument:

N̂ |= ϕ[π(f1)(~α1), . . . , π(fn)(~αn)]

⇐⇒ ∃β < τ 〈JE
′

π(β), F̂ ∩ JE
′

π(β)〉 |= ϕ[π(f1)(~α1), . . . , π(fn)(~αn)]

⇐⇒ N |= ∃β < τ ∃t1, t2 ∈ D ([t1] = π(JEβ ) ∧ [t2] = F̂ ∩ π(JEβ )

∧ID |= (〈t1, t2〉 |= ϕ[〈~α1, f1〉, . . . , 〈~αn, fn〉])),

Part (c) follows from (a), since one can just use ṡC̃0(N) = ṡC̃0(N̂) as an additional parameter
on both sides. For part (d), one makes use of the fact that in the case of a ps-structure N with
q̇N = 〈a, f〉 we have that q̇C0(N̂) = π(f)(a), where π is defined as in (b). Then it’s clear, using
(b), how to define d(ϕ) for Σ1-formulae in the language L∗.

Now I turn to the translation in the opposite direction.

Lemma 5.12. There is a recursive function c, taking Σ1-formulae of L∗ to Σ1-formulae of L∗,
with the following properties:

1. If ϕ ∈ L, then c(ϕ) ∈ L.

15For the definition of L and L∗, see Def. 3.33 and 3.38
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2. Let ϕ(~x) be a Σ1-formula in L, N a pPs-structure and ~a arbitrary. Then

C̃0(N) |= ϕ[~a] ⇐⇒ C̃0(N̂) |= c(ϕ)[~a].

3. The corresponding statement holds for L∗-formulae. I.e., letting ϕ(~x) be a Σ1-formula in
L∗, N a ps-structure and ~a arbitrary,

C0(N) |= ϕ[~a] ⇐⇒ C0(N̂) |= c(ϕ)[~a].

If N is a model of some language, ϕ(~x) a formula of this language and ~a /∈ |N |, then I let
¬(N |= ϕ[~a]) here.

Proof. If N is passive or active of type III, then nothing has to be shown, since then C̃0(N) =
C̃0(N̂). I.e., in this case, one could set c(ϕ) = ϕ. But this definition by cases must be incorporated
in one uniform definition of c which works uniformly for all pPs-structures. This will be done
at the end of the proof. I first construct the restriction of c to L-formulae. L∗-formulae will be
treated at the end of the proof. So let N = 〈JENα , (F |α)c〉 be active of type I or II, where F be
the top extender of N̂ . So α = s+(α)N̂ . I am going to derive a transformation of ϕ that behaves
as desired in this case.

Let κ = crit(F ), λ = F (κ) and τ = (κ+)N̂ . Then

C̃0(N) |= ϕ[~a] ⇐⇒ ∃δ < α∃F̄ F̄ = (F |α)c ∩ |JE
N

δ | ∧ 〈JE
N

δ , F̄ , κ, s〉 |= ϕ[~a].

Due to the coherency of N with N̂ = 〈JEN̂α′ , F 〉, obviously, JE
N

α = JE
N̂

α . But it must be expressed
over C̃0(N̂) that ξ < α (and this will not be difficult, since in C̃0(N), the constant s is available,
and α = s+N̂ ), and we have to express “F̄ = (F |α)c ∩ |JENδ |”, of course.

One remark is due here: From the proof of the fact that a coherent structure in the sense
of Jensen is always amenable, it can be seen that for ξ < τ necessarily F �|JEN̂ξ | ∈ |N̂ | – see the
proof of [Jen97, chapter 1, p. 11, Lemma 4].

Now let F ′ be the hypermeasure representation of F |α. Keeping definition 3.3, items 3. and
4., in mind, I first define a Σ0-formula ϕ̄1(w, f, z), such that for all u, v ∈ |N̂ |,

u = F ′ ∩ ([s]<ω × v) ⇐⇒ C̃0(N̂) |= ϕ̄1[u, F �c, v],

for some superset c of v with F �c ∈ |N | (and then for every such superset). Set:

ϕ̄1 := (w ⊆ V2 ∧ ∀〈b, y〉 ∈ w (b ∈ [s]<ω ∧ y ∈ z ∧ b ∈ f(y)) ∧
∧∀〈b, y〉 ∈ [s]<ω × z (b ∈ f(y) −→ 〈b, y〉 ∈ w)).

Obviously, ϕ̄1 has the desired properties.
In order to be able to express item 3. of Definition 3.3 rigorously, I introduce the following

function from [MS94, P. 9, 2nd Remark]: For ξ < τ , γξ is the least ordinal γ s.t.

F ′ ∩ ([s]<ω × |JE
N

ξ |) ∈ |JE
N

γ |.

At the place cited above, it is shown that 〈γξ | ξ < τ〉 is cofinal in s+ := ht(N).
I now want to define a Σ0-formula ϕ̄2(f, g, v1, v2) with the following property: Let ξ, δ ∈ OnN̂

and G = JE
N̂

�λ. Then

δ = γξ ⇐⇒ C̃0(N̂) |= ϕ̄2[F �G(ξ), G, δ, ξ].
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If such a formula is true, it follows in particular that ξ < τ . It will be defined by:

ϕ̄2(f, g, v1, v2) := ∃w ∈ g(v1) (ϕ̄1(w, f, g(v2)) ∧ ∀δ̄ < δ w /∈ |g(δ̄)|).

Thus, one finally sees that for F̄ ∈ |N̂ |, F̄ = (F |α)c ∩ |JEN̂µ | ∈ |N̂ | iff

C̃0(N̂) |= ∃θ ∃δ ∃f ∃g

(1)

γθ ≥ ωµ, so
that f ⊃ F �θ
knows enough
about F .


(
g = JE

N

�λ ∧ f = F �|g(θ)|∧

∧δ ≥ ωµ ∧ ϕ̄2(f, g, δ, θ)︸ ︷︷ ︸
γθ=δ

∧

(2) F̄ ⊆ (F |α)c ∩ |JEN̂µ |.



∧
(
∀y ∈ F̄ ∃γ, ξ, a, x ∈ Cn(y)

(
y = 〈γ, ξ, a, x〉∧

∧γ > s ∧ crit(F ) < ξ < τ∧
∧∃w ∈ |g(γ)| ϕ̄1(w, f, g(ξ))︸ ︷︷ ︸

w=F ′∩([s]<ω×JE
N̂

ξ )

∧

∧a ∈ [γ]<ω ∧ x ∈ |g(ξ)| ∧ a ∈ f(x)
))

(3) (F |α)c ∩ |JEN̂µ | ⊆ F̄ .



∧∀〈γ, ξ, a, x〉 ∈ |g(µ)|((
γ > ṡ ∧ crit(F ) < ξ < τ∧
∧∃w ∈ |g(γ)| ϕ̄1(w, f, g(ξ))∧
∧a ∈ [γ]<ω ∧ x ∈ g(ξ) ∧ a ∈ F (x)

)
−→

−→ 〈γ, ξ, a, x〉 ∈ F̄
))

.

I leave the verification that this formula works to the reader. Call it ψ(F̄ , µ), and set:

c(ϕ(~x)) := ((ṡ 6= ∅ ∧ ∃F̄∃µ ψ(F̄ , µ) ∧ ϕ
〈JEN̂µ ,F̄ ,κ,s〉

(~x))

∨(ṡ = ∅ ∧ ϕ(~x))).

The question whether ṡ = ∅ decides here whether C̃0(N) = C̃0(N̂). If this formula is true in
C̃0(N̂), any µ making it true will automatically be less than α. But instead of verifying this,
it would do no harm to demand in addition: ∃h Funk (h) ∧ dom(h) = ṡ ∧ ran(h) = µ. It is
obvious that this definition of c behaves as wished for pPs-structures.

In the following, I show how to expand c to Σ1 formulae in the language L∗. Corresponding
to the case of pPs-structures, for an active ps-structure N of type II (this is the only case in
which C0(N) differs substantially from C̃0(N)) of height α, and a Σ1 formula ϕ in L∗, we have:

C0(N) |= ϕ[~a] ⇐⇒ ∃δ < α∃F̄∃q̄ F̄ = Ḟ C0(N) ∩ |JE
N

δ | ∧ q̄ = q̇C0(N) ∧
∧〈JE

N

δ , F̄ , κ, s, q̄〉 |= ϕ[~a].

If it is clear how to express “x = q̇C0(N)” uniformly by a Σ1 formula over C0(N̂), it is obvious
how to define c.

For 〈a, f〉, 〈b, g〉 ∈ Γ′(N) let

a〈a,f〉,〈b,g〉 := {c ∈ [κ]n | fa,a∪b(c) = gb,b∪c(c)},
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where fa,a∪b and gb,b∪c arise from adding the right “dummy”-variables to f and g; see [Ste00, S.
4f]. Let n be the cardinality of a ∪ b. Then (in the terminology from definition 3.37):

(a) Let 〈a, f〉 ∈ Γ′(N), and let θ be minimal s.t. f ∈ |JENθ | (hence θ < τ(N)). Let 〈b, g〉 ≺N
〈a, f〉. Then a〈a,f〉,〈b,g〉 ∈ |JE

N

θ+1|.

Proof of (a). As 〈b, g〉 ≺N 〈a, f〉, g ≤N f , and hence g ∈ |JENθ |. For the definition of a〈a,f〉,〈b,g〉
no exact knowledge of a and b is necessary, it suffices to know how a lies in b. There are only
finitely many possibilities for this. Hence a〈a,f〉,〈b,g〉 are definable from f and g, and so they are
elements of JE

N

θ+1. 2(a)

(b) Let q̇C0(N̂) be the ζ-th element of |N̂ | with respect to <N . Then ζ < λ.

Let f : κ −→ |JENκ | be defined by:

f(γ) = the γ -th element of |JE
N

κ wrt. <JENκ
.

Then πN̂λ (f)(ζ) = q̇C0(N̂).

Proof of (b). q̇C0(N̂) can be coded as an element of P(P(ξ)), where ξ = maxCN̂ . But P(P(ξ))∩
|N̂ | ⊆ |JEξ++ |N̂ . Since ξ < s(N) < λ, and λ is a limit cardinal in N̂ , it follows that q̇C0(N) ∈ |N̂ ||λ|,
from which we can deduce that ζ < λ.

The second part of the claim is obvious. f ∈ |N ||τ |, since it is definable in N ||κ. 2(b)

Hence 〈g, b〉 is the ≺N -minimal element of Γ′(N) s.t. πNs (g)(b) = q̇C0(N̂) (i.e.: 〈g, b〉 = q̇C0(N))
iff ξ,H,R, f, s+ and ζ exist in |N̂ |, so that the conjunction of the following statements is true in
C0(N̂):

1. s+ = (ṡC0(N̂ ||λ))+N̂ and ζ, f are defined as in (b).

2. There is an n < ω, s.t. g : [κ]n −→ |N̂ ||τ | and b ∈ [s+]n.

3. ξ < τ and f, g ∈ |N̂ ||ξ|.

4. H = Ḟ C0(N̂)�|N̂ ||ξ + 2|.

5. R =<
JEN̂τ

.

6. b ∪ {ζ} ∈ H(a〈b,g〉,〈{ζ},f〉).

7. for all functions h ∈ |N̂ ||τ | with dom(h) = [κ]n for some n < ω, and for all c ∈ [s+]<ω, we
have:

((h = g ∧ c <lex b) ∨ gRh) −→ c ∪ b /∈ H(a〈c,h〉,〈b,g〉).

This corresponds to a Σ1 formula in L∗. Thus it is clear how to expand c to Σ1 formulae in L∗,
and the proof is complete.
Remark 5.13. The proof made extensive use of the fact that in the active type I- or II-case the
constant s(ENtop) is available in C̃0(N̂).

39



5.3 Σ1-definability from N to Λ(N)

Definition 5.14. For an ordinal α, we set:

α−̇1 =
{
ᾱ if α = ᾱ+ 1,
0 if α is a limit or α = 0.

Lemma 5.15. There are Σ1 formulae ϕV(x, y), ϕE(x, y), ϕF (x) such that for every pPλ-structure
M = 〈JEα , F,DM 〉 with α > 1, for which S(M) is defined, we have:

(a) |Ŝ(M)| = {z |M |= ϕV[z, α−̇1]}.

(b) E Ŝ(M) = {z |M |= ϕE [x, α−̇1])}.

(c) E
Ŝ(M)
top = {z |M |= ϕF [z]}.

Here, let Ŝ(M) = 〈|Ŝ(M)|, E Ŝ(M), E
Ŝ(M)
top 〉.

Moreover, 〈E ̂S(M ||γ) | γ < ht(M)〉 and 〈| ̂S(M ||γ)| : γ < ht(M)〉 are uniformly Σ1(M).

Proof. Define for β ≤ α:
F (β) := ̂S(M ||β).

Let F (β) = 〈|F (β)|, EF (β), E
F (β)
top 〉.

(1) There are Σ1 formulae χ(z, w, y) and ψ(z, w, x, y), so that for β < α and F (β) ∈ |JEβ+1|,

(a) |F (β + 1)| = {z | JEβ+1 |= ψ[z, β, |F (β)|, EF (β)]}.

(b) EF (β+1) = {z | JEβ+1 |= χ[z, β, EF (β)]}.

Proof of (1). I will just present formulae that work. The verifications are standard.

ψ ≡ ∃n∃s+∃ẽ∃e∃f
(e = Eωw ∧ ((e 6= ∅ ∧ s+ = s+(〈JEw , e〉)) ∨ (e = ∅ ∧ s+ = ht(x))) ∧
∧ẽ = y ∪ {〈s+, b, a〉 | ∃n < ω b ⊆ [crit(e)]n ∧ a ∈ [s+]n ∧ Ė(〈ωw, a, b〉)}
∧f is a function ∧ dom(f) = s+ + n+ 1 ∧ f(0) = ∅ ∧
∧∀γ + 1 ∈ dom(f) f(γ + 1) = S ẽ(f(γ)) ∧
∧∀λ ∈ dom(f) (Lim(λ) −→ f(λ) =

⋃
ξ<λ

f(ξ)) ∧

∧z ∈ f(s+ + n)).

χ ≡ z ∈ y ∨ (∃s+∃e (e = Eωw ∧ e 6= ∅ ∧ s+ = s+(〈JEw , e〉) ∧
∃n < ω ∃b ∃a b ⊆ [crit(e)]n ∧ a ∈ [s+]n ∧ a ∈ e(b) ∧ z = 〈s+, b, a〉))

(2) EF (β) and |F (β)| are elements of |M ||β+ 1|, and there are Σ1 formulae ψ′ and χ′, so that

(a) In JEβ , 〈|F (γ)| : γ < β〉 is defined by ψ′.

(b) In JEβ , 〈EF (γ) | γ < β〉 is defined by χ′.
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Proof of (2). For γ < β,

u = |F (γ)| ⇐⇒ JEβ |= ∃f∃g (ψ̃(f) ∧ χ̃(g) ∧ u = f(γ))︸ ︷︷ ︸
ψ′(u,γ)

and

t = EF (γ) ⇐⇒ JEβ |= ∃f∃g (ψ̃(f) ∧ χ̃(g) ∧ t = g(γ))︸ ︷︷ ︸
χ′(t,γ)

,

where ψ̃ and χ̃ are the following formulae:

ψ̃(f) ≡ (f is a function ∧
∧dom(f) ∈ On ∧ f(0) = ∅ ∧
∧∀ν + 1 ∈ dom(f) (f(ν + 1) = {z | JEν+1 |= ψ(z, ν, f(ν), g(ν)}) ∧

∧∀λ ∈ dom(f) (Lim(λ) −→ f(λ) =
⋃

ωξ∈D〈JE
λ
,∅〉

f(ξ))),

χ̃(g) ≡ (g is a function ∧
∧dom(g) ∈ On ∧ g(0) = ∅ ∧
∧∀ν + 1 ∈ dom(g) (g(ν + 1) = {z | JEν+1 |= χ(z, ν, g(ν)}) ∧

∧∀λ ∈ dom(g) (Lim(λ) −→ g(λ) =
⋃

ωξ∈D〈JE
λ
,∅〉

g(ξ))).

The proof that these formulae behave as desired proceeds by induction on β. For the successor
step, one uses (1), and the limit step is obvious. 2(2)

Now the formulae ϕV, ϕE and ϕF can be defined. Built into these formulae is a distinction
between the case that α is a limit and the case that it is a successor. This can be seen from the
parameter α−̇1 which equals 0 precisely when α is a limit - note that α > 1. This parameter
is substituted for the free variable y. Again, I will just present the formulae. It is obvious that
they are as wished.

ϕV ≡ (y = ∅ ∧ ∃γ∃u (Ḋ(ωγ) ∧ ψ′(u, γ) ∧ z ∈ u)) ∨
∨ (y 6= ∅ ∧ ∃e∃u χ′(e, y) ∧ ψ′(u, y) ∧ ψ(z, y, u, e)),

ϕE ≡ (y = ∅ ∧ ∃γ∃e (Ḋ(ωγ) ∧ χ′(e, γ) ∧ z ∈ e) ∨
∨ (y 6= ∅ ∧ ∃e χ′(e, y) ∧ χ(z, y, e)),

ϕF ≡ Ḟ (z).

Lemma 5.16. There are functions ĝ and g with the following property: If M = 〈JEα , F,D〉
(α > 1) is a pPλ-structure for which N = S(M) is defined, and if ϕ is a Σ1 formula, then ĝ(ϕ)
and g(ϕ) are Σ1 formulae such that for arbitrary ~x, the following holds:

(a) If ϕ is a formula in the language of N̂ , then ĝ(ϕ) is a formula in the language of M , and

N̂ |= ϕ[~x] ⇐⇒ M |= ĝ(ϕ)[~x, α−̇1].
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(b) If ϕ is a formula in the language of C̃0(N̂), then ĝ(ϕ) is a formula in the language of C̃0(M),
and

C̃0(N̂) |= ϕ[~x] ⇐⇒ C̃0(M) |= ĝ(ϕ)[~x, α−̇1].

(c) If M is a pλ-structure, and ϕ is a formula in the language of C0(N̂), then ĝ(ϕ) is a formula
in the language of C0(M), and

C0(N̂) |= ϕ[~x] ⇐⇒ C0(M) |= ĝ(ϕ)[~x, α−̇1].

(d) If ϕ is a formula in the language of C̃0(N), then g(ϕ) is a formula in the language of C̃0(M),
and

C̃0(N) |= ϕ[~x] ⇐⇒ C̃0(M) |= g(ϕ)[~x, α−̇1].

(e) If M is a pλ-structure and ϕ is a formula in the language of C0(N), then g(ϕ) is a formula
in the language of C0(M), and

C0(N) |= ϕ[~x] ⇐⇒ C0(M) |= g(ϕ)[~x, α−̇1].

Proof. I will first deduce how to define ĝ(ϕ) in the case that ϕ is a Σ1-formula in the language
of N̂ . If ht(M) is a limit, then

N̂ |= ϕ[~x] ⇐⇒ ~x ∈ |N̂ | ∧

∃ωα ∈ D 〈| ̂S(M ||α)|, E ̂S(M ||α), F ∩ | ̂S(M ||α)|〉 |= ϕ[~x],

and if α = ᾱ+ 1 is a successor ordinal, then E
̂S(M ||α) = ES(M ||α) = ES(M ||ᾱ) ⊆ E

̂S(M ||ᾱ) ∈ |JEα |,
and so in this case,

N̂ |= ϕ[~x] ⇐⇒ ~x ∈ |N̂ | ∧ ∃u, e, ẽ ∈ |M | u ∈ |N̂ | ∧ u is transitive ∧

∧ẽ = E
̂S(M ||ᾱ) ∧ e = ẽ ∩ u ∧ 〈u, e, ∅〉 |= ϕ[~x].

Using the formulae ϕV, χ′ and ψ′ from the previous lemma 5.15, this is expressible over M , as
desired – again, I use the parameter α−̇1, to decide whether α is a limit or not:

N̂ |= ϕ[~x] ⇐⇒ M |= (α−̇1 = ∅ ∧ ∃e∃ẽ∃f∃u∃γ
(Ḋ(ωα) ∧ ψ′(u, α) ∧ χ′(ẽ, α) ∧ f = F ∩ u ∧ e = ẽ ∩ u
〈u, e, f〉 |= ϕ[~x])

∨(α−̇1 6= ∅ ∧ ∃e∃ẽ∃u
χ′(ẽ, α−̇1) ∧ ϕV(u, α−̇1) ∧ u is transitive
e = ẽ ∩ u ∧ 〈u, e, ∅〉 |= ϕ[~x]).

The definition of ĝ(ϕ) can be read off this formula.
The additional constants in the languages of the structures C̃0(M) and C̃0(N̂), or C0(M) and

C0(N̂), are interpreted in these structures in the same way, so that they can be treated like
additional parameters. It is obvious how to expand ĝ to act on the larger class of formulae.

Now the function c from lemma 5.12 can be used:

g := ĝ ◦ c.

The so-defined function g does what we asked for. Note that c always yields formulae in the
language of C̃0(N̂) or C0(N̂).
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5.4 Σ1-Definability from M to S(M)

The formulation of the following is a bit technical, in order to set up everything for its proof.
What is applied later on for the most part are the Corollaries 5.18, 5.19 and 5.20.

Lemma 5.17. Let M = 〈JEν , Eων , DM 〉 be a pPλ-structure, for which S(M) is defined. For
α ≤ ν let

oα = ht(S(M ||α)) and ôα = ht( ̂S(M ||α)).

Then there are sequences 〈eµα | 〈µ, α〉 ∈ S〉 and 〈êµα | 〈µ, α〉 ∈ Ŝ〉 with the following properties:

(a) S = {〈µ, α〉 | µ ≤ ν ∧ α ≤ oµ} and Ŝ = {〈µ, α〉 | µ ≤ ν ∧ α ≤ ôµ}. In order to simplify the
notation, I shall write, for µ ≤ ν:

eµ = 〈eµα | α ≤ oµ〉 êµ = 〈êµα | α ≤ ôµ〉
eµ = eµ�oµ êµ = êµ�ôµ
eµtop = eµoµ êµtop = êµôµ

S(M ||µ)+ := 〈S(M ||µ), eµ〉 ̂S(M ||µ)+ := 〈 ̂S(M ||µ), êµ〉.

(b) eµα, ê
µ
α ∈ ω, if defined. Identifying natural numbers with recursive functions, and presup-

posing a recursive coding of formulae by natural numbers, for every formula ϕ with free
variables x1, . . . , xn in the language of M , and for all µ ≤ ν, ~ξ < ω · oµ,

(M ||µ) |= ϕ[ξ1, . . . , ξn] ⇐⇒ S(M ||µ)+ |= eµtop(ϕ)[ξ1, . . . , ξn, pµ],

and for ~ξ < ω · ôα,

(M ||µ) |= ϕ[ξ1, . . . , ξn] ⇐⇒ ̂S(M ||µ)
+
|= êµtop(ϕ)[ξ1, . . . , ξn, pµ],

where, pµ = oµ−̇1. In particular, eµtop(ϕ) is a formula in the language of S(M ||µ)+, and
the corresponding applies to êµα. Also, êµtop and eµtop map Σ1-formulae to Σ1-formulae.

(c) For µ+ 1 ≤ ht(M), eµ+1 = eµ = êµ+1 and eµ+1 = êµ+1. For limits µ ≤ ht(M),

eµ =
⋃

ωα∈D∗
M||µ

eα, and êµ =
⋃

ωα∈DM||µ

eα.

(d) eµ, and êµ are Σ1(S(M ||µ)), and Σ1( ̂S(M ||µ)), respectively. eµtop and êµtop are uniformly

Σω(S(M ||µ)), Σω( ̂S(M ||µ)), respectively.

Before beginning the proof of this lemma, let’s note a useful consequence:

Corollary 5.18. Let M be a pPλ-structure, whose N = S(M) exists. Then there is a sequence
FN = 〈fNµ | µ ≤ ht(N)〉 of functions from ω to ω with the following properties (in the following,
we write fµ for fNµ ):

(a) Λ(N ||µ) |= ϕ[~ξ] ⇐⇒ N ||µ |= fµ(ϕ)[~ξ, µ−̇1], where ~ξ < ωµ.

(b) fµ(ϕ) is a Σ1-formula, if ϕ is.

(c) fµ is uniformly Σω(N ||µ).
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(d) F = {〈n,m, γ〉 | n = fγ(m) ∧ γ < ht(N)} is uniformly Σ1(N).

Analogously, there exists a sequence F̂N = 〈f̂Nµ | µ ≤ ht(N̂)〉 of functions from ω to ω with
the properties

(a’) Λ(N ||µ) |= ϕ[~ξ] ⇐⇒ N̂ ||µ |= f̂µ(ϕ)[~ξ, µ−̇1], where ~ξ < On
N̂ ||µ.

(b’) If ϕ is a Σ1-formula, then so is f̂µ(ϕ).

(c’) f̂µ is uniformly Σω(N̂ ||µ).

(d’) F̂ = {〈n,m, γ〉 | n = f̂γ(m) ∧ γ < ht(N̂)} is uniformly Σ1(N̂).

Here, f̂µ stands for f̂Nµ .

Proof. I construct the sequence FN ; the construction of F̂N is analogous. Let µ ≤ ht(N), and
let N ||µ = S(M ||β). In the notation of the previous Lemma 5.17, define fµ(ϕ), by replacing
every occurrence of eβγ (γ < µ) in the formula eβtop(ϕ) by its Σ1-definition over N ||γ. This yields
a Σ1-formula by Lemma 5.17(d), from which the uniform definability of fµ follows as well. So
(a)-(c) are obviously satisfied. Note that pβ = µ−̇1.

Now let χ be the uniform definition from (c), i.e., for µ ≤ ht(N) and m,n ∈ ω,

n = fµ(m) ←→ N ||µ |= χ[n,m].

In order to see (d), note that the above means:

N |= (N ||µ |= χ[n,m]),

i.e. N |= χN ||µ[n,m], and this means that the relation F is Σ1(N).
Proof of Lemma 5.17. I construct the sequences eµ and êµ by recursion on µ.

Case 0: µ = 0.
This case is trivial, and the definition of e0

0, ê0
0 is irrelevant.

Case 1: µ = 1.
In this case, DM = {∅}, and it suffices to define eµ1 = êµ1 by setting:

eµ1 (ϕ(~x)) = ϕ∗(~x),

where ϕ∗ results from replacing every occurrence of Ḋ(v) in ϕ with v = ∅; thus, the constant eµ0
does not occur in eµ1 (ϕ).

Case 2: µ = µ̄+ 1.
According to (c), in this case êµ = eµ and eµ = eµ̄. So one merely has to define eµ̄+1, and

this means one has to define eµ̄+1
top , because oµ = oµ̄ + 1. For then the domain of eµ̄+1 is oµ + 1,

as demanded; eµ̄+1 = eµ̄.
Case 2.A: M ||µ̄ is active and s+(µ̄)M < µ̄.
Let F = Eµ̄, Ē = E�ωµ̄. First, let ϕ be a Σ1−formula. Then DM ||µ = DM ||µ̄ \ (s+(µ̄)M , µ̄).

For the sake of readability, I carry out the following construction only for formulae with but one
free variable x, i.e., ϕ = ϕ(x); the general case is not more complicated in principle, writing it
down explicitly causes some additional trouble, though. So let ξ < ωoµ = ω(oµ̄+1) = s+(µ̄)M+ω.
Setting M̃ := 〈JEµ , ∅, DM ||µ̄〉,

(M ||µ) |= ϕ[ξ] ⇐⇒ M̃ |= ϕ′[(x/ξ), (y/µ̄)],
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where
ϕ′ = (∃γ (γ = s+(µ̄))M ||µ̄ ∧ ϕ̃)

and ϕ̃ results from replacing every occurrence of ”D(ζ)“ in ϕ with ”(D(ζ) ∧ ζ ≤ γ)“. Obviously
then ϕ′ is still a Σ1−formula, albeit in the parameter µ̄. To be precise, ϕ′ still has to be
transformed into prenex normal form, but this can be done effectively.

In the case that ξ ∈ [s+(M ||µ̄), s+(M ||µ̄) + ω), I introduce a new variable as follows:

ϕ∗ := ϕ′(x/γ+w).

I.e., every occurrence of x in ϕ′ is replaced with γ+w, where w is a new variable. More precisely,
ϕ∗ is a Σ1-formula which is equivalent to this substitution. It is clear that this transformation
can be carried out effectively. The purpose of this transformation is that now, setting ξ =
s+(M ||µ̄) + n,

M ||µ |= ϕ[ξ] ⇐⇒ M̃ |= ϕ∗[(y/µ̄), (w/n)];

this is only true in case ξ ≥ s+(M ||µ̄), though.
Now let

ϕ′ = ∃z ϕ′0 and ϕ∗ = ∃z ϕ∗0,

where ϕ′0 and ϕ∗0 are Σ0-formulae. Using Lemma 5.7, we get:

M ||µ |= ϕ[ξ]
⇐⇒ (ξ < s+(M ||µ̄) ∧ M̃ |= ϕ′[(x/ξ), (y/µ̄)])

∨ (ξ = s+(M ||µ̄) + n ∧ M̃ |= ϕ∗[(y/µ̄), (w/n)])

⇐⇒ (ξ < s+(M ||µ̄) ∧ M̃ |= ∃z ϕ′0[(x/ξ), (y/valĒ,F [cOn](|M ||µ̄|))])

∨ (ξ = s+(M ||µ̄) + n ∧ M̃ |= ∃z ϕ∗[(y/valĒ,F [cOn](|M ||µ̄|)), (
w/n)])

⇐⇒ ∃c ∈ C(Ė, Ḟ ) (c codes a 2-ary function ∧
((ξ < s+(M ||µ̄) ∧M ||µ̄ |= ∃x0 Tλ(ϕ′0, z, c, 〈x0,Φ〉, y, cOn,Φ)[(x/ξ)])

∨ (ξ = s+(M ||µ̄) + n ∧M ||µ̄ |= ∃x0 Tλ(ϕ∗0, z, c, 〈x0,Φ〉, y, cOn,Φ)[(w/n)]))).

But this is equivalent to:

∃ψ ∃c ∈ C(Ė, Ḟ )
(
c codes a 2-ary function ∧

((ξ < oµ̄ ∧
ψ = Tλ(ϕ′0, z, c, 〈x0,Φ〉, y, cOn,Φ) ∧ S(M ||µ̄)+ |= eµ̄top(∃x0 ψ)[(x/ξ)]) ∨

(ξ = oµ̄ + n ∧
ψ = Tλ(ϕ∗0, z, c, 〈x0,Φ〉, y, cOn,Φ) ∧ S(M ||µ̄)+ |= eµ̄top(∃x0 ψ)[(w/n)]))

)
,

which can be written as

S(M ||µ)+ |= ∃ψ ∃c ∈ C(Ė, Ḟ )
(
c codes a 2-ary function ∧

((ξ < oµ̄ ∧
ψ = Tλ(ϕ′0, z, c, 〈x0,Φ〉, y, cOn,Φ) ∧
(S(M ||µ)+||oµ̄) |= eµ̄top(∃x0 ψ)[(x/ξ)]) ∨

(ξ ≥ oµ̄ ∧
ψ = Tλ(ϕ∗0, z, c, 〈x0,Φ〉, y, cOn,Φ) ∧
(S(M ||µ)+||oµ̄) |= eµ̄top(∃x0 ψ)[(w/ξ−oµ̄)]))

)
.
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As eµ̄top = eµoµ̄ , this formula can now be used as the definition of eµtop for Σ1−formulae. The
model S(M ||µ)+||oµ̄ is to be understood as 〈JE′oµ̄ , E

′
ωoµ̄ , e

µ�oµ̄〉, if S(M ||µ) = 〈JE′oµ , ∅〉. Hence,
S(M ||µ)+||oµ̄ = S(M ||µ̄)+.

Note that no parameters are used in eµ̄top(χ), since in the current case, µ̄ is a limit – see
the definition of pµ in (b). Moreover, S(M ||µ)+||oµ̄ obviously is Σ1(S(M ||µ)+) in oµ̄, as is the
definition of the satisfaction relation for elements of S(M ||µ). The reason why S(M ||µ)+||oµ̄ =
S(M ||µ̄)+ ∈ S(M ||µ) is that eµ̄ is Σ1(S(M ||µ̄)), by (d). This way, it follows that S(M ||µ̄)+ is
amenable. This is because eα is Σ1(S(M ||α)), for α < µ. Hence eµ̄top(χ) is a Σ1-formula if χ is.
Note also that pµ = oµ̄, so that the right parameter is used in the formula eµtop(ϕ).

Now let’s turn to the general case that ψ(~x) is a Σn-formula, for n > 1. Let ψ have the form

ψ(~x) ≡ Q1y1 . . . Qnynϕ(~ξ, ~y),

where ϕ is Σ1 and every Qi is either ∀ or ∃. Then

(M ||µ) |= ψ[ξ] ⇐⇒ Q1a1 ∈ |M ||µ| . . . Qnan ∈ |M ||µ| (M ||µ) |= ϕ[~ξ,~a]

⇐⇒ Q1
~ζ1 < otp(DM ||µ)Q1p1 < ω . . .

. . . Qn~ζ
n < otp(DM ||µ)Qnpn < ω

(M ||µ) |= ϕ[~ξ, h1
M ||µ(~ζ1, p1), . . . , h1

M ||µ(~ζn, pn)]

⇐⇒ Q1
~ζ1 < oµQ1p1 < ω . . .Qn~ζ

n < oµQnpn < ω

(M ||µ) |= ϕ̄[~ξ, ~~ζ, ~p]

⇐⇒ Q1
~ζ1 < oµQ1p1 < ω . . .Qn~ζ

n < oµQnpn < ω

S(M ||µ)+ |= eµtop(ϕ̄)[~ξ, ~~ζ, ~p, oµ̄]

⇐⇒ S(M ||µ)+ |= Q1
~ζ1 < oµ̄ + 1Q1p1 < ω . . .

. . . Qn~ζ
n < oµ̄ + 1Qnpn < ω eµtop(ϕ̄)[~ξ, ~~ζ, ~p, oµ̄]

def⇐⇒ S(M ||µ)+ |= eµtop(ψ)[~ξ, oµ̄].

Here, Lemma 4.5 was essential. The map eµtop is then recursive. Now define c0 ∈ ω by

c0 := eµtop,

where I again identify recursive functions with natural numbers, so c0 ∈ ω.
Case 2.B: M ||µ̄ is active and s+(µ̄)M = µ̄(= oµ̄), or M ||µ̄ is passive and oµ̄ = ωµ̄.
Again, let F = Eµ̄ and Ē = E�ωµ̄. In this case, DM ||µ = DM ||µ̄ ∪{ωµ̄} and oµ = oµ̄ + 1. Let

ξ < ωoµ, and let ϕ(x) be a Σ1-formula. Let M̃ := 〈JEµ , ∅, DM ||µ̄〉. Then

(M ||µ) |= ϕ[ξ] ⇐⇒ M̃ |= ϕ′[ξ, ωµ̄],

where ϕ′ results from replacing every occurrence of ”D(γ)“ in ϕ with ”D(γ) ∨ γ = ωµ̄“. Note
that in the current case, ωoµ̄ = oµ̄ = µ̄ = valĒ,F [cOn](|M ||µ̄|). The rest of the construction
works as in case 2.A. Set:

c1 := eµtop.

Case 2.C: M ||µ̄ is passive and oµ̄ < ωµ̄.
Just as in case 2.B, we have DM ||µ = DM ||µ̄ ∪ {ωµ̄}. Again, let ϕ(x) be a Σ1-formula, and

let ξ < ωoµ = ωoµ̄ + ω. Then

(M ||µ) |= ϕ[ξ] ⇐⇒ 〈JEµ , ∅, DM ||µ̄〉 |= ϕ′[ξ, ωµ̄],
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where ϕ′ is defined as in case 2.B. But now, ωoµ̄ = valĒ,F [π1
0 ](ωoµ̄). The rest of the construction

works as in case 2.A. Set:
c2 := eµtop.

Case 3: µ is a limit.
Then the definition of eµ and êµ is prescribed by (c). It remains to define eµtop and êµtop.

In the definition of eµtop(ϕ), I will stick to the case that ϕ is a Σ1-formula. The expansion to
arbitrary formulae is as in case 2.A. It is essential here that |M ||µ| = h1

M ||µ(D∗M ||µ).
Case 3.A: M ||µ is passive.
Then DM ||µ = D∗M ||µ and oµ = otp(DM ||µ). In this case, S(M ||µ) = ̂S(M ||µ), and one

can set: êµtop := eµtop. I concentrate on the definition of eµtop. Let ϕ(~x) be a Σ1-formula and
~ξ < ωoµ. Since, by Lemma 3.17, DM is unbounded in OnM ||µ, one can argue as follows (I will
give additional explanations below):

(M ||µ) |= ϕ[~ξ]

⇐⇒ ∃ζ < otp(DM ||µ)∃δ ωδ = η
M ||µ
ζ+1 ∧ (M ||µ)|(|M ||δ|) |= ϕ[~ξ]

⇐⇒ ∃ζ < otp(DM ||µ)∃δ ωδ = η
M ||µ
ζ+1 ∧ (M ||δ) |= ϕ[~ξ]

⇐⇒ ∃ζ < otp(DM ||µ)∃δ ωδ = η
M ||µ
ζ+1 ∧ S(M ||δ)+ |= eδtop(ϕ)[~ξ, pδ]

⇐⇒ ∃ζ < otp(DM ||µ)∃δ ωδ = η
M ||µ
ζ+1 ∧ S(M ||δ)+ |= eµζ+1(ϕ)[~ξ, ζ]

⇐⇒ ∃ζ < otp(DM ||µ)∃δ ωδ = η
M ||µ
ζ+1 ∧ (S(M ||µ)+||ζ + 1) |= eµζ+1(ϕ)[ ~ξ, ζ]

⇐⇒ S(M ||µ)+ |= (∃ζ S(M ||µ)+||(ζ + 1) |= eµζ+1(ϕ)[~ξ, ζ])︸ ︷︷ ︸
eµtop(ϕ)

Moving from the second line to the third line, note that by coherency, DM ||µ∩ωδ = DM ||δ, where
I let ωδ := η

M ||µ
ζ+1 . Moreover, M ||δ is passive, for otherwise it would follow that δ = ωδ = η

M ||µ
ζ+1

and s+(δ)M = δ (or else δ /∈ DM ||µ), which cannot be, by Lemma 3.20, as then δ would have
to be a limit point of DM ||µ. When moving from line four to line five, I used that eµζ+1 = eδtop,

where, again, ωδ = η
M ||µ
ζ+1 . To see this, note a property of 〈eα | α ≤ ν〉, which can be verified by

induction:

(∗) Let µ ≤ ν and eµ already defined, so that conditions (a)-(d) are satisfied. Let ωα, ωβ ∈
DM ||µ. Then eα ⊆ eβ ⊆ eµ.

Since by Lemma 3.20, ωδ 6= s+(γ)M , for all γ ≤ ωµ, it follows by Lemma 3.19 that ηM ||µζ+2 = ωδ+ω,
hence that ω(δ + 1) ∈ DM ||µ. Thus by (∗):

eδ+1 ⊆ eµ.

But by (c), eδ+1 = eδ, and hence,
eµζ+1 = eδtop,

as wished, because eδtop = eδoδ , and, due to Corollary 4.5,

oδ = otp(DM ||δ) = otp(DM ||µ ∩ ωδ) = ζ + 1;

note that ηM ||µ�ζ + 1 is the monotone enumeration of DM ||µ ∩ η
M ||µ
ζ+1 . For the same reason,

pδ = oδ−1 = ζ; it is obvious that δ is a successor ordinal, as otherwise oδ = ζ + 1 would have to
be a limit ordinal.
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Finally, let me justify the transition from the fifth to the sixth line. Firstly,

(S(M ||µ)+)||(ζ + 1) := 〈S(M ||µ)||ζ + 1, eµ�ζ + 1〉.

That this structure is the same as S(M ||ζ + 1)+ is a consequence of (∗). Since the expansion of
eµtop to arbitrary Σω-formulae is unproblematic, this case is complete. Set:

c3 := eµtop,

so c3 ∈ ω.
Case 3.B: M ||µ is active.
In this case, eµ and êµ have to defined one by one. I start with êµ. Let F = EMµ . The

definition of êµ is determined by (c). It remains to define êµtop. Let S((M ||µ)passive) = 〈JE′µ , ∅〉.
Then by definition 4.1, case 3, (a) and (c), ̂S(M ||µ) = 〈JE′µ , F 〉. By (b), | ̂S(M ||µ)| = |M ||µ|. Let

ϕ(~x) be a Σ1-formula. Then, letting N̂ := ̂S(M ||µ),

M ||µ |= ϕ[~a]

⇐⇒ N̂ |= ∃α∃f∃d∃Q
(N̂ ||α is passive ∧ “ Q = Λ(N̂ ||α)− ” ∧ f = Ḟ ∩ |Q| ∧
∧d = DQ ∧ 〈Qpassive, f, d〉 |= ϕ[~x])

def⇐⇒ N̂ |= ϕ′[~a],

since {ht(Λ(N̂ ||α)) | α < ht(N̂)} is unbounded in µ. Moreover, for α < µ, if N̂ ||α is passive, then
DΛ(N̂ ||α)− = DM ∩ ωα. By Lemma 4.15 (part d), “Q = Λ(N̂ ||α)” is Σ1(N̂), hence ϕ′ Σ1(N̂).
Hence define:

êµtop(ϕ) = ϕ′.

This defines êµtop�{Σ1 − formulae }.
For formulae of arbitrary complexity, I now define inductively a preliminary function t that

has all the desired properties, except the preservation of Σ1-formulae. Finally, it is only applied
to formulae of higher complexity, in order to complete the definition of êµtop. The definition of
t(ϕ) for the case that ϕ is atomic:

t(Ḋ(x)) := ∃α (N̂ ||α is passive ∧ ḊΛ(N̂ ||α)(x)),

t(Ė(x)) := ∃α (ĖΛ(N̂ ||α)(x)),
t(Ḟ (x)) := Ḟ (x),
t(xRy) := xRy for R ∈ {=̇, ∈̇}.

The expansion of t to Boolean combinations of and quantifications over formulae whose t-images
are defined already, is standard. This defines t. Now define:

êµtop(ϕ) := t(ϕ), if ϕ is not Σ1 .

Note that in the current case, the structure N̂+ is not needed at all, and that the translation
doesn’t only work for ordinal parameters. I.e.,

M ||µ |= ϕ[~a] ⇐⇒ ̂S(M ||µ) |= êµtop(ϕ)[~a].
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Now eµ has to be defined, which, by (c), reduces to defining eµtop. Let N := S(M ||µ), F = Ḟ C̃0(N)

and κ = crit(F ). First, I am going to define eµtop only for Σ1-formulae. To this end, I use the
function d from Lemma 5.11, and make use of the fact there is a transformation of Σ1-formulae

from M ||µ to N̂ already (the fact that the additional predicate of ̂Λ(M ||µ)
+

is not used simplifies
the construction to follow). So

M ||µ |= ϕ[~ξ]

⇐⇒ ̂Λ(M ||µ) |= êµtop(ϕ)[~ξ]

⇐⇒ Λ(M ||µ) |= (d ◦ êµtop)︸ ︷︷ ︸
:=eµtop

(ϕ)[~ξ]

for ~ξ < s+(M ||µ). Let π : N ||τ −→F f N̂passive. I define another function d̃, transforming
Σω-formulae into Σω-formulae (but not Σ1-formulae into Σ1-formulae), so that

N̂ |= ϕ[π(f1)(a1), . . . , π(fn)(an)]
⇐⇒ N |= d̃(ϕ)[〈f1, a1〉, . . . , 〈fn, an〉].

A definition that does this will be arrived at in the following. First, define for 〈a, f〉, 〈b, g〉 ∈
Γ′(N,F ):

a=
〈a,f〉,〈b,g〉 := {c | N ||τ |= fa,a∪b(c) = gb,a∪b(c)}
a∈〈a,f〉,〈b,g〉 := {c | N ||τ |= fa,a∪b(c) ∈ gb,a∪b(c)}.

Moreover, for x ∈ P(κ) ∩ |N ||τ | define a function x∗ ∈ Γ′(N,F ) by:

x∗ := 〈〈x, x ∩ α〉 | α < κ〉.

Here I use (as at several places before) a somewhat sloppy notation, by identifying a function
f ∈ (κ|N ||τ |) ∩ |N ||τ | with the function f ′ : [κ]1 −→ |N ||τ | which takes {α} to f(α).

(+) For 〈a, f〉 ∈ Γ′(N,F ), N̂ |= Ḟ (π(f)(a)) iff there is an x ⊆ κ such that a ∪ {κ} ∈
F f(a=

〈{κ},x∗〉,〈a,f〉).

Proof of (+). Note that
π(x∗)(κ) = 〈π(x), x〉 = 〈F̂ (x), x〉

for x ∈ P(κ). The claim follows immediately, applying  Loś’s theorem. 2(+)

This observation enables us to define d̃(ϕ) by induction on ϕ as follows. If ϕ is atomic: Let
ϕ = Ḟ (x). Then set:

d̃(ϕ)(v) = ∃f∃a∃c∃x̄∃x
(v = 〈a, f〉 ∧ x̄ ⊆ κ ∧ x = x̄∗ ∧ c = a=

〈a,f〉,〈{κ},x〉 ∧

∧∃γ∃ξ Ḟ (〈γ, ξ, a ∪ {κ}, c〉)).

Note that ḞN = (F̂ |s+(N̂))c. By observation (+), this definition works. For the other atomic
formulae, the definition is analogous. Let ϕ(x, y) = xRy, where R ∈ {=̇, ∈̇}. Then set:

d̃(ϕ)(x, y) = ∃f∃a∃g∃b∃c
(x = 〈a, f〉 ∧ y = 〈b, g〉 ∧ c = aR〈a,f〉,〈b,g〉 ∧

∧∃γ∃ξ Ḟ (〈γ, ξ, a ∪ b, c〉)).
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It is obvious how to treat Boolean combinations. I deal with quantifications as follows:

d̃(∀∃v ϕ) := ∀∃t ∈ Γ′(N,F ) d̃(ϕ)(v/t).

This finishes the definition of d̃. Finally, define eµtop(ϕ), in the case that ϕ is not a Σ1-formula,
by:

eµtop(ϕ(~x)) := ∃~z (
n∧
j1

“zj = xoj” ∧ d̃(ϕ)(~x/~z)).

Here, “zj = xoj” is supposed to mean: xj is an ordinal and zj = 〈xj , id�κ〉. Set:

c4 := eµtop.

This defines 〈eµ | µ ≤ ν〉. It remains to verify that the construction doesn’t terminate prema-
turely, i.e., that condition (d) is always satisfied. It is easy to check that for α ≤ µ and ξ < oα,

eαξ =



c0 if ξ = ξ̄ + 1 and S(M ||α)||ξ̄ is active and ξ̄ < λ(ES(M ||α)

ξ̄
) ,

c1 if ξ = ξ̄ + 1 and S(M ||α)||ξ̄ is active and λ(ES(M ||α)

ξ̄
) < ξ̄ ,

or S(M ||α)||ξ̄ is passive and oξ̄ = ωξ̄ ,
c2 if ξ = ξ̄ + 1 , S(M ||α)||ξ̄ is passive and oξ̄ < ωξ̄ ,
c3 if ξ is a limit and S(M ||α)||ξ is passive,
c4 if ξ is a limit and S(M ||α)||ξ is active.

In order to see that eα is uniformly Σ1(S(M ||α)), one has to make sure that it can be decided
in S(M ||α) by a Σ1-formula whether oξ = ωξ for ξ + 1 < oα. The other conditions that
must be checked in order to decide which case we’re in, are obviously Σ1(S(M ||α)) – e.g., ξ̄ <
λ(ES(M ||α)

ξ̄
) iff s := s(ES(M ||α)

ξ̄
) < λ(ES(M ||α)

ξ̄
), and the latter is the case iff π

S(M ||α)||ξ̄
s (id)(s) <

π
S(M ||α)||ξ̄
s (crit(ES(M ||α)

ξ̄
)), which can be expressed easily, using  Loś’s theorem, over S(M ||α).

Firstly, note that it suffices to decide whether oξ = ξ, for:

(1) Let ωξ = oξ. Then oξ = ξ.

Proof of (1). ωξ = oξ ≤ ξ ≤ ωξ. 2(1) So ωξ = oξ ⇐⇒ (ξ = oξ ∧ ξ = ωξ). The following claim
yields a criterion which enables us to decide whether or not oξ = ξ.

(2) oξ = ξ ←→ |S(M ||ξ)| = |(M ||ξ)|.

Proof of (2). The direction from right to left is trivial. So let oξ = ξ. If M ||ξ is active, then
oξ = s+(ξ)M = ξ, and it is obvious that the claim is true. So let IM be the set of extender
indices of M . If IM ∩ ξ is unbounded in ξ, then the claim is true, by Lemma 4.15. So let
δ := sup(IM ∩ ξ) < ξ, and let M ||ξ be passive. It is easy to see:

|JE
M

oδ
| = |JE

′

oδ
|,

where I let S(M ||ξ) = 〈JE′oξ , ∅〉.
Case 1: δ /∈ IM .
Then oδ = δ, and by induction on α ≤ ξ − δ it follows that:

|M ||(δ + α)| = |JE
M

δ+α| = |JE
′

δ+α| = |S(M ||δ + α)|,

which yields the claim.
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Case 2: δ ∈ IM .
Then oδ = s+(δ)M . So we’re done if s+(δ)M = δ (see case 1). So let oδ < δ. Then for

α ≤ ξ − oδ,
oδ+α = oδ + α,

as there are no extender indices between δ and ξ. Hence, for α0 := ξ − δ,

oδ+α0 = oδ + α0 = ξ = oξ.

So α0 = ξ − oδ. Now let β < oξ − oδ(= ξ − oδ = α0). Then

|JE
′

oδ+β
| ⊆ |JEδ+β | ⊆ |JEξ |.

On the other hand, for β ≤ ξ − δ = α0,

|JEδ+β | ⊆ |JE
′

δ+β | ⊆ |JE
′

oξ
|,

as δ + β < ξ = oξ. This shows that |JEξ | = |JE
′

ξ |. 2(2)

(3) There is a Σ1-formula ϕ(x), so that for every ξ < oα,

S(M ||µ) |= ϕ[ξ] ⇐⇒ ξ = ωoξ.

Proof of (3). The formula ϕ expresses: ξ is a limit ordinal, ξ = ωξ, and there is an x, so that x
is a pPλ-structure, |x| = |JE′ξ | and 〈JE′ξ , E′ωξ〉 = S(x). The last part can be expressed by:

∃f(“f is a function” ∧ f = S� <0 “{x} ∧ 〈JE
′

ξ , E′ωξ〉 =
⋃

ωα∈Dx

f(x||α)).

That S�x is definable in x (even Σ1-definable) was shown already, and that this x, if existent,
is precisely M ||ξ, follows since S is injective. The above definition of eαξ by cases hence yields a
Σ1-definition in S(M ||α), as desired. 2(3)

The same definition, carried out in ̂S(M ||α), defines êα. In order to define eαtop, êαtop, a similar
definition is used, which doesn’t have to be Σ1, though. More information on this can be found
in the following Corollary 5.19.

The proof of the previous lemma yields another corollary, which will be of importance later:

Corollary 5.19. For every pPs-structure N , for which M = Λ(N) exists, let FN and F̂N be
the sequences from Corollary 5.18. Then fN := fNht(N) and f̂N = f̂N

ht(N̂)
are uniformly Σ1(N)

and Σ1(N̂), respectively, for pPs-structures to which the same case of the definition applies.
I.e,, there are Σ1-formulae ϕ0, . . . , ϕ4 and ϕ̂0, . . . , ϕ̂4 with two free variables, so that for every
pPs-structure N with ht(N) = µ, whose Λ-image exists, do we have:

(0) If µ = µ̄ + 1, N ||µ̄ is active and µ̄ < λ(ENµ̄ ), ϕ0 defines fN over N , and ϕ̂0 defines f̂N
over N̂ .

(1) If µ = µ̄ + 1 and either N ||µ̄ is active and λ(ENµ̄ ) < µ̄, or N ||µ̄ is passive and µ̄ = ωµ̄,
then ϕ1 defines fN over N , and ϕ̂1 defines f̂N over N̂ .

(2) If µ = µ̄+ 1, N ||µ̄ is passive and µ̄ < ωµ̄, then ϕ2 defines fN over N , and ϕ̂2 defines f̂N
over N̂ .
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(3) If µ is a limit ordinal and N ||µ is passive, then ϕ3 defines fN over N , and ϕ̂3 defines f̂N
over N̂ .

(4) If N ||µ is active, then ϕ4 defines fN over N , and ϕ̂4 defines f̂N over N̂ .

The entire constructions of the translations of Σ1-formulae from M to S(M) can be carried
out for the (Pseudo-)Σ0-Codes of the structures involved as well.

Corollary 5.20. For every pPs-structure N whose Λ-image M exists, there is a sequence F p =
〈fpµ | µ ≤ ht(C̃0(N))〉, so that for µ ≤ ht(N), the following holds:

(a) Let ϕ be a formula in the language of C̃0(M). Then fpµ(ϕ) is a formula in the language of
C̃0(N) such that

C̃0(Λ(N ||µ)) |= ϕ[~ξ] ⇐⇒ C̃0(N ||µ) |= fpµ(ϕ)[~ξ, µ−̇1],

where ~ξ < ωµ.

(b) Let N ||µ, Λ(N ||µ) be Ps, Pλ-structures, respectively. Let ϕ be a formula in the language
of C0(M). Then fpµ(ϕ) is a formula in the language of C0(N) such that

C0(Λ(N ||µ)) |= ϕ[~ξ] ⇐⇒ C0(N ||µ) |= fpµ(ϕ)[~ξ, µ−̇1],

where ~ξ < ωµ.

(c) If ϕ is a Σ1 formula, then so is fpµ(ϕ).

(c) fpµ is uniformly Σω(N ||µ).

(d) The relation Rp = {〈n,m, γ〉 | n = f
p
γ(m) ∧ γ < ht(N)} is uniformly Σ1(N).

(e) The function fpN := fpht(N) is uniformly Σ1(C̃0(N)) for structures N , that are of the same
type (0)-(4) of Corollary 5.19.

Proof. As the structures C̃0(N) and C0(N) (and, analogously, C̃0(M) and C0(M)) only differ
substantially from N (analogously, M) if they are active, this is the only case in which there is
something to be shown. So I am going to derive a suitable definition of fpµ in case N̄ = N ||µ is
active. Let M̄ = Λ(N̄).

I will first define a transformation t̂1 of formulae, which translates Σ1-formulae in the language
of C̃0(M̄) into Σ1-formulae in the language of C̃0( ̂̄N) in such a way that

C̃0(M̄) |= ϕ[~a] ⇐⇒ C̃0( ̂̄N) |= t̂1(ϕ)[~a].

To this end, let’s recapitulate an argument from the proof of Lemma 5.17 (see the definition of
êµtop in case 3.B):

C̃0(M̄) |= ϕ[~a]

⇐⇒ C̃0( ̂̄N) |= ∃α∃f∃d∃Q

( ̂̄N ||α is passive ∧ “Q = Λ( ̂̄N ||α)” ∧ f = Ḟ ∩ |Q| ∧
∧d = DQ ∧ 〈Qpassive, f, d, ṡ〉 |= ϕ[~x])

def⇐⇒ ̂̄N |= t̂1(ϕ)[~a].
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This works precisely for the reasons stated before, and because ṡC̃0( ̂̄N) = ṡC̃0(M̄).
Analogously, in case M̄ and N̄ are potential λ- and s-structures, respectively, and ϕ is a

Σ1-formula in the language associated to C0(M̄) in which the symbol q̇ occurs (I demand the
latter in order to insure the unambiguity of the definition of t̂1):

C0(M̄) |= ϕ[~a]

⇐⇒ C̃0( ̂̄N) |= ∃α∃f∃d∃Q

( ̂̄N ||α is passive ∧ “Q = Λ( ̂̄N ||α)” ∧ f = Ḟ ∩ |Q| ∧
∧d = DQ ∧ 〈Qpassive, f, d, ṡ, q̇〉 |= ϕ[~x])

def⇐⇒ ̂̄N |= t̂1(ϕ)[~a].

This works, since by Lemma 4.16, CM̄ = C ̂̄N , and thus q̇C0( ̂̄N) = q̇C0(M̄) (this Lemma is only
relevant in case M̄ is of type II, as otherwise, N̄ is not of type II either, and thus, by definition,
q̇C0( ̂̄N) = q̇C0(M̄) = ∅).

Now one has to move from C̃0( ̂̄N) and C0( ̂̄N) to C̃0(N̄) and C0(N̄), respectively.
If M̄ is of type III, then so is N̄ , and this means that C̃0(N̄) = C̃0( ̂̄N) (see Def. 3.33).

Moreover, C0(N̄) = C0( ̂̄N), by Def. 3.38. Hence, in this case, one can set: fpµ(ϕ) = t̂1(ϕ), for
Σ1-formulae ϕ. Note that in C̃0(N̄) it can be decided very easily whether or not N̄ is of type III,
as this is the case iff N̄ is active and ṡC̃0(N̄) 6= ∅. This is essential for condition (e).

Now consider the case that M̄ is not of type III. Then I make use of the function d from
Lemma 5.11 and define fpµ(ϕ) = d(t̂1(ϕ)), for Σ1-formulae ϕ in the language of C0(N̄).

Thus far, fp was defined for Σ1-formulae. In order to expand the definition to arbitrary
Σω-formulae, I first define an auxiliary function t as in the proof of Lemma 5.17, Case 3.B., and
get:

C̃0(M̄) |= ϕ[~a] ⇐⇒ C̃0( ̂̄N) |= t(ϕ)[~a],

and the corresponding for C0(M̄) and C0( ̂̄N). One can use as definition of t exactly the one
made in the proof quoted above, augmented by the following trivial clauses in the case of atomic
formulae:

t(xRṡ) := xRṡ for R ∈ {=̇, ∈̇}
t(q̇(x)) := q̇(x).

Again, this works because the constants involved are interpreted the same way in the structures
involved.

In order to get from C̃0( ̂̄N) or C0( ̂̄N) to C̃0(N̄) and C0(N̄), resp., one can proceed as before
in the proof of 5.17, case 3.B. The function d̃ is expanded in the obvious way, and finally, one

can define: fpµ(ϕ(~x)) := ∃~z (
n∧
j=1

“zj = xoj” ∧ d̃(ϕ)(~x/~z)) for formulae ϕ which are not Σ1, as

before.

6 Projecta

The aim of this chapter is to show that for 1 ≤ n < ω, the n-th projecta of M and S(M)
(and those of their corresponding Σ0-codes) are the same. Not surprisingly, the proof proceeds
by induction on n. The next section is the base case of the induction. Before beginning, as a
reminder, and to fix the notation, let’s quote the following definition from [Zem02, P. 34].
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Definition 6.1. Let <∗ be the well-ordering of [On]<ω defined by:

a <∗ b ⇐⇒ a 6= b ∧max(a∆b) ∈ b,

where a∆b is the symmetric difference (a \ b) ∪ (b \ a).
Let M be an acceptable J-model. Then set, for a ∈ [OnM ]<ω and i < ω:

ai := a ∩ [ωρi+1
M , ωρiM );

I suppress any mention of M in the notation when it’s clear from context which M is meant.
The standard parameter of M , pM , is defined by:

pM :=<∗ −min(P ∗M ∩ [On]<ω),

and for n < ω let pM,n, the standard parameter above ωρnM , is defined by:

pM,n :=<∗ −min(PnM ∩ [On]<ω).

6.1 The first projecta of M and S(M)

Lemma 6.2. Let M be a pPλ-structure s.t. N = S(M) exists. Then PM ∩ [ht(N)]<ω 6= ∅. In
particular, pM,1 ⊆ ht(N). The same is true for p0

M (note: p0
M = pM \ ωρ1

M ).

Proof. By Lemma 4.5, h1
M (ht(N)) = |M |, so there is a p ∈ PM ∩ [ht(N)]<ω. As pM,1 is <∗-

minimal in PM , it follows that pM,1 ⊆ ht(N). To see that p0
M ⊆ ht(N), note that if p ∈ P ∗M is

such that p′ := p0 \ ht(N) 6= ∅, then I can set p̄ := (p ∩ ht(N)) ∪ s, where s ∈ [ht(N)]<ω is such
that every γ ∈ p′ has the form h1

M (〈i, r〉), where i, r are s.t. {i} ∪ r ⊆ s. Then p̄ ∈ P ∗M , and
obviously, p̄ <∗ p. As pM is <∗-minimal in P ∗M , it follows that pM , and hence p0

M , is contained
in ht(N).
Remark 6.3. Let M be a pPλ-structure for which S(M) is defined. Then ρ1

M ≤ ht(S(M)).

Proof. By Lemma 3.25, ρ1
M ≤ otp(D∗M ), and by Lemma 4.5,

ht(S(M)) =
{

otp(DM ) if M is passive,
∪ otp(D∗M ) otherwise.

So if M is passive, we’re done. Otherwise, either s+(M) = ht(M) = ht(S(M)), or s+(M) <
ht(M) and otp(D∗M ) is a successor ordinal, and hence ρ1

M ≤ ∪otp(D∗M ).

Lemma 6.4. Let S(M) be defined. Then:

(a) ωρ1
M = ωρ1

Ŝ(M)
= ωρ1

S(M),

(b) Σ1(M) ∩ P(H1
M ) = Σ1(Ŝ(M)) ∩ P(H1

Ŝ(M)
) = Σ1(S(M)) ∩ P(H1

S(M)).

Hence, ωρ1
N , and Σ1(N) ∩ P(H1

N ), are the same for N ∈ {M , S(M), Ŝ(M), C̃0(M), C̃0(S(M)),
C̃0(Ŝ(M)), C0(M), C0(S(M)), C0(Ŝ(M))}.

54



Proof. First of all, we may assume that otp(DM ) ≥ ω, since if this is not the case, S(M) =
Ŝ(M) = M−, so that the lemma trivializes in this case, because then DM , being a finite set, can
be treated as a parameter.

So let’s show the first identity in claim (a). Two directions must be verified.
ωρ1
M ≥ ωρ1

Ŝ(M)
, ωρ1

S(M) I start by showing the first part. Assume the contrary, i.e., that

ωρ1
M < ωρ1

Ŝ(M)
. Then let A be Σ1(M) in pM,1 s.t. A∩ωρ1

M /∈M . Let ϕ be a Σ1-formula defining

A, so that for arbitrary x ∈M :

x ∈ A ⇐⇒ M |= ϕ[x, pM,1].

I want to use Corollary 5.18 in order to transfer this to Ŝ(M). To be able to do that, note that
pM,1 ⊆ ht(S(M)), by Lemma 6.2. Moreover, ωρ1

M ≤ otp(DM ) = ht(Ŝ(M)): If ρ1
M > 1, then

ωρ1
M = ρ1

M ≤ otp(D∗M ) ≤ otp(DM ), and if ρ1
M = 1, then ωρ1

M = ω ≤ otp(DM ) by assumption.
So for γ < ωρ1

M ,

M |= ϕ[γ, pM,1] ⇐⇒ Ŝ(M) |= f̂(ϕ)[γ, q1
M ,ht(Ŝ(M)−̇1],

where f̂ = f̂
S(M)

ht(Ŝ(M))
is defined as in 5.18 – the above equivalence in fact holds for arbitrary

γ < On
Ŝ(M)

. So A∩ωρ1
M is Σ1(Ŝ(M)), hence, since it was assumed that ωρ1

M < ωρ1

Ŝ(M)
, it follows

that A ∩ ωρ1
M ∈ Ŝ(M) ⊆M , a contradiction.

In order to show that ωρ1
M ≥ ωρ1

S(M), I use the same argument. By Lemma 6.2, q1
M ⊆

ht(S(M)), and instead of f̂ I now use fS(M)
ht(S(M)) from Corollary 5.18.

ωρ1
M ≤ ωρ1

Ŝ(M)
, ωρ1

S(M) Here, make essential use of Lemma 5.16. Suppose the contrary. Then

let A be a set that’s defined over Ŝ(M) in the parameter q by a Σ1-formula ϕ(x, y), s.t. A ∩
ωρ1

Ŝ(M)
/∈ Ŝ(M). So,

x ∈ A ←→ S(M) |= ϕ[x, q].

Now it follows from part (a) of the abovementioned Lemma, that the set Z = {〈a, b〉 | S(M) |=
ϕ[x, y]} is Σ1(M) in ht(M)−̇1. In particular, A = {x | 〈x, q〉 ∈ Z} is Σ1(M) in the parameter
q ∪ {ht(M)−̇1}. Hence, Ā := A ∩ ωρ1

Ŝ(M)
∈ M , since, by assumption, ωρ1

M > ωρ1

Ŝ(M)
. By

acceptability of M , this entails that Ā ∈ JE
M

ρ1
M

, since ρ1
M is a cardinal of M . For the same reason,

ρ1
M ∈ DM . Now if M is active, then |M | = |Ŝ(M)|, and so Ā ∈ |Ŝ(M)|, a contradiction. If, on the

other hand, M is passive, then, by Lemma 4.3, the fact that ρ1
M ∈ DM implies that S(M ||ρ1

M ) is
a segment of LS(M). Hence, |S(M ||ρ1

M )| ⊆ |Ŝ(M)|. But by Lemma 4.15, |M ||ρ1
M | = |S(M ||ρ1

M )|.
Hence |M ||ρ1

M | ⊆ |Ŝ(M)|, and this means that Ā ∈ Ŝ(M), which contradicts the choice of A.
To see that ωρ1

M ≤ ωρ1
S(M), again assume the contrary. So let A be Σ1(C̃0(S(M))) s.t.

A ∩ ωρ1
S(M) /∈ |S(M)|. By part (d) of Lemma 5.16, it then follows that A is Σ1(C̃0(M)) in the

same parameters and ht(M)−̇1. Hence, A is Σ1(M). The contradiction is now reached as before
– only in order to see that |S(M ||ρ1

M )| ⊆ |S(M)|, an additional argument is needed:
If M is passive, then S(M ||ρ1

M ) even is a segment of S(M): By Lemma 4.3, it suffices to see
that ωρ1

M /∈ [s+(M ||µ), µ), for every µ which indexes an extender in M . As ωρ1
M is a cardinal in

M , it even follows that ωρ1
M /∈ (s(M ||µ), µ], for every such µ (it is essential here that µ < ht(M),

as M is passive).
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But if M is active, then ρ1
M ≤ s+(M) = ∪otp(D∗M ), and

|S(M ||ρ1
M )| = |M ||ρ1

M | ⊆ |M ||s+(M)| = |S(M ||s+(M)| = |S(M)|.

The rest of the argument works as before. 2(a)

Let’s turn to the proof of (b): From the proof of (a) it follows that H1
M = H1

Ŝ(M)
. To see

that Σ1(M) ∩ P(ωρ1
M ) = Σ1(S(M)) ∩ P(ωρ1

M ), the arguments from the proof of (a) work. One
only has to check that one can work with parameters from |S(M)|. But this follows from the
fact that |M | = h1

M (ht(S(M))). It’s now easy to see how to get the desired claim by working
with a surjection from ωρ1

M onto H1
M that’s Σ1-definable over H1

M = H1
S(M), and re-using the

arguments from the proof of (a); this is only necessary for the direction from left to right. The
other direction is immediate, by Lemma 5.16. The part of the claim concerning Ŝ(M) is shown
analogously. 2(b)

The consequence of (a) and (b) that’s drawn in the statement of the Lemma follows, because
the additional constants that are available in the Σ0-codes of the structures involved can be
viewed as additional parameter.

7.2 The n-th projecta of M and S(M)

From the results of the previous section, I want to deduce:

Lemma 7.5. Let S(M) be defined. Then for n ≥ 1:

(a) ωρnM = ωρnS(M),

(b) Σ(n−1)
1 (M) ∩ P(Hn

M ) = Σ(n−1)
1 (S(M)) ∩ P(Hn

S(M)).

Again, it even follows that ωρnN , Σ(n−1)
1 (N) ∩ P(Hn

N ) are the same for every N ∈ {M , S(M),
Ŝ(M), C̃0(M), C̃0(S(M)), C̃0(Ŝ(M)), C0(M), C0(S(M)), C0(Ŝ(M))}.

But before proving this, I need some fine structural basics. First, let’s quote the following
fundamental Lemma on Σ(n)

l -relations that can be found in [Zem97, 1.1.25] or [Zem02, 1.6.3].

Lemma 7.6. Let M be an acceptable J-model. Let n, l < ω. R(~xn+1, . . . , ~x0) is
Σ(n+1)
l (M) iff the relation R~x := {〈~xn+1〉 | R(~xn+1, ~x)} (here, ~x = ~xn, . . . , ~x0) is uniformly

Σl(〈Hn+1
M , Q1

~x, . . . , Q
m
~x 〉), where every Qi~x (i = 1, . . . ,m) is of the form

Qi~x = {〈~zn+1〉 | Qi(~zn+1, ~x)},

and Qi(~zn+1, ~x) Σ(n)
1 (M).

I will use this lemma in order to show the following:

Lemma 7.7. Let M be an acceptable J-model, and let B(~yn, ~xn, . . . , ~x0) be Σ(n)
1 (M). Then there

is some i < ω with the following property:
For all ~yn+1 and all ~r = ~rn, . . . , ~r0,

B(~yn+1, ~r) ⇐⇒ A
n+1,〈~r〉
M (i, 〈~yn+1〉).
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Proof. Induction on n.
n=0 In this case, B is Σ1(M). So let

B(~y0, ~x0) ⇐⇒ M |= ϕi[〈~y0〉, 〈~x0〉].

We now have, for all ~r0 and ~y1 (~y1 ∈ H1
M ):

A
1,〈~r0〉
M (i, 〈~y1〉) ⇐⇒ M |= ϕi[〈~y1〉, 〈~r0〉] ⇐⇒ B(~y1, ~r0),

by definition of A1,〈~r0〉
M . Hence, i is as wished.

n→ n+ 1 Let B(~yn+1, ~xn+1, ~xn, . . . , ~x0) be Σ(n+1)
1 (M). By lemma 7.6, B~xn,...,~x0 is uni-

formly Σ1(〈Hn+1
M , Q1

~xn,...,~x0 , . . . , Qm~xn,...,~x0〉) for suitable relations Qj(~zn+1, ~xn, . . . , ~x0), that are

Σ(n)
1 (M) (for 1 ≤ j ≤ m). We can substitute the variables ~zn+1 in Qj by ~zn, in order to get

relations Q̃j(~zn, ~xn, . . . , ~x0), so that Qj is a specialization of the Σ(n)
1 (M) relation Q̃j .

Now the inductive hypothesis can be applied to the Q̃j(~zn, ~xn, . . . , ~x0). We get ij such that
for all ~zn+1 and all ~x = ~xn, . . . , ~x0,

Qj(~zn+1, ~x) ⇐⇒ Q̃j(~zn+1, ~x) ⇐⇒ A
n+1,〈~x〉
M (ij , 〈~zn+1〉).

Now let ϕ be a Σ1 formula in the language with additional predicate symbols Q̇1, . . . , Q̇m, so
that

∀~yn+1, ~xn+1, ~xn, . . . , ~x0 (B(~yn+1, ~xn+1, ~xn, . . . , ~x0)
⇐⇒ 〈Hn+1

M , Q1
~xn,...,~x0 , . . . , Qm~xn,...,~x0〉 |= ϕ[~yn+1, ~xn+1]).

Let ϕ̃ denote the formula that results from ϕ by replacing every occurrence of Q̇j(w) with
Ȧ(ij , w). Then ϕ̃ is a Σ1 formula in the language of 〈Hn+1, A

n+1,〈~xn,...,~x0〉
M 〉, and it follows that

for all ~yn+1, ~xn+1, ~xn, . . . , ~x0,

〈Hn+1
M , Q1

~xn,...,~x0 , . . . , Qm~xn,...,~x0〉 |= ϕ[~yn+1, ~xn+1]

⇐⇒ 〈Hn+1, A
n+1,〈~xn,...,~x0〉
M 〉 |= ϕ̃[~yn+1, ~xn+1]

⇐⇒ Mn+1,〈~xn,...,~x0〉 |= ϕi[~yn+1, ~xn+1],

Here, i is the number of ϕ̃ in some canonical enumeration of the Σ1 formulae of the language
with additional constant symbol Ȧ with two free variables.

Hence, the above holds, in particular, for ~yn+2 instead of ~yn+1. Letting ~r′ = ~xn, . . . , ~x0,

B(~yn+2, ~xn+1, ~r′)

⇐⇒ Mn+1,〈~r′〉 |= ϕi[~yn+2, ~xn+1]

⇐⇒ A
n+2,〈~xn+1,~r′〉
M (i, 〈~yn+2〉).

hence setting ~r = 〈~xn+1, ~r′〉:

B(~yn+2, ~r) ⇐⇒ A
n+2,〈~r〉
M (i, 〈~yn+2〉),

so i has the desired properties.
Instead of proceeding directly to a proof of Lemma 7.5, I am going to attack a more general

result – mainly so in order to emphasize that no special properties of pPλ-structures or S are
needed here.
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Lemma 7.8. Let M and N be acceptable J-models with:

(i) Σ1(M) ∩ P(H1
M ) = Σ1(N) ∩ P(H1

N ).

(ii) for α ∈ CardM ∩ CardN HM
α = HN

α .

Then for every n ≥ 1:

(a) ωρnM = ωρnN ,

(b) Σ(n−1)
1 (M) ∩ P(Hn

M ) = Σ(n−1)
1 (N) ∩ P(Hn

N ).

Proof. Induction on n.
For n = 1, what has to be shown is just the assumption (that ωρ1

M = ωρ1
N follows immedi-

ately). So let n ≥ 1, and assume (a) and (b) hold. First I am going to show that (a) holds for
n+ 1 as well:

Really there are two directions to prove, but since the roles played by M and N are completely
symmetric, it suffices to show that, e.g., ωρn+1

M ≤ ωρn+1
N . To this end, let B be Σ1(Nn,q) in some

parameter r ∈ [ωρnN ]<ω, for a q ∈ PnN , so that B ∩ ωρn+1
N /∈ |N |. Now Nn,q = 〈Hn

N , A
n,q
N 〉, and

A := An,qN ∈ Σ(n−1)
1 (N) ∩ P(Hn

N ) = Σ(n−1)
1 (M) ∩ P(Hn

M )

by the inductive assumption (b). So let A be Σ(n−1)
1 (M) in p ∈ Γn−1

M (for an explanation of the
notation, I refer to [Zem02, p. 18]). Then by Lemma 7.7:

∀yn yn ∈ A ←→ An,pM (i, yn),

for an adequate i < ω. Let B be defined over Nn,q by the Σ1-formula ϕ, i.e., let

x ∈ B ⇐⇒ 〈Hn
N , A〉 |= ϕ[x, r].

Let ϕ̃ be the Σ1-formula obtained by replacing every occurrence of Ȧ(j, z) in ϕ with Ȧ(i, 〈j, z〉).
Then

〈Hn
N , A〉 |= ϕ[x, r] ⇐⇒ 〈Hn

M , A
n,p
M 〉 |= ϕ̃[x, r].

This shows that B is Σ1(Mn,p). So if it were the case that ωρn+1
N < ωρn+1

M , then it would follow
that B ∩ ωρn+1

N ∈M . But by acceptability of M , this would mean that B ∩ ωρn+1
N ∈ Hn

M = Hn
N ,

a contradiction.
This shows (a) for n+ 1.
To see that (b) holds as well, first note that it follows from the fact that the (n + 1)-st

projecta of M and N coincide that the (n+ 1)-st reducts coincide as well. This is because either
ωρn+1 < ωρ1, in which case ωρn+1 is a cardinal both in M and in N , so that (ii) can be applied,
or ωρn+1 = ωρ1, and then, according to (i), Hn+1

M = H1
M = H1

N = Hn+1
N (I wrote ωρm for

ωρmM = ωρmN here, when m ≤ n+ 1).
Every B̄ ∈ Σ(n)

1 (N)∩P(Hn+1
N ) can be rendered as in the proof of (a), i.e., as the intersection

of an element of B in Σ1(Nn,q) with Hn+1
N , for some q ∈ ΓnN . But Hn+1

N = Hn+1
M , and the proof

of (a) then yields that B̄ = B′ ∩ Hn+1
M for some B′ ∈ Σ1(Mn,p) and a suitable p ∈ ΓnM . This

means precisely that B̄ ∈ Σ(n)
1 (M) ∩ P(Hn+1

M ).
Again, due to symmetry, it suffices to prove this inclusion.

Proof of Lemma 7.5. The claim follows in an obvious way from Lemma 6.4 and Lemma 7.8 –
here, set N = S(M). The preconditions are then obviously satisfied.
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8 Soundness and Solidity

In this section, I am going to show that soundness and 1-solidity carry over from M to S(M).

8.1 Iterated Standard Parameters

Since up to now the focus was on Σ1-definability, it is advantageous to work with a slightly
modified version of the usual standard parameters that I call iterated standard parameters.

Definition 8.1. Let M be an acceptable J-structure. Define a sequence 〈qnM | n < ω〉 by recur-
sion on n by:

qnM = the <∗ -minimal member of PMn,〈q0,...,qn−1〉 .

Set: qM,n := q0
M ∪ · · · ∪ q

n−1
M .

Lemma 8.2. Let 1 ≤ n < ω with qM,n ∈ PnM . Then qM,n = pM,n.

Proof. Fix n ∈ ω \ 1.
pM,n ≤∗ qM,n By assumption, qM,n ∈ PnM . But pM,n is the <∗-minimal member of PnM ,

hence pM,n ≤∗ qM,n.
qM,n ≤∗ pM,n Assume the contrary. Then let m < n be minimal so that qmM = qmM,n >

∗ pmM,n.

So r := 〈q0
M , . . . , q

m−1
M 〉 = 〈p0

M,n, . . . , p
m−1
M,n 〉; if m = 0, then r = ∅. By assumption, r ∈ PmM (or,

if m = 0, then r = ∅ ∈ P 0
M = {∅}). But 〈p0

M,n, . . . , p
m−1
M,n 〉 ∈ PmM , so

pmM,n ∈ P
M
m,〈p0

M,n
,...,p

m−1
M,n

〉 = PMm,r .

But this is a contradiction, since by definition, qmM is the <∗-minimal member of PMm,r , hence
qmM ≤∗ pmM,n.

Lemma 8.3. Let M be an acceptable J-structure whose good parameters can be lengthened (see
[Zem02, p. 36]). Then for 1 ≤ n < ω, qM,n = pM,n.

Proof. Induction on n ≥ 1.
n = 1 In this case, the definitions of qM,n and pM,n coincide.
n −→ n+ 1 Assume the claim is proven for n. Since the good parameters of M can be

lengthened, by [Zem02, Lemma 1.9.7]:

qM,n = pM,n = pM,n+1�n.

It remains to show that qnM = pnM,n+1.

qnM ≤∗ pnM,n+1 pnM,n+1 ∈ PMn,〈pM,n+1�n〉 = PMn,qM,n . But qnM is the <∗-minimal element of

PMn,qM,n , hence qnM ≤∗ pnM,n+1.

pnM,n+1 ≤∗ qnM We know that qM,n = pM,n ∈ PnM . Since qnM ∈ PMn,qM,n , it follows that

qM,n+1 ∈ Pn+1
M . But pM,n+1 is the <∗-least member of Pn+1

M , hence pM,n+1 ≤∗ qM,n+1. As
pM,n+1�n = pM,n = qM,n = qM,n+1�n, it follows that pnM,n+1 ≤∗ qnM .

Corollary 8.4. Let M be sound. Then for n < ω, qnM = pnM .

Proof. By [Zem02, Lemma 1.9.4], the good parameters of M can be lengthened, so Lemma 8.3
can be applied.
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Lemma 8.5. Let M be an acceptable J-structure such that for every n ∈ ω,

qnM ∈ RMn,qM,n .

Then for every such n,
qM,n = pM,n.

Moreover, M is then sound.

Proof. I show by induction on n ≥ 1 that qM,n ∈ RnM .
n = 1 by assumption q0

M ∈ RM .
n −→ n+ 1 by our inductive hypothesis, qM,n ∈ RnM . By [Zem02, Lemma 1.9.3], qM,n

can be lengthened by some q′ in such a way that qM,n
_q′ ∈ Pn+1

M . This means that for every
q′ ∈ PMn,qM,n , qM,n

_q′ ∈ Pn+1
M . In particular, this is true for qnM . Hence, qM,n+1 ∈ Pn+1

M .
By assumption, qnM ∈ RMn,qM,n , and by inductive hypothesis, qM,n ∈ RnM , hence qM,n+1 =
qM,n

_qnM ∈ R
n+1
M .

This concludes the inductive proof.
Now in particular, for every 1 ≤ n < ω, qM,n ∈ PnM . So Lemma 8.2 can be applied, which

gives us that qM,n = pM,n. That M is sound now follows from [Zem02, Lemma 1.9.6], since it
was shown that qM,n = pM,n ∈ RnM for every n ∈ ω \ 1.

Lemma 8.6. Let M be a pPλ-structure. Then q0
M ⊆ DM .

Proof. I use the following characterization of q0
M :

q0
M = {ν0, . . . , νn−1}, where for i < n, νi is the least ordinal α with the following property:

(∗)i There are a u ∈ [α+ 1]<ω and a set A which is Σ1(M) in the parameter {νm | m < i} ∪ u,
so that A ∩ ωρ1

M /∈M .

So n is minimal so that no α fulfilling (∗)n exists.

Proof. I want to show that q0
M ⊆ DM . Assume the contrary. Let i < n be least such that

νi /∈ DM . One then can choose some µ ∈M , so that

s+M (µ) < νi ≤ µ.

Let κ = crit(EMµ ), τ = (κ+)M ||µ and s = sM (µ), s+ = s+M (µ). Finally, let

π = πM ||µs : JE
M

τ −→EMµ
(M ||µ)passive

.

Obviously π is Σ1(M) in the parameter s+, because µ is uniquely determined by s+ and definable
from s+ in a Σ1 way, as are the parameters κ, τ and s. Now I show:

νi is Σ1(M) in the parameters β0, . . . , βl−1 ≤ s+.

Case 1: νi = µ.
Then νi = supπ“τ , and hence νi is Σ1(M) in the parameter s+, because this is true of π and

τ .
Case 2: νi < µ.
Since s is the support of EMµ , there are a function f : κm → M ||τ , f ∈ M ||τ and ordinals

γ0, . . . , γm−1 < s, so that
νi = π(f)(γ0, . . . , γm−1).
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Now let h be a Σ1(M ||τ) surjection from τ onto M ||τ , and let h(ζ) = f . Then νi =
π(h(ζ))(γ0, . . . , γm−1), and hence, νi is Σ1-definable overM in the parameters ζ, γ0, . . . , γm−1, s

+,
which all are ≤ s+.

This proves the claim, which in turn leads to a contradiction: According to the above char-
acterization of q0

M , choose u ⊆ νi + 1 and a set A, so that A is Σ1(M) in u ∪ {ν0, . . . , νi−1} and
A∩ωρ1

M /∈M . Set ū = (u\{νi})∪{β0, . . . , βl−1}. Then A is obviously Σ1(M) in ū∪{ν0, . . . , νi−1},
but ū ⊆ νi, contradicting the minimality of νi satisfying (∗)i.

Lemma 8.7. Let M and N be acceptable J-models with:

(i) M is sound.

(ii) For all q ∈ H1
M , {a | a is Σ1(Mq0

M ) in q} = {a | a is Σ1(Nq0
N ) in q}.

(iii) Σ1(M) ∩ P(H1
M ) = Σ1(N) ∩ P(H1

N ).

(iv) For α ∈ CardM ∩ CardN , HM
α = HN

α .

(v) q0
M = q0

N ∈ RN .

Then N is sound as well. For the definition of qnM , see definition 8.1.

Proof. By Lemma 7.8, it’s clear that (iii) and (iv) together entail the following for arbitrary
n ≥ 1:

(a) ωρnM = ωρnN ,

(b) Σ(n−1)
1 (M) ∩ P(Hn

M ) = Σ(n−1)
1 (N) ∩ P(Hn

N ).

So in the following I’ll write Hn for Hn
M = Hn

N and ωρn for ωρnM = ωρnN – thus the asymmetry
in (ii) vanishes.

By Corollary 8.4 we have for n ≥ 1: pM,n = qM,n.
First, I am going to prove by induction on n ≥ 1:

(a) For all q ∈ Hn,

{a | a is Σ1(Mn,〈q0
M ,...,q

n−1
M 〉) in q} = {a | a is Σ1(Nn,〈q0

N ,...,q
n−1
N 〉) in q}.

(b) qnM = qnN ∈ RNn,〈q0N,...,qn−1
N

〉 .

n=1 Part (a) holds by assumption (ii).
For (b): It obviously follows from (a) that P

Mq0
M

= P
Nq

0
N

, as H1
M = H1

N and ωρ2
M = ωρ2

N .
Hence, both sets have the same <∗-least member, which shows that q1

M = q1
N , which is the first

part of (b). In order to see that q1
N ∈ RNq0N , note that by Lemma 8.4, q1

N = q1
M = p1

M,2 ∈ RM1,q0
M

,

since M is sound. Hence, there is a surjection from ωρ2
M onto H1

M that is Σ1(Mq0
M ) in q1

M , and
by (a), this surjection is also Σ1(N1,q0

N ) in q1
M = q1

N . Hence, q1
N ∈ RN1,q0

N
, and (b) is proven for

n = 1.
n→ n+ 1 Let A be Σ1(Mn+1,〈q0

M ,...,q
n
M 〉) in q ∈ Hn+1. Let ϕ be a Σ1 formula defining A

over Mn+1,〈q0
M ,...,q

n
M 〉, i.e., for a ∈ Hn+1,

a ∈ A ⇐⇒ Mn+1,〈q0
M ,...,q

n
M 〉 |= ϕ[a, q]

⇐⇒ 〈Hn+1, A
qnM

Mn,〈q0
M
,...,q

n−1
M

〉
〉 |= ϕ[a, q].

61



Set
Ã := {〈i, b〉 |Mn,〈q0

M ,...,q
n−1
M 〉 |= ϕi[b, qnM ]}.

Hence Aq
n
M

Mn,qM,n = Ã ∩ Hn+1. Obviously Ã is Σ1(Mn,〈q0
M ,...,q

n−1
M 〉) in qnM , hence Ã is, by our

inductive assumption (a) for n, also Σ1(Nn,〈q0
N ,...,q

n−1
N 〉) in qnM = qnN . So let an index i < ω be

chosen in such a way that for a ∈ Hn+1,

a ∈ Ã ⇐⇒ Nn,〈q0
N ,...,q

n−1
N 〉 |= ϕi[a, qnN ]

⇐⇒ A
qnM

Nn,〈q
0
N
,...,q

n−1
N

〉
(〈i, a〉).

Thus, for a ∈ Hn+1:

A
qnM

Mn,〈q0
M
,...,q

n−1
M

〉
(〈j, a〉) ⇐⇒ A

qnN

Nn,〈q
0
N
,...,q

n−1
N

〉
(〈i, 〈j, a〉〉).

Hence for a ∈ Hn+1:

a ∈ A ⇐⇒ 〈Hn+1, A
qnM

Mn,〈q0
M
,...,q

n−1
M

〉
〉 |= ϕ[a, q]

⇐⇒ 〈Hn+1, A
qnN

Nn,〈q
0
N
,...,q

n−1
N

〉
〉 |= ϕ′[a, q],

where ϕ′ results from substituting each occurrence of Ȧ(〈j, x〉) in ϕ by Ȧ(〈i, 〈j, x〉〉). ϕ′ is then
also a Σ1 formula. The latter means:

Nn+1,〈q0
N ,...,q

n
N 〉 |= ϕ′[a, q],

since by (b), 〈q0
N , . . . , q

n
N 〉 ∈ Rn+1

N , in particular ρn+1
N = ρ

Nn,〈q
0
N
,...,q

n−1
N

〉 . So A is

Σ1(Nn+1,〈q0
N ,...,q

n
N 〉) in q. Since I didn’t use that M is sound, one can argue in the same way for

the opposite direction of (a). So this shows (a) in the inductive step from n to n+ 1.
For (b): It follows from (a) that P

Mn+1,〈q0
M
,...,qn

M
〉 = P

Nn+1,〈q0
N
,...,qn

N
〉 , since Hn+1

M = Hn+1
N . So,

both sets have the same <∗-least member, which shows that qn+1
M = qn+1

N , which is the first part
of (b). In order to see that qn+1

N ∈ R
Nn+1,〈q0

N
,...,qn

N
〉 , note that by Lemma 8.4, qn+1

N = qn+1
M =

pn+1
M ∈ R

Mn+1,〈q0
M
,...,qn

M
〉 , as M is sound. Hence, there is a surjection from ωρn+2

M onto Hn+1
M ,

which is Σ1(Mn+1,qM,n+1) in qn+1
M , and by (a), this surjection is Σ1(Nn+1,qN,n+1) in qn+1

M = qn+1
N ,

too. So qn+1
N ∈ R

Nn+1,〈q0
N
,...,qn

N
〉 , and (b) is proven for n+ 1.

So this concludes the inductive proof of (a) and (b).
But the rest follows immediately, since (b) allows us to apply Lemma 8.5 to N . This gives

for 1 ≤ n < ω that qnN = pnN . Hence, again by (b), 〈p0
N , . . . , p

n−1
N 〉 ∈ RnN . And since this holds

for each n ≥ 1, N is sound.

8.2 The domains of S and Λ, part 1

Now one of the main results on the functions S and Λ can be given. The following definition
facilitates its statement:

Definition 8.8.

pPλ := The class of pPλ-structures.
pPs := The class of pPs-structures.
pλ := The class of pλ-structures.
ps := The class of ps-structures.
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Lemma 8.9. S is a bijection between pPλ and pPs, and Λ is the inverse of S, hence a bijection
between pPs and pPλ.

Proof. By the remarks 4.2 and 4.10, it suffices to show that S(M) is defined for every pPλ-
structure M defined, and that Λ(N) is defined for every pPs-structure N . This is because by
the Lemmata 4.11 and 4.13, S and Λ are mutually inverse.

So assume that M is a pPλ-structure, for which S(M) is undefined. Let M be a <0-least
such structure. By remark 4.2, item 3, it is clear that M cannot be a limit in <0, and of course,
M 6= 〈∅, ∅, ∅, ∅〉. There are two successor cases:

Case 1: ht(M) = µ+ 1.
Then let M = 〈JEµ+1, ∅, D〉. Let M̄ = M ||µ = 〈JEMµ , F,DM ||µ〉. By minimality of M , N̄ =

S(M̄) exists. Let N̄ = 〈JE′ν , ((F |ν)h)c〉. I have to show that N := 〈JẼν+1, ∅〉 is a pPs-structure,
where Ẽ = E′_〈ν, ((Fν)h)c〉. So properties 1.-3. of Definition 3.4 have to be checked. As N̄ is a
pPs-structure, 1. and 2. only have to be shown for γ = ν+1. But since N = “N ||ν + 1” is passive,
this is trivial. So it remains to check 3. for γ = ν. So I have to show that R∗N ||ν = R∗

N̄
6= ∅.

For this, I will show inductively that for 1 ≤ n < ω, Rn
N̄
6= ∅, by constructing sequences

〈p1, p2, . . .〉 and 〈q1, q2, . . .〉, so that for every n < ω, 〈p1, . . . , pn〉 ∈ RnM̄ , 〈q1, . . . , qn〉 ∈ RnN̄ , and
Σ1(M̄ 〈p1,...,pn〉) = Σ1(N̄ 〈q1,...,qn〉).

n = 1 Since R1
M 6= ∅, Corollary 4.5 yields a p̄1 ∈ R1

M̄
, so that p̄1 ∈ N̄ . By Lemma 5.18 then,

p̄1 ∪ {ν−̇1} ∈ R1
N̄

(I could show at this point that p̄1 ∈ R1
N̄

, but this is not needed here – see
Lemma 8.13). Set q1 = p̄1 ∪ {ν−̇1}. Using Lemma 5.16 and Corollary 5.18, it is now easy to see
that, setting p1 := p̄1 ∪ {µ−̇1}, it follows that Σ1(M̄p1) = Σ1(N̄q1).

n −→ n+ 1 From the proof of Lemma 8.7, claims (a) and (b), it follows that we can now
choose some pn+1 ∈ R1

M〈p1,...,pn〉 that can be lengthened, and then set: qn+1 = pn+1. It follows
from that proof that then Σ1(M̄ 〈p1,...,pn+1〉) = Σ1(N̄ 〈q1,...,qn+1〉). From this, it obviously follows
that qn+1 ∈ R1

N̄〈q1,...,qn〉
. But then 〈q1, . . . , qn+1〉 ∈ Rn+1

N̄
, as 〈p1, . . . , pn+1〉 ∈ Rn+1

M̄
, and so,

ωρ1
N̄〈q1,...,qn+1〉 = ωρ1

M̄〈p1,...,pn+1〉 = ωρn+1
M̄

= ωρn+1
N̄

.
So case 1 cannot occur.
Case 2: M is active.
Then M̄ := Mpassive <0 M , so, by minimality of M , the structure N̄ := S(M̄) exists. Let

N̄ = 〈JE′ν , ∅〉, F := EMtop and s := s(F ), s+ := s+(F ). Set: N := 〈JE′s+ , (F |s
+)c〉. I want to show

that N = S(M).
According to the definition of S (Def. 4.1), it first has to be shown that |S(M̄)| = |M̄ |. This

follows from Lemma 4.15(c).
Secondly, I have to show that, setting N ′ := 〈JE′ν , F 〉, it follows that N ′ = N̂ . Let τ = τ(F ).

So N ||τ = S(M ||τ). Let
π : JE

′

τ −→F Ñ .

We know that |N ||τ | = |S(M ||τ)| = |M ||τ |. Since π is a Σ0-extender ultrapower embedding, it
follows that

π : M ||τ −→F M̄

and |Ñ | = |M̄ | = |S(M̄)|. So it remains to show that ĖÑ = ĖN
′
. To this end, let ψE be a

Σ1-formula as in Lemma 5.15. It follows that for 〈α, f〉 ∈ Γ(N ||τ, crit(F )):

ĖÑ (π(f)(~α)) ⇐⇒ ≺~α� ∈ F ({≺~β� | ĖS(M ||τ)(f(~β))}
⇐⇒ ≺~α� ∈ F ({~β |M ||τ |= ψE [f(~β)]}
⇐⇒ M̄ |= ψE(π(f)(~α))

⇐⇒ ĖS(M̄)(π(f)(~α)).
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Note that M̄ and M ||τ are passive, from which it follows that S(M̄) = Ŝ(M̄) and S(M ||τ) =
̂S(M ||τ). That’s why ψE can be used as above. Also, I applied  Lośś Theorem in moving from

the second to the third line, to a Σ1-formula, which is legitimate because π is Σω-preserving.
Since every element of |Ñ | is of the form π(f)(~α) as above, we have thus shown that Ñ = S(M̄).
But as π�κ = F , it follows immediately that N̂ = N ′, as claimed.

Finally, I have to show that N is a pPs-structure. The crucial property of Definition 3.4 here
is the coherency condition. Obviously, it is enough to concentrate on the top extender. Since

Npassive is a segment of N̂passive = N̄ , it suffices to show that E
Ult(N,ENtop)

s+ = ∅. There are two
cases:

If s+ < ν, then it is enough to show that E′s+ = ∅. If not, then N̄ ||s+ = S(M ||µ̄) for some
µ̄ < ht(M) with s+(µ̄)M = s+ = s+(M), a contradiction.

If s+ = ν, then let π′ : N −→F Ñ ′. Then π ⊆ π′, Npassive = N̂passive and π′(τ) = ν, as
standard arguments show. But τ is a cardinal in N , and so, τ indexes no extender in N . Hence,
EÑ

′

s+ = EÑ
′

π′(τ) = ∅.
Hence, S(M) = N is defined after all, and this case is impossible as well. The converse is

shown analogously.

Lemma 8.10. S is a bijection between pλ and ps, and Λ is the inverse of S, hence a bijection
between ps and pλ.

Proof. This follows from the previous Lemma 8.9, together with Lemma 4.16.

8.3 Eliminating the additional parameters

Lemma 8.11. Let M = 〈JEµ̄+1, ∅, DM 〉 be a pPλ-structure for which N = S(M) = 〈JENν̄+1, ∅〉
exists. Let p ∈ [OnS(M)]<ω have the property that {ωµ̄} is Σ1(M) in p. Then ων̄ is Σ1(N) in
the same parameter p.

Proof. Case 1: ωµ̄ ∈ DM – I.e., M ||µ̄ is passive, or M ||µ̄ is active, but s+(M ||µ̄) = µ̄.
In this case, DM = DM ||µ̄ ∪ {ωµ̄}. Let ϕ(x, ~y) be a Σ1 formula and p = {η1, . . . , ηn}, so that

for every γ ∈ |M |,
γ = ωµ̄ ⇐⇒ M |= ϕ[(x/γ), (~y/~η)].

By replacing every occurrence of “Ḋ(v)” in ϕ with “(Ḋ(v) ∨ v = z)”, for some new variable z,
one gets a formula ϕ̃(x, ~y, z) with the property:

M |= ϕ[(x/γ), (~y/~η)] ⇐⇒ 〈|M |, EM , ∅, DM ||µ̄〉 |= ϕ̃[(x/γ), (~y/~η), (z/ωµ̄)].

Set: Ē := E�ωµ̄, F := Eωµ̄ and D̄ := DM ||µ̄. Corollary 5.8 gives

M |= ϕ[(x/γ), (~y/~η)]

⇐⇒ 〈|M |, EM , ∅, D̄〉 |= ϕ̃[(x/γ), (~y/~η), (z/ωµ̄)]

⇐⇒ 〈|M |, Ē, F, D̄〉 |= T̄λ(ϕ̃)[(x/γ), (~y/~η), (z/ωµ̄), (v/|JEµ̄ |), (
w/ωµ̄)]

⇐⇒ ∃u ∈ |M | (u is transitive, and
〈u, Ē ∩ u, F ∩ u, D̄ ∩ u〉 |= T̄λ(ϕ̃)[(x/γ), (~y/~η), (z/ωµ̄), (v/|JEµ̄ |), (

w/ωµ̄)])

⇐⇒ ∃m < ω∃u (u = SmĒ,F (|M ||µ̄| ∪ {|M ||µ̄|}) ∧

〈u, Ē, F, D̄〉 |= T̄λ(ϕ̃)[(x/γ), (~y/~η), (z/ωµ̄), (v/|JEµ̄ |), (
w/ωµ̄)]).
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For m < ω, let ḟm be a code for a function rudimentary in Ė, Ḟ , so that for arbitrary e, f, a,
vale,f [ḟm](a) = Sme,f (a ∪ {a})16 – it’s obvious that such codes exist. Let fm = valĒ,F [ḟm], and
fix m < ω large enough so that

〈SmĒ,F (|M ||µ̄| ∪ {|M ||µ̄|}), Ē, F, D̄〉 |= T̄λ(ϕ̃)[(x/γ), (~y/~η), (z/ωµ̄), (v/|JEµ̄ |), (
w/ωµ̄)]),

if (and hence only if) γ = ωµ̄. Note that |JEµ̄+1| is the closure of |JEµ̄ | ∪ {|JEµ̄ |} under functions
rud in Ē, F and D̄. Only functions rud in Ē and F are needed, as was shown in Lemma 5.5.
But using fDM||µ̄ one does not get more, as D̄, being definable in JEµ̄ , is an element of |JEµ̄+1|.
We have:

M |= ϕ[γ, ~η]
⇐⇒ 〈|M |, Ē, F, D̄〉 |= T̄λ(ϕ̃)[(x/γ), (~y/~η), (z/ωµ̄), (v/|JEµ̄ |), (

w/ωµ̄)]

⇐⇒ 〈|M |, Ē, F, D̄〉 |= T̄λ(ϕ̃)〈fm(|M ||µ̄|),Ē,F,DM||µ̄〉[(
x/γ), (~y/~η), (z/ωµ̄),

(v/|JEµ̄ |), (
w/ωµ̄)]

def⇐⇒ 〈|M |, Ē, F, D̄〉 |= ψ[(v0/fm(|M ||µ̄|)), (v1/Ē), (v2/F ), (v3/D̄),

(x/γ), (~y/~η), (z/ωµ̄), (v/|JEµ̄ |), (
w/ωµ̄)].

Here, ϕ〈w,x,y,z〉 denotes the relativization of ϕ to 〈w, x, y, z〉. ϕ is a formula in the language with
additional symbols Ḋ, Ė and Ḟ , which are replaced in the relativized formula with x, y and z,
respectively. Thus, a Σ0 formula in the language without additional symbols is produced.

So the above formula holds in 〈|M |, Ē, F, D̄〉 iff γ = ωµ̄. So one can continue as follows:

⇐⇒ 〈|M |, Ē, F, D̄〉 |= ψ[(v0/valĒ,F,D̄[fm](|M ||µ̄|)), (
v1/valĒ,F,D̄[fĖ ](|JEµ̄ |)),

(v2/valĒ,F,D̄[fḞ ](|JEµ̄ |)), (
v3/valĒ,F,D̄[fḊ](|JEµ̄ |)),

(x/valĒ,F,D̄[cOn](|JEµ̄ |)), (
~y/~η), (z/ωµ̄), (v/|JEµ̄ |), (

w/ωµ̄)]

⇐⇒ M ||µ̄ |= TḊ,Ė,Ḟ (ψ, v0, ḟm,Φ, v1, fĖ ,Φ, v2, fḞ ,Φ, v3, fḊ,Φ,

x, cOn,Φ, w, cOn,Φ)[(~y/~η)]
def⇐⇒ M ||µ̄ |= χ[(~y/~η)].

Here, I made use of the function TḊ,Ė,Ḟ that was introduced in Lemma 5.4; see also Lemma 5.6
for the meaning of cOn.

(2) µ̄ is the least ordinal δ such that ωδ ∈ DM and (M ||δ) |= χ[(~y/~η)]. (So µ̄ is the only ordinal
with that property, as ωµ̄ is the largest limit ordinal of M).

Proof of (2). It is clear that δ = µ̄ has this property. So we are left to show its minimality.
So suppose δ < µ̄ is also such that ωδ ∈ DM and (M ||δ) |= χ[~η]. By definition of χ, setting

16Sm
e,f is the m-fold composition of the function Se,f , i.e., the function S of [Jen72], relativized by e, f .
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Ẽ := E�ωδ, F̃ := Eωδ and D̃ := DM ||δ, one gets that:

(M ||δ) |= χ[~η]
⇐⇒ (M ||δ) |= TḊ,Ė,Ḟ (ψ, v0, ḟm,Φ, v1, fĖ ,Φ, v2, fḞ ,Φ, v3, fḊ,Φ,

x, cOn,Φ, w, cOn,Φ)[(~y/~η)]

⇐⇒ 〈|M ||δ + 1|, Ẽ, F̃ , D̃〉 |= ψ[(v0/valẼ,F̃ ,D̃[fm](|M ||δ|)), (
v1/valẼ,F̃ ,D̃[fĖ ](|JEδ |)

),

(v2/valẼ,F̃ ,D̃[fḞ ](|JEδ |)
), (v3/valẼ,F̃ ,D̃[fḊ](|JEδ |)

),

(x/valẼ,F̃ ,D̃[cOn](|JEδ |)
), (~y/~η), (z/ωδ), (v/|JEδ |), (

w/ωδ)]

⇐⇒ 〈|M ||δ + 1|, Ẽ, F̃ , D̃〉 |= T̄λ(ϕ̃)〈fm(|M ||δ|),Ẽ,F̃ ,D̃〉[(
x/ωδ), (~y/~η), (z/ωδ),

(v/|JEδ |), (
w/ωδ)].

Hence
〈|M ||δ + 1|, Ẽ, F̃ , D̃〉 |= T̄λ(ϕ̃)[(x/ωδ), (~y/~η), (z/ωδ), (v/|JEδ |), (

w/ωδ)],

and that means:
〈|M ||δ + 1|, E�ω(δ + 1), D̃〉 |= ϕ̃[(x/ωδ), (~y/~η), (z/ωδ)].

Remark: As ωδ ∈ DM , it follows that DM ||δ+1 = DM ||δ ∪ {ωδ} = D̃ ∪ {ωδ}. For otherwise, δ
would index an extender in M , so that s+(M ||δ) < ωδ. But then it would follow that ωδ /∈ DM .

So the last line says:
(M ||δ + 1) |= ϕ[(x/ωδ), (~y/~η)].

But with u = |M ||δ + 1|, it follows that M ||δ + 1 = M |u, since ωδ ∈ DM , hence DM ||δ =
DM ∩ ωδ, and DM ||δ+1 = DM ||δ ∪ {ωδ}, hence DM ||δ+1 = DM ∩ ω(δ + 1). So it follows that
M |= ϕ[ωδ, ~η], too, since ϕ, being a Σ1 formula, is persistent. By assumption, though, this means
that δ = µ̄, and hence that it was not the case that δ < µ̄ after all. 2(2)

In the following, I use the sequence 〈fNγ | γ < ht(N)〉 of functions coming from Corollary
5.18. Let N = 〈JENν̄+1, ∅〉. We get:

(3) ν̄ is the least ordinal δ satisfying:

(a) N ||δ is passive, or: N ||δ is active and On
N̂ ||δ = OnN ||δ.

(b) (N ||δ) |= fNδ (χ)[~η, δ−̇1].

So there is a Σ1 formula χ̃, so that for all γ,

ν̄ = γ ⇐⇒ N |= χ̃[γ, ~η].

Proof of (3). As to the minimality: (N ||δ) |= fNδ (χ)[~η, δ−̇1] just means that

Λ(N ||δ) |= χ[~η].

Let Λ(N ||δ) = M ||δ′ for some δ′ ≤ µ̄. In order to be able to use (2), I am going to show that
ωδ′ ∈ DM :

As S(M ||δ′) is a segment of S(M), Lemma 4.3 can be used:

(∗) There is no µ ≤ ht(M), so that s+(M ||µ) ≤ ωδ′ < µ.

Now suppose ωδ′ /∈ DM . Let then ωµ ∈ |M | be such that
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(∗∗) s+(M ||µ) < ωδ′ ≤ µ.

Then ωδ′ 6= µ, for otherwise, by (a), M ||δ′ would be active and s+(M ||δ′) = ωδ′, contradicting
(∗∗). So s+(M ||µ) < ωδ′ < µ, contradicting (∗). So ωδ′ ∈ DM , as claimed.

By (2), this means that δ′ = µ̄, which in turn means that δ = ν̄.
In order to express this minimality characterization by a Σ1 formula, I use for one thing the

fact that 〈fNγ | γ < ht(N)〉, viewed as a 3-ary relation, is Σ1(N) – see 5.18(d). As a second step,
it is easy to verify that the statement On

N̂ ||δ ⊆ OnN ||δ can be expressed by a Σω formula over
N ||δ. For basically, this means (setting F ′ = ENωδ):

N ||δ |= ∀f ∈ crit(F ′)nτ(F ′)∀~α < s(F ′)∃β ≺β, ~α� ∈ F ′({≺ξ, ~δ�< crit(F ′) | ξ = f(~δ)}).

2(3)

Hence ν̄ is Σ1 definable over N from ~η, and hence so is ων̄, which is what I wanted to show.
Case 2: ωµ̄ /∈ DM . This means that M ||µ̄ is active and s+(M ||µ̄) < µ̄.
The main difference to the first case is that the relationship between DM and DM ||µ̄ is

different. Namely, it is easy to check that:

(∗) Let M ||γ be active and ωγ /∈ DM . Then DM ||γ+1 = DM ||γ ∩ (s+(M ||γ) + 1) = D∗M ||γ .

Let Ē = E�ωµ̄, F = Eωµ̄ and D̄ = DM .
In the following, I write s+(γ) for s+(M ||γ). I argue as in case 1, but can avoid the de-tour

via ϕ̃ in order to define χ, for now D̄ = DM . Hence, I don’t have to introduce the additional
variable z. If I denote the resulting formula in the current case χ′, the reflections from case 1,
modulo the these changes, yield:

M |= ϕ[ωµ̄, ~η] ⇐⇒ 〈|M ||µ̄|, Ē, F, D̄〉 |= χ′[(~y/~η)].

In order to express this over M ||µ̄ (note that D̄ = DM ), every occurrence of “Ḋ(v)” in χ′ has
to be replaced with “Ḋ(v) ∧ v ≤ z”, where this time, s+(µ̄) must be substituted for the new
variable z. Denote the resulting formula by χ̃′. Hence:

M |= ϕ[ωµ̄, ~η] ⇐⇒ M ||µ̄ |= χ̃′[(~y/~η), (z/s+(µ̄))].

So instead of (2), we get:

(2’) µ̄ is the least δ such that

(a) M ||δ is active and δ > s+(δ) ∈ DM .

(b) M ||δ |= χ̃′[~η, s+(δ)].

Proof. As in the proof of (2), it is obvious that δ = µ̄ has these properties. Turning to the
minimality, suppose, δ < µ̄ had the same properties. Then, setting Ẽ := E�ωδ, F̃ := Eωδ and
D̃ := DM ||δ+1, we’d get

(M ||δ) |= χ̃′[~η, s+(δ)]
⇐⇒ 〈|M ||δ|, Ẽ, F̃ , D̃〉 |= χ′[~η]
⇐⇒ M ||δ + 1 |= ϕ[ωδ, ~η],

as before – here I use that by (∗), DM ||δ+1 = DM ||δ ∩ (s+(δ) + 1).
Again, letting u := |M ||δ + 1|, it follows that M ||δ + 1 = M |u:
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By assumption, s+(δ) ∈ DM . So Lemma 3.19 says that ω(δ+ 1) ∈ DM ; it even says that this
is the next element of DM after s+(δ). So by coherency,

DM ∩ ω(δ + 1) = DM ||δ+1,

and that’s what was needed.
Since ϕ is a Σ1 formula, it follows by persistence that M |= ϕ[ωδ, ~η], i.e., we get the contra-

diction δ = µ̄ > δ. 2(2′)

Correspondingly, we get:

(3’) ν̄ is the least ordinal δ such that

(a) N ||δ is active and On
N̂ ||δ 6= OnN ||δ.

(b) (N ||δ) |= fδ(χ̃′)[~η, δ−̇1︸︷︷︸
0

].

So there is a Σ1 formula χ∗, so that for all γ,

ν̄ = γ ⇐⇒ N |= χ∗[γ, ~η].

Lemma 8.12. Let N = 〈JEν̄+1, ∅〉 be a pPs-structure, for which M = Λ(N) = 〈JEMµ̄+1, ∅, D〉 exists.
Let p ∈ [OnN ]<ω be such that {ων̄} is Σ1(N) in p. Then {ωµ̄} is Σ1(M) in the same parameter
p.

Proof. Let ϕ be a Σ1 formula and p = {η1, . . . , ηn}, so that for every γ ∈ |N |,

γ = ων̄ ⇐⇒ N |= ϕ[γ, ~η].

We have:

N |= ϕ[γ, ~η]
⇐⇒ ∃u ∈ |N | (u is transitive and 〈u,E ∩ u, ∅〉 |= ϕ[γ, ~η])
⇐⇒ ∃m < ω∃u (u = SmE�ων̄,Eωµ̄(|N ||ν̄| ∪ {|N ||ν̄|}) ∧ 〈u,E ∩ u, ∅〉 |= ϕ[γ, ~η]).

Now, for every m < ω, fix a code ḟm for a function that’s rud in Ė, Ḟ , so that for all a and
arbitrary sets e, f , Sme,f (a) = vale,f [ḟm](a).

Choose m ∈ ω large enough so that

〈SmE�ων̄,Eων̄ (|N ||ν̄| ∪ {|N ||ν̄|}), E ∩ SmE�ων̄,Eων̄ (|N ||ν̄| ∪ {|N ||ν̄|}), ∅〉 |= ϕ[ων̄, ~η]).
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Then, setting Ē := E�ων̄, F := Eων̄ and γ = ων̄,

N |= ϕ[γ, ~η]
⇐⇒ 〈|N |, Ē, F 〉 |= T̄s(ϕ)[γ, ~η, |JEν̄ |, ων̄]
⇐⇒ 〈|N |, Ē, F 〉 |= (〈fm(|N ||ν̄|), Ē, F 〉 |= T̄s(ϕ)[γ, ~η, |JEν̄ |, ων̄])
⇐⇒ 〈|N |, Ē, F 〉 |= (T̄s(ϕ)〈fm(|N ||ν̄|),Ē,F 〉[γ, ~η, |JEν̄ |, ων̄]︸ ︷︷ ︸

ψ[fm(|N ||ν̄|),Ē,F,ων̄,~η,|JEν̄ |]

)

⇐⇒ 〈|N |, Ē, F 〉 |= ψ[(v0/valĒ,F [ḟm](|JEν̄ |)
), (v1/valĒ,F [ḟE ](|JEν̄ |)

), (v2/valĒ,F [ḟF ](|JEν̄ |)
),

(v3/valĒ,F [cOn](|JEν̄ |)), (
~w/~η), (v4/valĒ,F [π1

0 ](|JEν̄ |))]

⇐⇒ (N ||µ̄) |= TĖ,Ḟ (ψ, v0, ḟm,Φ, v1, ḟE ,Φ, v2, ḟF ,Φ, v3, cOn,Φ,

v4, π
1
0 ,Φ)[(~w/~η)]

def⇐⇒ (N ||ν̄) |= χ[(~w/~η)].

T̄s is the function from Corollary 5.10, and TĖ,Ḟ is the one from Lemma 5.4. The latter Lemma
is also used in going from the fifth to the sixth line.

(2) ν̄ is the least ordinal δ such that (N ||δ) |= χ[~η].

Proof of (2). It’s clear that δ = µ̄ has this property. It remains to show its minimality. So
suppose δ < µ̄ had the same property. By passing through the above chain of equivalences
backwards, setting Ẽ := E�δ and F̃ := Eωδ, one arrives at:

(N ||δ) |= χ[~η]
⇐⇒ (N ||δ) |= TĖ,Ḟ (ψ, v0, ḟm,Φ, v1, ḟE ,Φ, v2, ḟF ,Φ, v3, cOn,Φ,

v4, π
1
0 ,Φ)[(~w/~η)]

⇐⇒ 〈|N ||δ + 1|, Ẽ, F̃ 〉 |= ψ[(v0/valẼ,F̃ [ḟm](|JEδ |)
), (v1/valẼ,F̃ [ḟE ](|JEδ |)

),

(v2/valẼ,F̃ [ḟF ](|JEδ |)
), (v3/valẼ,F̃ [cOn](|JEδ |)

),

(~w/~η), (v4/valẼ,F̃ [π1
0 ](|JEδ |)

)]

⇐⇒ 〈|N ||δ + 1|, Ẽ, F̃ 〉 |= T̄s(ϕ)〈fm(|N ||ν̄|),Ē,F 〉[ωδ, ~η, |JEδ |, ωδ].

Hence, N ||δ + 1 |= ϕ[ωδ, ~η]. But with u = |N ||δ + 1|, N ||δ + 1 = N |u, and hence it follows that
N |= ϕ[ωδ, ~η], as ϕ is a Σ1 formula. By assumption, this means that δ = ν̄, contradicting the
assumption that δ < ν̄. 2(2)

(3) µ̄ is the least ordinal δ with:

(a) C̃0(M ||δ) |= g(χC̃0(M ||δ))[~η, δ−̇1]. (For the definition of g, see Lemma 5.16.)

(b) ωδ ∈ DM , or: M ||δ is active and s+(M ||δ) ∈ DM .

This can be formulated as M |= χ̃[γ, ~η], where χ̃ is a Σ1 formula.

Proof of (3). This follows from (2). Condition (b) says that S(M ||δ) is a segment of N . 2(3)

Hence µ̄ (and thus also ωµ̄) is Σ1-definable over M from the parameters ~η, as was to be
shown.
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8.4 Very good parameters in M and N

Lemma 8.13. Let M be a pPλ structure for which N = S(M) exists. Let p ∈ R1
M be such that

p ∈ [OnN ]<ω. Then also p ∈ R1
N . The analogous statement remains true if one replaces M , N

with C̃0(M), C̃0(N), respectively. If M is a pλ structure, then the analogous statement remains
true if one replaces M , N with C0(M), C0(N), respectively.

Proof. I prove the Lemma for M and N , indicating the changes necessary to prove the variants.
As p ∈ R1

M , there is a function f which is definable over M by a Σ1 formula ϕ, so that

y = f(x) ←→ M |= ϕ[y, x, p],

and so that ran(f�ωρ1
M ) = OnM .

By Corollary 5.18, there is a Σ1 formula ϕ′ = fN (ϕ) (here I use the notation from Corollary
5.19), defining f ∩ On2

N over N (maybe using ht(N)−̇1 as an additional parameter). So, for
ξ, ζ < OnN ,

ζ = f(ξ) ⇐⇒ N |= ϕ′[ζ, ξ, p, q],

where q = ∅ if the height of N is a limit, and q = ht(N) − 1 otherwise; in order to prove the
claim for the (pseudo) Σ0-codes, one has to use ϕ′ = fpN (ϕ) here; see 5.20. Hence, OnN ⊆
h1
N (ωρ1

N ∪ {p1
M} ∪ {q}). But ht(M)−̇1 ∈ h1

M (ωρ1
M ∪ p), as p ∈ RM . Now, by Lemma 8.11,

q = ht(N)−̇1 ∈ h1
N (ωρ1

M ∪ {p}). This means:

OnN ⊆ h1
N (ωρ1

M ∪ p).

But already since Lemma 6.4 we know that ρ1
M = ρ1

N (and the corresponding is true of the
pseudo Σ0-codes of these structures). Hence, it has been shown that OnN ⊆ h1

N (ωρ1
N ∪ p), i.e.,

p ∈ R1
N .

The converse of the part of the previous Lemma 8.13 concerning the pseudo Σ0-codes is shown
entirely analogously:

Lemma 8.14. Let N be a pPs structure, for which M = Λ(N) exists. Let p ∈ R1
C̃0(N)

. Then

p ∈ R1
C̃0(M)

.
So, together with Lemma 8.13 this yields:

R1
C̃0(M)

∩ [OnC̃0(N)]
<ω = R1

C̃0(N)
∩ [OnC̃0(N)]

<ω.

If N is a ps structure, then the analogous statement remains true if one replaces C̃0(M) with
C0(M) and C̃0(N) with C0(N).

Proof. Like the proof of Lemma 8.13; instead of fpN one has to use the function g from Lemma
5.16.

8.5 Soundness and Solidity from N to M

Here and in the following sections, M always denotes a pPs-structure, and N is supposed to
be S(M). Before beginning the proof that 1-solidity carries over from C̃0(N) to C̃0(M), I clarify
some terminology I use – I follow [Zem02, p. 43].

Definition 8.15. For an acceptable J-structure M , if ν ∈ OnM and p ∈ [OnM ]<ω, W ν,p denotes
the transitive collapse of M |X, where X is the Σ(n)

1 -hull of ν ∪ (p \ (ν + 1)) in M ; n ∈ ω here
is chosen so that ωρn+1

M ≤ ν < ωρnM . This structure is called the witness w.r.t. ν, p in M . The
inverse of the collapsing map is called the witness map.
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M is solid above α ∈ OnM , if for every ν ∈ pM \ α, the witness W ν,pM
M is an element of |M |.

M is solid if M is solid above 0. M is n-solid (for some n ∈ ω), if M is solid above ωρnM .

Lemma 8.16. Let N be a pPs structure, so that C̃0(N) is 1-solid. Let M = Λ(N). Then for

every γ ∈ p0
C̃0(N)

, the corresponding witness on the M -side, W
γ,p0
C̃0(N)

C̃0(M)
, is an element of |M |.

Proof. First, assume N is not of type III. At the end of the proof, I will sketch how to argue in
the type III case. So |N | = |C̃0(N)|. Let N = 〈JENν , ENων〉 and M = 〈JEMµ , EMωµ〉. Further, let γ

be an element of p0
C̃0(N)

. I have to show that W
γ,p0
C̃0(N)

C̃0(M)
∈ |M |. Set:

q := p0
C̃0(N)

\ (γ + 1) and X := hC̃0(N)(γ ∪ q).

Let σ : N̄ ∼←→ N |X be the transitive collapse of N |X, let q̄ := σ−1(q), and let N̄ = 〈JEN̄ν̄ , F̄ 〉.
Obviously, N̄ is a pPs-structure of the same type as N : If N is passive, then so is N̄ , and it’s
clear that N̄ is a pPs-structure. Now let N be active. As N is not of type III, s := s(N) is
available as a constant in C̃0(N), and consequently is in the range of σ. Let s̄ = σ−1(s). If N is
of type I, then so is N̄ , for if there were a generator of F̄ other than crit(F̄ ), then its image under
σ would be a generator of F different from crit(F ), so that N wouldn’t be type I. Moreover,
letting τ̄ = τ(F̄ ), σ(τ̄) = τ(F ) = s (as σ takes cardinals in the sense of N̄ to cardinals in the
sense of N), hence τ̄ = s̄ = s(F̄ ). If N is of type II, then an analogous argument shows that
σ(s̄) = s (and thus, that N̄ is of type II). I use here that being a generator is Π1: Let s = γ + 1,
γ̄ = σ−1(γ). Then γ̄ is a generator of F̄ , and there can be no larger generator δ̄ of F̄ , for the
image of such a larger generator would have to be a generator of F which is greater than s.
Hence s̄ = s(F̄ ) in this case as well.

The property of being continuable carries over from N to N̄ . Of course, this is only of interest
if the structures are active. In this case, the embedding σ extends canonically to an embedding
from ID(N̄ ||τ̄ , F̄ ) into N̂ , proving its well-foundedness.

We have C̃0(N̄) = W γ,q

C̃0(N)
∈ |N |, because C̃0(N) is 1-solid. By Lemma 8.9, M̄ := Λ(N̄) :=

〈JEM̄µ̄ , EM̄ωµ̄, DM̄ 〉 exists. Obviously, |N̄ | = h1
C̃0(N̄)

(γ ∪ q̄).
Claim: C̃0(M̄) = W γ,q

C̃0(M)
.
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C̃0(N̄) = W γ,q

C̃0(N)

σ σ′

Λ

Λ

C̃0(N) C̃0(M)

C̃0(M̄) = W γ,q

C̃0(M̄)

Proof of Claim.
Case 1: ν = ν′ + 1.
Then µ is of the form µ′ + 1 as well, and N̄ is passive.
Case 1.1: ν̄ = ν̄′ + 1.
Then µ̄ = µ̄′ + 1 as well, and N and N̄ are in the same case of Lemma 5.19 (in the current

case, N = C̃0(N) and N̄ = C̃0(N̄) in the sense that the additional constants in both structures
are interpreted by 0. So I am not going to distinguish between these structures and their codes
for the rest of the treatment of this case). I will make use of this in the following.

(1) Let ϕ(~x, y) be a Σ1 formula, and let ~α < γ. Then:

M |= ϕ[~α, q] ⇐⇒ M̄ |= ϕ[~α, q̄].

Proof of (1). We have that σ(~α, ν̄′) = ~α, ν′, and as σ is Σ1-preserving, Corollary 5.19 tells
us that fN = fN̄ (we use the notation of that Corollary), because in the current case, both
structures have successor height, and which of the possible cases listed in the Corollary applies
to N and N̄ is uniformly Σ1(N) in the parameter N ||ν′, and Σ1(N̄) in the parameter N̄ ||ν̄′,
respectively. But since σ(N̄ ||ν̄′) = N ||ν′, this is decided in N̄ and in N in the same way. So we
can conclude:

M |= ϕ[~α, q] ⇐⇒ N |= fN (ϕ)[~α, q, ν′]
⇐⇒ N̄ |= fN (ϕ)[~α, q̄, ν̄′]
⇐⇒ N̄ |= fN̄ (ϕ)[~α, q̄, ν̄′]
⇐⇒ M̄ |= ϕ[~α, q̄].

2(1)

(2) |M̄ | = h1
C̃0(M̄)

(γ ∪ q̄).

Proof of (2).

(2.1) µ̄′ ∈ h1
C̃0(M̄)

(γ ∪ q̄).
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Proof of (2.1). We know that |N̄ | = h1
C̃0(N̄)

(γ ∪ q̄). So ν̄′ is Σ1(N̄) in q̄ ∪ {~α} for a finite set

{~α} ⊆ γ. Now Lemma 8.12 can be applied, showing µ̄′ is Σ1(M̄) in q̄ ∪ {~α}, and this yields the
claim. 2(2.1)

Since Corollary 3.26, it’s clear that h1
M̄

(otp(DM̄ )) = |M̄ |. Since N̄ is passive, we also already
know that ht(N̄) = otp(DM̄ ) (see Lemma 4.5). So, for (2), it suffices to prove that ht(N̄) ⊆
h1
M̄

(γ ∪ q̄). This can be seen as follows: OnN̄ ⊆ h1
C̃0(N̄)

(γ ∪ q̄), so it follows from Lemma 5.16

that OnN̄ ⊆ h1
C̃0(M̄)

(γ ∪ q̄ ∪ {µ̄′}). But by (2.1), µ̄′ ∈ h1
C̃0(M̄)

(γ ∪ q̄), which obviously gives the
claim. 2(2)

Now define σ′ : M̄ −→M by σ′(h1
M̄

(i, 〈~β, q̄〉)) := h1
M (i, 〈~β, q〉) (for i < ω and ~β < γ).

(3) σ′ : M̄ −→Σ1 M , σ′�γ = id�γ and X ′ := ran(σ′) = h1
M (γ ∪ q).

Proof of (3). Obvious. 2(3)

But this shows that M̄ = W γ,q
M , hence the claim is proven in case 1.1. In the other cases, I

shall try to repeat this argument as closely as possible. The difficulty is that N̄ and N may not
be of the same type in the sense of 5.19.

Case 1.2: ν̄ is a limit ordinal.
Then let λ be the largest limit ordinal below ν, and let n ∈ ω be such that ν = λ+ n (hence

n > 0). Obviously, λ + m /∈ X for m < n, or else λ + (n − 1) = ν′ ∈ X, making ν̄ a successor
ordinal. Set: Ñ := (N ||λ)passive and M̃ := Λ(Ñ) – again, the Λ-image of Ñ exists by Lemma
8.9. Further, let λ′ be the largest limit ordinal below µ. We have:

(∗) C̃0(N)|X ≺Σ1 C̃0(Ñ).

This is obvious, as X ⊆ |Ñ |. Note that in the current case, N is passive, and so, the constants
in C̃0(N) are interpreted by 0. The same applies to C̃0(Ñ), being passive as well.

So, X = h1
C̃0(Ñ)

(γ ∪ q), because: For every a ∈ X, the statement “a = h(i, 〈~β, q〉)” holds in

C̃0(N) of some ~β < γ and i < ω. But this is a Σ1 statement in parameters from X, so because
C̃0(N)|X ≺Σ1 C̃0(N), it holds in C̃0(N)|X as well, and due to (∗), also in C̃0(Ñ). For the converse,
one can argue in the same way: If the statement “a = h(i, 〈~β, q〉)” is true in C̃0(Ñ), for some
~β < γ and i < ω, then, in particular, the statement “there is some x, so that x = h(i, 〈~β, q〉)”
holds in C̃0(Ñ). The same holds then in C̃0(N)|X, as well. The witness for the truth of the
statement has to be a, so that a ∈ X.

Hence C̃0(N̄) = W γ,q

C̃0(Ñ)
. We get the equivalents of (1)-(3) from case 1.1, where N and M

have to be replaced by Ñ and M̃ , respectively. The point is that now the heights of Ñ and N̄
are limit ordinals, so that Ñ and N̄ are of the same type, in the sense of the distinction made in
Corollary 5.19, namely of type (3) – note that N̄ is passive, since N is. So it follows by almost
the same proofs:

(1) Let ϕ(~x, y) be a Σ1 formula, and let ~α < γ. Then:

M̃ |= ϕ[~α, q] ⇐⇒ M̄ |= ϕ[~α, q̄].

(2) M̄ = h1
M̄

(γ ∪ q̄).

(3) σ′ : M̄ −→Σ1 M̃ , σ′�γ = id�γ and X ′ := ran(σ′) = h1
M̃

(γ ∪ q),

where σ′ : M̄ −→ M̃ is defined by σ′(h1
M̄

(i, 〈~β, q̄〉)) := h1
M̃

(i, 〈~β, q〉) (for i < ω and ~β < γ).
To prove (2), the equivalent of (2.1) in case 1.1. is obsolete, since the additional parameter

doesn’t show up in the case of limit height.
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(4) X ′ = h1
C̃0(M)

(γ ∪ q).

Proof of (4). Let Y := h1
C̃0(M)

(γ ∪ q).

(4.1) λ′, λ′ + 1, . . . , λ′ + (n− 1) /∈ Y .

Proof of (4.1). We know that µ′ /∈ Y , as otherwise it would follow by Lemma 8.12 that ν′ ∈ X,
which is not the case. But if there were some m < n such that λ′ +m ∈ Y , then it would follow
that µ′ ∈ Y as well, a contradiction. 2(4.1)

(4.2) Y ⊆ |M̃ |.

Proof of (4.2). From the definition of Λ, it is easy to see that λ′ = ht(Λ(N̂ ||λ
passive

). If N ||λ is
passive, then the claim follows immediately from (4.1), for then λ′ = ht(M̃). If N ||λ is active,
then an additional argument is needed. Then M ||λ′ = Λ(N ||λ) is active and λ = s+(M ||λ′).
Moreover, ht(M̃) = ht(Ñ) = λ.

If λ′ = s+(M ||λ′), then λ = λ′, and it follows by (4.1) that Y ∩ On ⊆ λ′ = λ, which entails
the claim.

So let λ′ > s+(M ||λ′). As λ′ /∈ Y , it follows that λ /∈ Y : Otherwise, λ′ ∈ Y as well, since
λ′ =the unique ξ such that s+(M ||ξ) = λ, and this is a Σ1 definition of λ′ from λ.

But then Y ∩On ⊆ λ: Suppose β ∈ Y \λ. By (4.1), Y ∩On ⊆ λ′, and I have just shown that
λ /∈ Y . Hence, λ < β < λ′. But (λ, λ′] ∩DM = ∅ and λ ∈ DM . So λ =the unique δ such that

M |= Ḋ(δ) ∧ (∀β̄ < β(δ < β̄ −→ ¬Ḋ(β̄))),

since λ = max(DM ∩ β). So λ ∈ Y , which is, as we have already seen, not the case.
So Y ∩On ⊆ λ = OnM̃ , and the claim follows. 2(4.2)

(4.3) C̃0(M)|Y ≺Σ1 C̃0(M).

Proof of (4.3). This follows from the definition of Y . 2(4.3)

(4.4) C̃0(M̃) = C̃0(M)|(|M̃ |).

Proof of (4.4). M̃ and M both are passive, so EM̃top = EMtop = ∅, and the constants in the languages
of C̃0(M̃) and C̃0(M) are interpreted in both structures by ∅.

Finally, DM̃ = DM ∩ |M̃ |:
If N ||λ is passive, then Ñ = N ||λ is a segment of N = S(M). Then M̃ = Λ(Ñ) is a segment

of M , and all these structures are passive. Hence ht(M̃) = λ′ ∈ DM , and the claim follows from
the coherency of enhancements.

If N ||λ is active, then Λ(N ||λ) = M ||λ′ and λ = s+(M ||λ′) ∈ DM . Moreover, M̃ =
(M ||λ)passive (I have to write (M ||λ)passive here, for it could be that λ = λ′). Hence,
DM̃ = DM ||λ = DM ∩OnM̃ . 2(4.4)

(4.5) C̃0(M̃)|Y ≺Σ1 C̃0(M).

Proof of (4.5). This follows immediately from (4.2)-(4.4), since C̃0(M̃)|Y = C̃0(M)|Y . 2(4.5)

(4.6) C̃0(M̃)|Y ≺Σ1 C̃0(M̃).
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Proof of (4.6). I have to show that for every Σ1 formula ϕ(~x) and every tuple ~a ∈ Y ,

C̃0(M̃)|Y |= ϕ[~a] ⇐⇒ C̃0(M̃) |= ϕ[~a].

The direction from left to right:
Let ϕ ≡ ∃y ψ, where ψ(y, ~x) is a Σ0 formula. Suppose C̃0(M̃)|Y |= ϕ[~a]. Then let b ∈ Y

be such that C̃0(M̃)|Y |= ψ[b,~a]. By (4.5), it follows that C̃0(M) |= ψ[b,~a]. But ψ is Σ0. C̃0(M)
and C̃0(M̃) = C̃0(M)|(|M̃ |) are transitive, hence we have C̃0(M̃) |= ψ[b,~a] (clearly, b ∈ Y ⊆ |M̃ |
by (4.2)).

For the converse, we have:

C̃0(M̃) |= ϕ[~a] ⇒ C̃0(M) |= ϕ[~a] (persistence and (4.4))
⇒ C̃0(M̃)|Y |= ϕ[~a] by (4.5).

2(4.6)

(4.7) X ′ ⊆ Y .

Proof of (4.7). X ′ is minimal with γ ∪ q ⊆ X ′ and the property that C̃0(M̃)|X ′ ≺Σ1 C̃0(M̃). Y
has both of these properties, by (4.6) and by definition of Y . 2(4.7)

(4.8) Y ⊆ X ′.

Proof of (4.8). Let b ∈ Y . Then there are ~α ∈ γ∪q and a Σ1 formula ϕ(~x), so that b is the unique
c such that C̃0(M) |= ϕ[c, ~α]. By (4.5), it follows that (C̃0(M̃)|Y ) |= ϕ[b,~a]. So by (4.6), one can
deduce that C̃0(M̃) |= ϕ[b, ~α]. But b is also uniquely determined by that property, for if there
were some b′ 6= b with C̃0(M̃) |= ϕ[b′, ~α], this would imply the contradiction C̃0(M) |= ϕ[b′, ~α]
(by (4.4) and persistence). Hence b ∈ X ′, which was to be shown. 2(4.8)

(4.7) and (4.8) together prove the claim. 2(4)

So, from (4), (4.5) and (1)-(3) it follows that:

(1’) Let ϕ(~x, y) be a Σ1 formula, and let ~α < γ. Then we have:

M |= ϕ[~α, q] ⇐⇒ M̄ |= ϕ[~α, q̄].

(2’) M̄ = h1
M̄

(γ ∪ q̄).

(3’) σ′ : M̄ −→Σ1 M , σ′�γ = id�γ and ran(σ′) = h1
M (γ ∪ q).

But from (1’)-(3’) it follows that C̃0(M̃) = W γ,q

C̃0(M)
, and that σ′ is the associated witness map.

Case 2: ν is a limit ordinal.
Then ν̄ is a limit as well. Moreover, N is active iff N̄ is. So either both N and N̄ are of type

(3) or both are of type (4) in the sense of the distinction made in the statement of Corollary
5.19. So one can argue in the current case as we did in case 1.1, with the simplification that the
parameters ν′ and ν̄′ don’t show up.

This concludes the proof of the claim. 2Claim

Let me now show the analogous claim in the case that N is active of type III:
Then “C̃0(N) = N̂” and “C̃0(M) = M” in the sense, that the additional constants available

in the Pseudo-Σ0-Codes are easily definable in the reduced structures. Now form Ñ := W γ,q

N̂
.

It is obvious that there is a pPs structure N̄ so that Ñ = ̂̄N (whether or not this structure is
of type III, does not matter for the rest of the argument). Let M̄ = Λ(N̄). As in case 1.1., it

75



follows that M̄ = W γ,q
M ; instead of fN and f

p
N , one can now use the function f̂N from Corollary

5.19.
So, W γ,q

C̃0(M)
= C̃0(Λ(N̄)), and N̄ ∈ |N |. But |N | ⊆ |M |, i.e., N̄ ∈ |M |.

In order to finish the proof of the Lemma, it remains to show that Λ(N̄) ∈ |M |, as well. This
can be seen as follows: |N̄ | = h1

N̄
(γ∪ q̄), and so, N̄ can be reconstructed from Ā := Aq̄

N̄
∩ (γ×ω).

Let κ = crit(σ). Then κ ≥ γ, and σ(κ) is a cardinal in N . Obviously, σ(κ) > κ ≥ γ. Ā can be
coded as a subset A′ of κ, which is an element of N . As N is acceptable, A′ ∈ |N ||σ(κ)|. But
N ′ := (N ||σ(κ))passive is a ZFC− model, so N̄ ∈ |N ′|, and |Λ(N ′)| = |N ′|. Hence, N̄ ∈ |Λ(N ′)|.
And M ′ := Λ(N ′) is a ZFC− model as well, which implies that Λ�|M ′| can be defined in M ′, so
that Λ(N̄) ∈ |M ′|. But obviously, |M ′| ⊆ |M |, so, putting all of this together, Λ(N̄) ∈ |M |.

Lemma 8.17. Let C̃0(N) be a pPs-structure that’s 1-solid and sound. Let M := Λ(N). Then
C̃0(M) is 1-solid and sound, too.

Proof. I want to use Lemma 8.7 in order to prove that C̃0(M) is sound (there, M now plays the
role of C̃0(N) and N that of C̃0(M)). So the points (i)-(v) need verification. Of these, only (ii)
and (v) are not obvious.

For (v): I have to show that q0
C̃0(N)

= q0
C̃0(M)

∈ R1
C̃0(M)

. Since C̃0(N) is sound,

q0
C̃0(N)

= p0
C̃0(N)

∈ R1
C̃0(N)

⊆ R1
C̃0(M)

,

by Corollary 8.4 and Lemma 8.14. By Lemma 8.16,

∀γ ∈ q0
C̃0(N)

W
γ,q0
C̃0(N)

C̃0(M)
∈ |M |.

But this means, by [Zem02, Cor. 1.12.4]:

q0
C̃0(N)

= pC̃0(M),1 = q0
C̃0(M)

.

This shows (v).
For (ii): Let’s write q0 for q0

C̃0(M)
= q0

C̃0(N)
in the following. I have to show that for all

q ∈ H1 := H1
C̃0(M)

= H1
C̃0(N)

,

{a | a is Σ1(C̃0(M)q
0
) in q} = {a | a is Σ1(C̃0(N)q

0
) in q}.

For the left-to-right direction, let A be Σ1(C̃0(M)1,q0
) in the parameter q ∈ H1. Let ϕ be a

Σ1-formula defining A over C̃0(M)1,q0
. So, for a ∈ H1,

a ∈ A ⇐⇒ C̃0(M)1,q0
|= ϕ[a, q]

⇐⇒ 〈H1, Aq
0

C̃0(M)
〉 |= ϕ[a, q].

Now I would like to define the first standard-code of C̃0(M) over C̃0(N), which is possible in
principle, because it is Σ1. But there is the subtlety that Lemma 5.17 only applies to sets of
(n-tuples of) ordinals. So I have to code the standard-code by such a set first. To this end, let
f : OnM ↔ |M | the canonical Σ1(M)-bijection. Set:

Ã = {〈i, γ〉 | C̃0(M) |= ϕi[f(γ), q0]}.

Then Ã is a set of pairs of ordinals which is Σ1(C̃0(M)) in q0.
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By Lemma 5.17, Ã ∩ |N | is Σ1(C̃0(N)) in q0 ∪ {ht(N)−̇1}. Consider now the case that the
height of M (and hence also that of N) is a successor.

Let µ = µ̄+ 1 = ht(M) and ν = ν̄ + 1 = ht(N). As C̃0(N) is sound, ν̄ = h1
C̃0(N)

(j, q0 ∪ {~α})
for some ~α ∈ (ωρ1)<ω. Let ~α be lexicographically minimal so that a j with that property exists,
and let j be minimal with respect to ~α.

Let i be the Gödel-number of the Σ1-formula defining Ã, after substituting h1
C̃0(N)

(j, q0∪{~α}).
So for all a ∈ |N |,

a ∈ Ã ⇐⇒ C̃0(N) |= ϕi[〈a, ~α〉, q0].

Claim: {~α} is Σ1(C̃0(N)q
0
)-definable without parameters.

Proof of Claim. The point is that {ων̄} is Π1(N) (without parameters), for it is the largest
limit ordinal of N . Write π(x) for this Π1-formula. Now {ν̄} can be defined from ων̄ without
additional parameters by a Σ1-formula. Hence ~α is <lex-minimal with the property that ων̄ =
h1
C̃0(N)

(j, q0
N ∪ {~α}). So ~α is the <N -minimal finite sequence of ordinals ~β such that

N |= π[hN (j, 〈~β, q0
N )〉)].

Since hC̃0(N) is a good Σ1-function, it can be substituted in Σ1-formulae. So one can argue:

C̃0(N) |= π[hC̃0(N)(j, 〈~β, q
0〉)] ⇐⇒ ¬(C̃0(N) |= ¬π︸︷︷︸

σ

[hC̃0(N)(j, 〈~β, q
0〉)])

⇐⇒ ¬(C̃0(N) |= σ[hC̃0(N)(j, 〈~β, q
0〉)])

⇐⇒ ¬(C̃0(N) |= σ̃[~β, q0])

⇐⇒ ¬Aq
0

N (k, ~β),

where k is the Gödel-number of the Σ1-formula σ̃. So ~β = ~α iff

C̃0(N)q
0
|= ¬Ȧ(k, 〈~β〉) ∧ ∀~γ <N ~β Ȧ(k, 〈~γ〉),

which is even a Σ0-formula. 2Claim

Write ψ for the Σ1-formula defining ~α. Then for a ∈ H1,

a ∈ Ã ⇐⇒ Aq
0

C̃0(N)
(i, 〈a, ~α〉)

⇐⇒ C̃0(N)1,q0
|= ∃~β (ψ(β) ∧ Ȧ(i, 〈a, ~β〉).

We have for all a ∈ H1:

a ∈ A ⇐⇒ C̃0(M)1,q0
|= ϕ[a, q]

⇐⇒ 〈H1, Ã〉 |= ϕ′[a, q],

where ϕ′ arises from substituting every occurrence of Ȧ(i, x) in ϕ with Ȧ(i, f−1(x)), and then
substituting the Σ1-definition of f for f . The result is a Σ1-formula. Further, we have for all
a ∈ H1:

a ∈ A ⇐⇒ 〈H1, Ã〉 |= ϕ′[a, q]

⇐⇒ 〈H1, Aq
0

C̃0(N)
〉 |= ∃~β (ψ(β) ∧ ϕ∗[a, q]),
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where ϕ∗ results from substituting every occurrence of Ȧ(l, a) in ϕ′ with Ȧ(i, 〈〈l, a〉, ~β〉). Then
ϕ∗ is again Σ1, and so the proof is complete.

If the heights of M and N are limit ordinals, the complication with the additional parameter
ht(N)−̇1 doesn’t arise, which simplifies the proof.

For the right-to-left direction, one can argue similarly. But this time, one has to express Aq
0

N

over M . Let Ã = {〈i, a〉 | C̃0(N) |= ϕi[a, q0]} (the step of coding by a set of ordinals is not
necessary now), which is obviously a Σ1(N) relation. Now the function g from Lemma 5.16 can
be used in order to see that Ã is Σ1(M) in q0∪ht(M)−̇1. If the heights of M and N are successor
ordinals, it must be shown that ht(M)− 1 = h1

C̃0(M)
(j, q0 ∪ {~α}), for suitable ~α < ωρ1

C̃0(M)
. For

this, the soundness of C̃0(N) can be applied, yielding that ht(N) = h1
C̃0(N)

(j′, q0∪{~α}), and thus
allows us to use Lemma 8.12. The rest of the argument is as before.

The previous Lemmas remain true, mutatis mutandis, if they are stated for the full Σ0-Codes
C0(M) and C0(N) instead of C̃0(M) and C̃0(N). I need some facts on the downward preservation
of s-structures, though.

Lemma 8.18. There is a Π1 formula ψ(x, y), such that for every active pPs-structure N and
every ordinal ξ, the following holds: If EN̂top|ξ ∈ |N̂ |, then 〈a, f〉 is the ≺N -minimal17 member of

Γ(N,κ(N)) with a ∈ [s(N)]<ω and πNs(N)(f)(a) = EN̂top|ξ, if and only if

C̃0(N) |= ψ[〈a, f〉, ξ].

Proof. For an active pPs-structure N , let ΓN := Γ(N ||τ(N), κ(N)). The statement “x = EN̂top|ξ”
is uniformly Π1(N̂), denote this formula by ψF(v, w). So N̂ |= ψF[x, ξ] ⇐⇒ x = EN̂top|ξ. In the
following, I shall use the function d from Lemma 5.11. Let 〈α, f〉 ∈ ΓN . Then

πNs(N)(f)(a) = EN̂top|ξ ⇐⇒ ¬(N̂ |= ¬ψF[πNs(N)(f)(a), πNs(N)(id)(ξ)])

⇐⇒ ¬(C̃0(N) |= d(¬ψF)[〈f, a〉, 〈id, ξ〉])
⇐⇒ C̃0(N) |= ¬d(¬ψF)[〈f, a〉, 〈id, ξ〉]
⇐⇒ C̃0(N) |= ψ̃[〈f, a〉, ξ]

for a Π1 formula ψ̃. This formula is independent of N . So we get:

(1) For every active pPs-structure N ′ of type II, every 〈a, f〉 ∈ ΓN and every ξ,

πN
′

s(N ′)(f)(a) = EN̂
′

top|ξ ⇐⇒ C̃0(N ′) |= ψ̃[〈a, f〉, ξ].

For 〈a, f〉, 〈b, g〉 ∈ ΓN , let

a〈a,f〉,〈b,g〉 := {c ∈ [κ]n | fa,a∪b(c) = gb,b∪c(c)},

where fa,a∪b and gb,b∪c result from adding appropriate “dummy” variables to f and g, see [Ste00,
P. 4f]. Let n be the number of Elements of a ∪ b. We have:

(2) Let 〈a, f〉 ∈ ΓN , and let θ be minimal such that f ∈ |JENθ | (hence θ < τ(N)). Let 〈b, g〉 ≺N
〈a, f〉. Then a〈a,f〉,〈b,g〉 ∈ |JE

N

θ+1|.
17For the definition of ≺N , see 3.37.
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Proof of (2). Since 〈b, g〉 ≺N 〈a, f〉, g ≤N f , and hence also g ∈ |JENθ |. For the definition of,
a〈a,f〉,〈b,g〉 no exact knowledge about a and b is needed; it suffices to know “how a and b lie in
a ∪ b”. There are only finitely many possibilities. Hence a〈a,f〉,〈b,g〉 is definable from f and g,
and hence a member of JE

N

θ+1. 2(2)

(3) The relation {〈γ, ξ〉 ∈ |N | | ξ < τ(N) ∧ γ ≥ γξ} is uniformly Σ0(N) in the parameter {1},
for active pPs-structures N . For the definition of γξ see the proof of 5.12.

Proof of (3). I have to go back to Definition 3.3, where (ENtop)c is introduced. We have:

γ ≥ γξ ⇐⇒ ENtop(γ, ξ, 1, {1});

obviously, ENtop(1, {1}), since 1 = {0} ∈ [κ]1, {1} = {{0}} ⊆ [κ]1, and 1 ∈ πNs ({1}) = {1}. Hence,
ENtop(γ, ξ, 1, {1}) means that F ∩ ([s(N)]<ω × |JENξ |) ∈ |JE

N

γ |, i.e., γ ≥ γξ. 2(3)

So we have: 〈a, f〉 is ≺N -minimal with a ∈ [s(N)]<ω and πNs(N)(f)(a) = EN̂top|ξ iff

C̃0(N) |= a ∈ [ṡ]<ω ∧ ψ̃[〈a, f〉, ξ] ∧ ∀〈b, g〉∀θ∀γ∀c(
(〈a, f〉 ∈ |JENθ | ∧ ∀θ̃ < θ 〈a, f〉 /∈ |JEN

θ̃
| ∧ “γ ≥ γθ+1” ∧ 〈b, g〉 ≺N 〈a, f〉∧

∧ c = a〈a,f〉,〈b,g〉) −→ ¬Ḟ (γ, θ + 1, a ∪ b, c)
)
.

Note here that ¬Ḟ (γ, θ + 1, a ∪ b, c) means that πNs(N)(f)(a) 6= πNs(N)(g)(b). This is because

c = a〈a,f〉,〈b,g〉 ∈ |JE
N

θ+1|, by (2), and γ ≥ γθ+1.

Lemma 8.19. Let N be a ps-structure of type II and σ : N̄ −→Σ1 N an embedding such that
q̇C0(N) and ṡC0(N) ∈ ran(σ). Then N̄ is also a ps-structure of type II, σ(ṡC0(N̄)) = ṡC0(N) and
σ(q̇C0(N̄)) = q̇C0(N).

Proof. The map σ can be extended to a Σ1-preserving embedding σ′ from ̂̄N to N̂ in a canonical
way. The proof of Lemma 8.27 can be applied to σ′ : ̂̄N −→Σ1 N̂ and shows that σ′(q̇C0( ̂̄N)) =
q̇C0(N̂), and that ̂̄N satisfies the s′-ISC. It follows from the preceding Lemma 8.18 that σ(q̇C0(N̄)) =
q̇C0(N). Moreover, it’s obvious that N̄ satisfies the s′-ISC and is of type II.

Lemma 8.20. Let M be an active pλ structure of type III. Then ωρ1
M = s(M).

Proof. Obviously, ωρ1
M ≤ s(M) since there is a Σ1(M)-surjection from s(M) onto |M |. Assume

that ωρ1
M < s(M). Then let A be a set which is Σ1(M)-definable in the parameter p such that

A ∩ ωρ1
M /∈ M . Let F := EMtop. Then for δ ∈ genF and δ < δ′ ≤ s, crit(σMδ,δ′) = δ, as is easily

checked. Moreover,

(∗) |M | =
⋃
δ∈genF

ran(σMδ,s).

Proof of (∗). By definition of s,
πs : JE

M

τ −→F |s JE
M

ν ,

where τ = τ(M) and ν = ht(M). Let x ∈ JE
M

ν and κ = crit(F ). Then there are n, ~α ∈ sn and
a function f : κn → JE

M

τ with f ∈ JE
M

τ , so that x = πMs (f)(~α). Let max(~α) < δ ∈ genF (this is
possible since genF has no maximum). Then

σMδ,s(π
M
δ (f)(~α)) = πMs (f)(~α) = x ∈ ran(σMδ,s).

2(∗)
Now let µ be a cutpoint of F with the following properties:
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1. p ∈ ran(σMµ,s).

2. µ ≥ ωρ1
M .

3. [M ]µ satisfies the s′-MISC.

Such a µ is easily found, using Lemma 8.26. Then σMµ,s : [M ]µ −→Σ0 M cofinally, hence
Σ1−preserving. Let Ā be Σ1([M ]µ) in p̄ by the same formula that defines A in a Σ1(M)
way using the parameter p, where σMµ,s(p̄) = p. Since ωρ1

M ≤ µ ≤ crit(σMµ,s), and since σMµ,s is
Σ1−preserving, it follows that

Ā ∩ ωρ1
M = A ∩ ωρ1

M .

But [M ]µ satisfies the s′-MISC and M is a pλ structure, hence [M ]µ ∈ M . Hence, everything
that’s definable over [M ]µ belongs to M , in particular Ā∩ ωρ1

M = A∩ ωρ1
M , a contradiction.

Corollary 8.21. Let N be an active ps structure of type III. Let s = s(ENtop). Then s = ωρ1
C̃0(N)

,
and pC̃0(N),1 = 〈∅〉.

Proof. This is shown like Lemma 8.20; it’s obvious that one can define a Σ1-surjection from s
onto |N̂ | in N̂ using the top extender.

Lemma 8.22. Let N be a ps-structure such that C0(N) is 1-solid. Let M = Λ(N). Then for

every γ ∈ p0
C0(N), the corresponding witness on the M -side, W

γ,p0
C0(N)

C0(M) , is an element of |M |.

Proof. If N is of type III, then q0
C0(N) = ∅; see Lemma 8.21. So in that case, nothing is to be

shown – the situation in the more general case that N is a pPs-structure was different.
The only point that deserves extra attention is the verification thatW γ,q0

C0(N) is a ps-structure.
This follows from Lemma 8.19. The rest of the proof remains more ore less the same. The main
efforts were in the case that N is passive, anyway, and in that case, the Pseudo-Σ0-Codes are
essentially the same as the full Σ0-Codes.

Lemma 8.23. Let C0(N) be a ps-structure that’s 1-solid and sound. Let M = Λ(N). Then
C0(M) is 1-solid and sound.

Proof. Like before.

8.6 Soundness and Solidity from M to N

Let’s turn around what was done in the previous section now.

Lemma 8.24. Let M be a pPλ-structure, so that C̃0(M) is 1-solid. Let N = S(M). Then for

every γ ∈ p0
C̃0(M)

, the corresponding witness on the N -side, W
γ,p0
C̃0(M)

C̃0(N)
, is an element of |N |.

Proof. Let M = 〈JEMµ , EMωµ〉, N = 〈JENν , ENων〉, and suppose first that M is not active of type III.
Let γ ∈ p0

C̃0(M)
, and set:

q := p0
C̃0(M)

\ (γ + 1) and X := hC̃0(M)(γ ∪ q).

Let
σ : M̄ ∼←→M |X
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invert the collapse of M |X, and set q̄ := σ−1(q). Finally, let

M̄ = 〈JE
M̄

µ̄ , F̄ , D̄〉.

Obviously, M̄ is a pPλ-structure of the same type as M ; that D̄ = DM̄ follows from the

uniform Π1-definability of enhancements (Lemma 3.12). We have that C̃0(M̄) = W
γ,p0
C̃0(M)

C̃0(M)
∈ |M |,

as C̃0(M) is 1-solid. Let N̄ := S(M̄) = 〈JEN̄ν̄ , EM̄ωµ̄〉. Obviously, |M̄ | = h1
C̃0(M̄)

(γ ∪ q̄).

Claim: C̃0(N̄) = W
γ,p0
C̃0(M)

C̃0(N)
.

Proof of the claim.
Case 1: µ = µ′ + 1.
Then ν is of the form ν′ + 1 as well. So in particular, M̄ is passive.
Case 1.1: µ̄ = µ̄′ + 1.
Then ν̄ = ν̄′ + 1.

(1) Let ϕ(~x, y) be a Σ1-formula, and let ~α < γ. Then we have:

C̃0(N) |= ϕ[~α, q] ⇐⇒ C̃0(N̄) |= ϕ[~α, q̄].

Proof of (1). First, it has to be argued that q̄ ∈ |N̄ | and q ∈ |N |. We have that q ∈ |N |, because
q ⊆ p0

C̃0(M)
⊆ ht(N), by Lemma 6.2. This means that for every element ζ of q, the formula

ϕV[ζ, µ′] holds in M . The corresponding is true in M̄ , where ζ of course has a pre-image under
σ. So the claim follows from the uniformity of ϕV – see Lemma 5.15. One shows analogously
that γ ⊆ |N̄ |.

We have that σ(~α, µ̄′) = ~α, µ′. In the following, I shall make use of the function g from 5.16.

C̃0(N) |= ϕ[~α, q] ⇐⇒ C̃0(M) |= g(ϕ)[~α, q, ν′]
⇐⇒ C̃0(M̄) |= g(ϕ)[~α, q̄, ν̄′]
⇐⇒ C̃0(N̄) |= ϕ[~α, q̄].

Here, I used that σ : C̃0(M̄) −→Σ1 C̃0(M), and that g(ϕ) is a Σ1-formula. 2(1)

(2) |N̄ | = h1
C̃0(N̄)

(γ ∪ q̄).

Proof of (2).

(2.1) ν̄′ ∈ h1
C̃0(N̄)

(γ ∪ q̄).

Proof of (2.1). We know that |M̄ | = h1
C̃0(M̄)

(γ ∪ q̄). Hence, µ̄′ is Σ1(C̃0(M̄)) in q̄ ∪ {~α} for some

finite set {~α} ⊆ γ. Now we can apply Lemma 8.11 to get that ν̄′ is Σ1(C̃0(N̄)) in q̄ ∪ {~α}, and
this gives the claim. 2(2.1)

Since OnN̄ ⊆ h1
C̃0(M̄)

(γ ∪ q̄), it follows from Lemma 5.20 that OnN̄ ⊆ h1
C̃0(N̄)

(γ ∪ q̄ ∪ {ν̄′}).
But by (2.1), ν̄′ ∈ h1

C̃0(N̄)
(γ ∪ q̄), which gives the claim. 2(2)

Now define σ′ : C̃0(N̄) −→ C̃0(N) by σ′(h1
C̃0(N̄)

(i, 〈~β, q̄〉)) := h1
C̃0(N)

(i, 〈~β, q〉) (for i < ω and
~β < γ).

(3) σ′ : C̃0(N̄) −→Σ1 C̃0(N), σ′�γ = id�γ and X ′ := ran(σ′) = h1
C̃0(N)

(γ ∪ q).
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Proof of (3). Obvious. 2(3)

But this shows that C̃0(N̄) = W γ,q

C̃0(N)
, and so we’re done in case 1.1.

Again, the problem that can occur in the other cases is that M could have successor height,
while M̄ has limit height.

Case 1.2: µ̄ is a limit.
Then let λ be the largest limit below µ, and let n = µ−λ. Then λ+m /∈ X, for m < n. Set:

λ̃ :=
{
λ if M ||λ is passive,
s+M (λ) otherwise.

Set: M̃ := (M ||λ̃)
passive

and Ñ := Λ(M̃). Note that M ||λ̃ is active in case λ = s+(M ||λ).
Let λ′ be the largest limit below ν. Obviously then λ′ = ht(Ñ). Let X̃ := h1

C̃0(M̃)
(γ ∪ q).

(1) X = X̃.

Proof of (1).

(1.1) λ, λ+ 1, . . . , λ+ (n− 1) /∈ X.

Proof of (1.1). We know that µ′ /∈ X. But if there was some m < n such that λ+m ∈ X, then
µ′ ∈ X as well, a contradiction. 2(1.1)

(1.2) X ⊆ |M̃ |.

Proof of (1.2). If λ = λ̃, then this follows immediately from (1.1), since λ̃ = ht(M̃). Otherwise,
M ||λ is active, and one can argue as follows. Since λ /∈ X, λ̃ /∈ X: If we had that λ̃ ∈ X, then
λ ∈ X as well, for λ =the unique ξ such that s+(M ||ξ) = λ̃, and this is a Σ1-definition of λ from
λ̃. But from this, we can conclude that X ∩On ⊆ λ̃: Assume β ∈ X \ λ̃. By (1.1), X ∩On ⊆ λ,
and we have already shown that λ̃ /∈ X. Hence, λ̃ < β < λ. We have (λ̃, λ] ∩ DM = ∅ and
λ̃ ∈ DM . Hence λ̃ =the unique δ with

M |= Ḋ(δ) ∧ (∀β̄ < β(δ < β̄ −→ ¬Ḋ(β̄))),

since λ̃ = max(DM ∩ β). Hence λ̃ ∈ X, which we already know is impossible. So X ∩On ⊆ λ̃ =
OnM̃ , and the claim follows. 2(1.2)

(1.3) C̃0(M)|X ≺Σ1 C̃0(M).

Proof of (1.3). This follows from the definition of X. 2(1.3)

(1.4) C̃0(M̃) = C̃0(M)|(|M̃ |).

Proof of (1.4). M̃ and M both are passive, hence EM̃top = EMtop = ∅, and the additional constants
appearing in C̃0(M̃) and C̃0(M) are interpreted as ∅.

Finally, DM̃ = DM ∩OnM̃ :
We have that ωλ̃ ∈ DM , for either M ||λ is passive, ωλ ∈ DM and λ̃ = λ, or M ||λ is

active and λ̃ = s+(M ||λ) ∈ DM (this is also true if λ = s+(M ||λ)). But λ̃ = ht(M̃), so that
DM̃ = D

M ||λ̃passive = DM ||λ̃ = DM ∩OnM̃ , by the coherency of enhancements. 2(1.4)

(1.5) C̃0(M̃)|X ≺Σ1 C̃0(M).

Proof of (1.5). This follows from (1.2)-(1.4): C̃0(M̃)|X = C̃0(M)|X. 2(1.5)
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(1.6) C̃0(M̃)|X ≺Σ1 C̃0(M̃).

Proof of (1.6). It has to be shown that for every Σ1-formula ϕ(~x) and every tuple ~a ∈ X,

C̃0(M̃)|X |= ϕ[~a] ⇐⇒ C̃0(M̃) |= ϕ[~a].

From left to right: Let ϕ ≡ ∃y ψ, where ψ(y, ~x) is Σ0. Suppose C̃0(M̃)|X |= ϕ[~a]. Let
then b ∈ X be so that C̃0(M̃)|X |= ψ[b,~a]. By (1.5) then C̃0(M) |= ψ[b,~a]. But ψ is Σ0 and
b ∈ |M̃ | by (1.2), and C̃0(M) and C̃0(M̃) = C̃0(M)|(|M̃ |) are transitive models, hence we have
C̃0(M̃) |= ψ[b,~a]. For the opposite direction, we have:

C̃0(M̃) |= ϕ[~a] ⇒ C̃0(M) |= ϕ[~a] (Persistency and (1.4))
⇒ C̃0(M̃)|X |= ϕ[~a] by (1.5).

2(1.6)

(1.7) X̃ ⊆ X.

Proof of (1.7). X̃ is minimal with γ ∪ q ⊆ X̃ and the property that C̃0(M̃)|X̃ ≺Σ1 C̃0(M̃). Both
are true of X, by (1.6) and the very definition of X. 2(1.7)

(1.8) X ⊆ X̃.

Proof of (1.8). Let b ∈ X. Then there are ~a ∈ γ ∪ q and a Σ1-formula ϕ(y, ~x), so that b is the
unique c with the property that C̃0(M) |= ϕ[c,~a]. By (1.5) and (1.2) it follows that (C̃0(M̃)|X) |=
ϕ[b,~a]. By (1.6), this implies that C̃0(M̃) |= ϕ[b,~a]. But b is uniquely determined by this again,
because another b′ 6= b with C̃0(M̃) |= ϕ[b′,~a] would give the contradiction C̃0(M) |= ϕ[b′,~a] (by
(1.4) and persistency). Hence b ∈ X̃. 2(1.8)

(1.7) and (1.8) show the claim. 2(1)

Hence C̃0(M̄) = W γ,q

C̃0(M̃)
.

We get the equivalents of (1)-(3) of case 1.1, where M and N have to be replaced with M̃
and Ñ , respectively. For now, the heights of Ñ and N̄ are limits. Of course N̄ is passive, as N
is. So we get:

(a) Let ϕ(~x, y) be a Σ1-formula, and let ~α < γ. Then we have:

C̃0(Ñ) |= ϕ[~α, q] ⇐⇒ C̃0(N̄) |= ϕ[~α, q̄].

(b) |N̄ | = h1
C̃0(N̄)

(γ ∪ q̄).

(c) σ′ : C̃0(N̄) −→Σ1 C̃0(Ñ), σ′�γ = id�γ and X ′ := ran(σ′) = h1
Ñ

(γ ∪ q),

where σ′ : C̃0(N̄) −→ C̃0(Ñ) is defined by σ′(h1
N̄

(i, 〈~β, q̄〉)) := h1
Ñ

(i, 〈~β, q〉) (for i < ω and ~β < γ).
By definition, X ′ = h1

C̃0(Ñ)
(γ ∪ q).

(2) X ′ = h1
C̃0(N)

(γ ∪ q).

Proof of (2). Let Y := h1
C̃0(N)

(γ ∪ q).

(2.1) λ′, λ′ + 1, . . . , λ′ + (n− 1) /∈ Y .

Proof of (2.1). Note that ν′ /∈ Y , or else, by Lemma 8.12, it would follow that µ′ ∈ X, which is
not the case. The rest is clear. 2(2.1)
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(2.2) Y ⊆ |Ñ |.

Proof of (2.2). λ′ = ht(Ñ), so the claim follows from (2.1). 2(2.2)

(2.3) C̃0(N)|Y ≺Σ1 C̃0(N).

Proof of (2.3). By definition of Y . 2(2.3)

(2.4) C̃0(Ñ) = C̃0(N)|(|Ñ |).

Proof of (2.4). Ñ and N both are passive, hence EÑtop = ENtop = ∅, and the additional constants
of C̃0(Ñ) and C̃0(N) are interpreted in both structures as ∅. 2(2.4)

(2.5) C̃0(Ñ)|Y ≺Σ1 C̃0(N).

Proof of (2.5). By (2.3) and (2.4). 2(2.5)

(2.6) C̃0(Ñ)|Y ≺Σ1 C̃0(Ñ).

Proof of (2.6). It has to be shown that for every Σ1-formula ϕ(~x) and every tuple ~a ∈ Y ,

C̃0(Ñ)|Y |= ϕ[~a] ⇐⇒ C̃0(Ñ) |= ϕ[~a].

The direction from left to right: Let ϕ ≡ ∃y ψ, where ψ(y, ~x) is a Σ0-formula. Suppose
C̃0(Ñ)|Y |= ϕ[~a]. Let then b ∈ Y be so that C̃0(Ñ)|Y |= ψ[b,~a]. By (2.5), C̃0(N) |= ψ[b,~a]. Since
ψ is Σ0, C̃0(Ñ) |= ψ[b,~a]. For the opposite direction,

C̃0(Ñ) |= ϕ[~a] ⇒ C̃0(N) |= ϕ[~a] (persistency and (2.4))
⇒ C̃0(Ñ)|Y |= ϕ[~a] by (2.5).

2(2.6)

(2.7) X ′ ⊆ Y .

Proof of (2.7). X ′ is minimal with γ ∪ q ⊆ X ′ and the property that C̃0(Ñ)|X ′ ≺Σ1 C̃0(Ñ).
Both properties are shared by Y . 2(2.7)

(2.8) Y ⊆ X ′.

Proof of (2.8). Let b ∈ Y . Then there are ~a ∈ γ ∪ q and a Σ1-formula ϕ(~x), so that b is the
unique c with the property that C̃0(N) |= ϕ[c,~a]. By (2.5), (C̃0(Ñ)|Y ) |= ϕ[b,~a] and by (2.6),
it follows that C̃0(Ñ) |= ϕ[b,~a]. This again determines b, for if there were some b′ 6= b with
C̃0(Ñ) |= ϕ[b′,~a], we would get the contradiction C̃0(N) |= ϕ[b′,~a] (by (2.4) and persistency). So
b ∈ X ′, as wished. 2(2.8)

(2.7) and (2.8) prove the claim. 2(2)

So we get:

(1’) Let ϕ(~x, y) be a Σ1-formula, and let ~α < γ. Then

C̃0(N) |= ϕ[~α, q] ⇐⇒ C̃0(N̄) |= ϕ[~α, q̄].

(2’) |N̄ | = h1
N̄

(γ ∪ q̄).

(3’) σ′ : C̃0(N̄) −→Σ1 C̃0(N), σ′�γ = id�γ and ran(σ′) = h1
C̃0(N)

(γ ∪ q).
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But from (1’)-(3’), it follows that C̃0(N̄) = W
γ,q0
C̃0(M)

C̃0(N)
, and that σ′ is the corresponding witness

map.
Case 2: µ is a limit.
Then µ̄ is also a limit. So one can argue in this case like in case 1.1., where the parameters

ν′ and ν̄′ don’t occur. This finishes the proof of the claim. 2Claim

The case that M is active of type III can be treated with the methods of the proof of the
opposite direction of the current lemma.

So W
γ,q0
C̃0(M)

C̃0(N)
= S(M̄) and M̄ ∈ |M |. The proof that this implies that N̄ ∈ |N |, is as before,

in the end of the proof of Lemma 8.16.

Lemma 8.25. Let C̃0(M) be a pPλ-structure that’s 1-solid and sound. Let N = S(M). Then
C̃0(N) is 1-solid and sound.

Proof. The proof of 8.17 works mutatis mutandis.
The same results hold true of the full Σ0-codes C0(M) and C0(N). In preparation for this, a

close look at the s′-initial segment conditions is needed.

Lemma 8.26. Let M be an active pλ structure. Let τ(M) ≤ ξ < s(M) be a cutpoint such that
ξ /∈ CM . 18 Then ξ = ξ̄ + 1 for a cutpoint ξ̄ of F = EMtop. (So ξ̄ is a limit of generators of F ).
Moreover, (ξ̄+)[M ]ξ̄ = (ξ̄+)[M ]ξ - the proof shows that ξ̄ is the only cutpoint less than ξ with this
property.

Proof. Assume the contrary. Let ξ be the least counterexample. Then ξ 6= τ := τ(M), since by
definition τ ∈ CM .

(1) ξ is not a limit of genF .

Proof of (1). Assume ξ were a limit of generators of F . Since ξ /∈ CM , [M ]ξ does not satisfy the
s′-MISC, because ξ is a cutpoint of F . So pick a cutpoint ζ ∈ [τ, ξ) such that (ζ+)[M ]ζ = (ζ+)[M ]ξ .
Let θ = min(genF ∩(ζ, ξ)) (this θ exists, since by assumption, ξ is a limit of genF . By minimality
of ξ, [M ]θ+1 satisfies the s′-MISC, as θ is not a limit of generators and θ + 1 is a cutpoint of F .
So we have:

(ζ+)[M ]ζ < (ζ+)[M ]θ+1 ≤ (ζ+)[M ]ξ ,

contradicting the choice of ζ. 2(1) So let ξ = ξ̄ + 1. Then ξ̄ ∈ genF . Obviously, ξ̄ 6= τ .

(2) ξ̄ is a limit of genF .

Proof of (2). Again, pick a cutpoint ζ < ξ so that (ζ+)[M ]ζ = (ζ+)[M ]ξ . Assume that ξ̄ is not a
limit of generators. Then ξ̄ is not a cutpoint, as ξ̄ obviously is not the successor of a generator.
Hence ζ < ξ̄.

(2.1) (ζ+)[M ]ζ = (ζ+)[M ]ξ̄ .

Proof of (2.1).
(ζ+)[M ]ξ̄ ≤ (ζ+)[M ]ξ = (ζ+)[M ]ζ ≤ (ζ+)[M ]ξ̄ .

2(2.1)

(2.2) (ζ+)[M ]ζ = (ζ+)M .

18For the definition of CM , see Definition 3.30.
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Proof of (2.2). Otherwise, (ζ+)[M ]ζ < (ζ+)M , hence

(ζ+)M = (σξ̄(ζ)+)M = σξ̄((ζ
+)[M ]ξ̄) > (ζ+)[M ]ξ̄ = (ζ+)[M ]ζ

by (2.1). Hence (ζ+)[M ]ξ̄ = ξ̄ = (ζ+)[M ]ζ , as ξ̄ = crit(σξ̄) is a cardinal in [M ]ξ̄. But this entails
that

(ζ+)[M ]ξ = (σξ̄,ξ(ζ)+)[M ]ξ = σξ̄,ξ((ζ
+)[M ]ξ̄) = σξ̄,ξ(ξ̄) > ξ̄ = (ζ+)[M ]ζ ,

contradicting the choice of ζ. 2(2.2)

(2.3) [M ]ζ does not satisfy the s′-MISC.

Proof of (2.3). Otherwise [M ]ζ ∈M , and hence (ζ+)M > (ζ+)[M ]ζ , contradicting (2.2). 2(2.3)

(2.4) ζ = ζ̄ + 1, where ζ̄ is a limit of generators. Moreover,

(ζ+)[M ]ζ = (ζ̄+)[M ]ζ = (ζ̄+)[M ]ζ̄ = (ζ+)[M ]ζ̄ .

Proof of (2.4). By minimality of ξ, and since ζ is a cutpoint the conclusion of the lemma can
be applied to ζ, by (2.3). 2(2.4)

So we have:
(ζ+)[M ]ξ = (ζ+)[M ]ζ = (ζ+)[M ]ζ̄ .

But [M ]ζ̄ ∈ M , since ζ̄ ∈ CM by minimality of ξ as a counterexample to the lemma, hence
(ζ+)M > (ζ+)[M ]ζ̄ , since in M there is a surjection even from ζ̄ onto |[M ]ζ̄ |. Hence (ζ+)M >

(ζ+)[M ]ζ by (2.4), contradicting (2.2). 2(2)

In order to finish the proof, pick ζ < ξ in such a way that ζ is a cutpoint and (ζ+)[M ]ζ =
(ζ+)[M ]ξ . I show:

(3) ζ = ξ̄.

Proof of (3). Assuming the contrary, it follows that ζ < ξ̄. Let θ = min(genF \ (ζ + 1)). Then
θ + 1 ∈ CM , so, [M ]θ+1 satisfies the s′-MISC. Hence we have:

(ζ+)[M ]ζ < (ζ+)[M ]θ+1 ≤ (ζ+)[M ]ξ ,

contradicting the choice of ζ. 2(3),Lemma

Lemma 8.27. Let M be a λ structure of type II and σ : M̄ −→Σ1 M be an embedding with
qM , s(M) ∈ ran(σ). Then M̄ is also a λ structure of type II, σ(s(M̄)) = s(M) and σ(qM̄ ) = qM .
The corresponding is true if M is a pλ structure of type II.

Proof. Let M = 〈JEν , F 〉 and M̄ = 〈JĒν̄ , F̄ 〉. Let s(M) = ξ + 1, κ = crit(F ), τ = τ(F ), and
correspondingly, κ̄ = crit(F̄ ), τ̄ = τ(F̄ ). Firstly, it is easy to see that σ(s(M̄)) = s(M). This is
because being a generator is Π1, and because s(M) ∈ ran(σ).

Let s̄ := σ−1(s) and ξ̄ := σ−1(ξ), hence s̄ = ξ̄ + 1.
Case 1: ξ = maxCM
Since s = ξ + 1, ξ is a generator of F , and since ξ ∈ CM , ξ is a cutpoint of F . Hence, ξ is a

limit of generators of F .
Since M satisfies the s′-ISC, [M ]ξ ∈M . The statement “x = F |ξ” is Π1(M) and true of qM

in M . So if q̄ = σ−1(qM ), then q̄ = F̄ |ξ̄. Moreover, σ−1([M ]ξ) = [M̄ ]ξ̄, as da [M ]ξ is coded by
qM the same way [M̄ ]ξ̄ is coded by q̄. I show now that ξ̄ = maxCM̄ .
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Since σ�[M̄ ]ξ̄ : [M̄ ]ξ̄ −→Σω [M ]ξ, the property of ξ of being a limit of generators of E[M ]ξ
top is

preserved downwards, as this can be formulated in [M ]ξ. So ξ̄ is a limit of generators of E
[M̄ ]ξ̄
top ,

and hence of F̄ . Hence, ξ̄ is a cutpoint of F̄ . It remains to show that [M̄ ]ξ̄ satisfies the s′-MISC.
But the statement that [M ]ξ satisfies the s′-MISC is also Σω([M ]ξ), and thus carries over to
[M̄ ]ξ̄. So q̄ = qM̄ . This proves the lemma in case 1.

Case 2: ξ /∈ CM .
Then ξ is not a limit of generators of F , by Lemma 8.26. Set: ζ = sup(genF ∩ ξ). Hence,

ζ < ξ.
Case 2.1: ζ is a limit of generators, and ζ /∈ genF .
Then ζ ∈ CM by Lemma 8.26. Hence, ζ = maxCM , [M ]ζ ∈ M and qM = F |ζ ∈ ran(σ), so

ζ ∈ ran(σ). Let ζ̄ = σ−1(ζ). It follows that ζ̄ is a limit of generators of F̄ , as ζ is a limit of
generators of E[M ]ζ

top and σ�[M̄ ]ζ̄ −→Σω [M ]ζ . Hence, ζ̄ is a cutpoint of F̄ , and [M̄ ]ζ̄ satisfies the
s′-MISC, again by elementarity. Hence ζ̄ ∈ CM̄ . It suffices to show that ζ̄ = maxCM̄ , and for
this, it suffices to see that [ζ̄, ξ̄) ∩ genF̄ = ∅, since then in M̄ , there is no cutpoint that’s greater
than ζ̄ and less than s(M). But that follows immediately from the fact that [ζ, ξ) ∩ genF = ∅,
as σ maps generators of F̄ to generators of F . The other requirements of the s′-ISC for M̄ are
easily verified.

Case 2.2: ζ ∈ genF .
Case 2.2.1: ζ + 1 ∈ CM .
One can argue here similarly as in case 2.1. Since ζ + 1 = maxCM , it follows that qM =

F |ζ + 1 ∈ ran(σ). So ζ + 1 ∈ ran(σ), and hence ζ ∈ ran(σ). Let ζ̄ = σ−1(ζ). It follows that
[M̄ ]ζ̄+1 ∈ M̄ , that ζ̄ + 1 is a cutpoint of F̄ , and that [M̄ ]ζ̄+1 satisfies the s′-MISC, hence that
ζ̄ + 1 ∈ CM̄ . Finally, (ζ̄, ξ̄) ∩ genF̄ = ∅.

Case 2.2.2: ζ + 1 /∈ CM .
Since ζ ∈ genF , ζ+ 1 is a cutpoint of F , and hence, by Lemma 8.26, ζ is a limit of generators

of F . Further, ζ = maxCM , by the same lemma. Since qM = F |ζ ∈ ran(σ), it follows again
that ζ ∈ ran(σ). So set ζ̄ = σ−1(ζ), as before. It follows that q̄ := σ−1(qM ) = F̄ |ζ̄ and
σ([M̄ ]ζ̄) = [M ]ζ . Moreover, [M̄ ]ζ̄ satisfies the s′-MISC, so that ζ̄ ∈ CM̄ . Finally, (ζ̄, ξ̄)∩genF̄ = ∅,
since a generator of F̄ lying in this interval would be mapped to a generator of F lying in the
interval (ζ, ξ), which cannot be, by definition of ζ. Hence ζ̄ = maxCM̄ and q̄ = qM̄ . The other
requirements of the s′-ISC are again easily verified.

Lemma 8.28. Let M be a pλ-structure, so that C0(M) is 1-solid. Let N = Λ(M). Then for

every γ ∈ p0
C0(M), the corresponding witness on the N -side, W

γ,p0
C0(M)

C0(N) , is a member of |N |.

Proof. The only additional point here is that W γ,q0
C0(M) is a pλ-structure, as follows from Lemma

8.27.

Lemma 8.29. Let C0(M) be a pλ-structure that’s sound and 1-solid. Let N = S(M). Then
C0(N) is sound and 1-solid.

Proof. As before.

8.7 The domains of S and Λ, part 2

Definition 8.30. In order to state the following results in a compact way, let’s introduce the
following notation:
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Pλ := The class of Pλ-structures.
Ps := The class of Ps-structures.
Λ := The class of λ-structures.
S := The class of s-structures.

Theorem 8.31. S�Pλ is a bijection between Pλ and Ps. Λ� Ps is the inverse of S� Pλ, hence
a bijection between Ps and Pλ.

Proof. I show by <0-induction on Pλ-structures that S(M) is a Ps-structure. By Lemma 8.9,
it’s known already that S(M) is a pPs-structure, so that it merely has to be verified that for
µ < ht(S(M)), the structure C̃0(S(M)||µ) is sound and 1-solid. But this structure is always of
the form S(M ||γ), for some γ < ht(M). As M is a Pλ-structure, C̃0(M ||γ) is sound and 1-solid.
Now it follows from Lemma 8.25 that C̃0(S(M ||γ)) = C̃0(S(M)||µ) has the desired properties.

For the opposite direction, I argue by induction on <1. In the case that N has successor
height ν + 1, it suffices to know that Λ(N) = “Λ(N ||ν) + 1”, for inductively, Λ(N ||ν) is a Pλ-
structure. So it remains to verify soundness and 1-solidity of Λ(N ||ν). But that follows from
Lemma 8.17. The other successor case is that N is active. But in that case, there is nothing
to prove, as Λ(N) = “〈Λ(N̂passive), EN̂top, DΛ(N)〉”, and Λ(N̂passive) already has the desired pre-
soundness/solidity-properties. The limit case is trivial.

Theorem 8.32. S�Λ is a bijection between Λ and S. Λ� S is the inverse of S�Λ, and hence a
bijection between S and Λ.

Proof. In order to prove pre-soundness/solidity, I argue as in the proof of Theorem 8.31, with
the difference that now the Lemmas 8.29 and 8.23 are used. It follows from Lemma 4.16 that
the s′-ISC carries over.
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Γ∗(M,κ), 6
genF , 5
Generator, 5

Hidden, 11

IM , 24
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J-structure, 3

κ(M), 6
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λ(F ), 5
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Λ(N), 23
λ-structure, 18
lh(F ), 5
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M−, 11
Maximal continuation, 6
M ||γ, 8
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N ||γ, 7

pM , 54
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Passive, 6
πMξ , 6
Pλ, 87
pλ, 62
Pλ-structure, 18
pλ-structure, 16
Potential λ-structure, 16
Potential Pseudo-λ-structure, 11
Potential pseudo-s-structure, 7
Potential s-structure, 16
pPλ, 62
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pPλ-structure, 11
pPs, 62
pPs-structure, 7
Pre-extender, 6
Ps, 87
ps, 62
Ps-structure, 18
ps-structure, 16
Pseudo-λ-structure, 18
Pseudo-s-structure, 18
Pseudo-Σ0-code

of a pPλ-structure, 17
of a pPs-structure, 16
of the maximal continuation of a pPs-

structure, 16
squashed, 16

qnM , 59
qM , 17

S, 87
s′-initial segment condition, 15
s′-ISC, 15
s′-MISC, 15
s(F ), 5
S(M), 19
s(M), 6
s+(F ), 5
s+(M), 6
s-structure, 18
σMξ,ζ , 6
Σ0-code

of a ps-structure, 17
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of the maximal continuation of a ps-

structure, 17
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Solid, 70
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iterated, 59
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τ(F ), 5
τ(M), 6
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of a pPs-structure, 7
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