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Abstract

One of the basic concepts of set theoretic geology is the mantle of a
model of set theory V: it is the intersection of all grounds of V, that is, of
all inner models M of V such that V is a set-forcing extension of M . The
main theme of the present paper is to identify situations in which the mantle
turns out to be a fine structural extender model. The first main result is
that this is the case when the universe is constructible from a set and there
is an inner model with a Woodin cardinal. The second situation like that
arises if L[E] is an extender model that is iterable in V but not internally
iterable, as guided by P -constructions, L[E] has no strong cardinal, and the
extender sequence E is ordinal definable in L[E] and its forcing extensions
by collapsing a cutpoint to ω (in an appropriate sense). The third main
result concerns the Solid Core of a model of set theory. This is the union of
all sets that are constructible from a set of ordinals that cannot be added
by set-forcing to an inner model. The main result here is that if there is an
inner model with a Woodin cardinal, then the solid core is a fine-structural
extender model.

1 Introduction

In [3], the authors introduced several types of inner models which are defined
following the paradigm of “undoing” forcing. Thus, the mantle M of a model of
set theory V is the intersection of all of its ground models (i.e., the intersection of all
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inner models of which V is a set-generic forcing extension). By a result of Laver
and Woodin (independently, see [7], [17]), any such ground model is uniformly
definable, by just varying a parameter, which makes the M a definable class. It
is still a fundamental open question whether the mantle necessarily is a model of
ZFC. On the positive side, it was shown in [3] that if the universe is constructible
from a set, then its mantle is a model of set theory. The mantle of a model of set
theory, and other concepts which are arrived at by the idea of “undoing forcing”,
are the chief objects of study in what was dubbed Set Theoretic Geology in that
paper.

One of the main results of [3] was that any model V of set theory has a class
forcing extension W such that V is the mantle of W . This result crushed the initial
naive hope that the mantle of a model of set theory is somehow a canonical model
that one arrives at after stripping away all the artificial layers of forcing that may
have been done to it: the mantle of a model of ZFC can basically be anything.
The class forcings used to reach W produced models of set theory that are not
constructible from a set, though.

The present paper makes three main contributions to set theoretic geology.
Firstly, we show that if V = L[x] has an inner model with a Woodin cardinal,

then its mantle is a fine structural extender model. In particular, the mantle
satisfies GCH, has squares and diamonds, etc. This is theorem 3.18. It shows that
in general, the proper class forcings leading to models in which the mantle is the
original model have to produce models that are not constructible from a set, if
the original model had an inner model with a Woodin cardinal. The main tool
in proving this result is Woodin’s extender algebra, which enables us to make x
(the set from which V is constructible) generic over iterates of a certain type of
minimal, sufficiently iterable extender model.

The second main result is Theorem 3.33, in which we draw the same conclusion,
that the mantle of an extender model of the form L[E] is fine structural, if that
model satisfies a set of technical conditions: it has to be tame, it may have no strong
cardinal, it may not be internally iterable as guided by P-constructions (a term we
will explain), but in V, L[E] is fully iterable, and finally, the extender sequence E
is ordinal definable in L[E], and for every cutpoint θ of E, the canonical extension
of the extenders on E which have critical points greater than θ to L[E]Col(ω,θ), is
also ordinal definable there.

Finally, we analyze a concept which was introduced by the first author, trying
to arrive at a canonical inner model by undoing forcing, the solid core. The idea
is to undo forcing more locally. So instead of considering only sets that belong to
every ground model of the entire universe, call a set solid if it cannot be added
by set forcing to any inner model. The solid core is then defined to be the union
of all solid sets. It is unclear in general whether the solid core is a model of set
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theory, but we show in Theorem 4.21 that if there is an inner model with a Woodin
cardinal, then the solid core is again a fine-structural inner model. So, assuming
large cardinals, the solid core is in some sense a canonical model of set theory,
and it is a fine structural model, even though its definition does not mention fine
structure.

The paper is organized as follows. In section 2, we give an overview of set-
theoretic geology, and we generalize a result from [3]. The original result from
that paper is that if the universe is constructible from a set, then the grounds
are downward directed, and so, the mantle is a model of ZFC. We get the same
conclusion, just assuming that the universe satisfies V = HOD{a}, for a set a. Here,
HOD{a} is the inner model consisting of all sets that are hereditarily definable from
ordinals and the set a (as a parameter).

Section 3 contains the results on calculating the mantle. First, in 3.1, we lay
the grounds by isolating, within a model of set theory that has an inner model with
a Woodin cardinal, certain sufficiently iterable such models that we call minimal.
We show that any two such minimal models agree up to their least measurable
cardinal. In 3.2, we show that working inside a model of set theory of the form
L[x], and assuming the existence of an inner model with a Woodin cardinal, the
mantle is the intersection of all linear iterates of a minimal model achieved by
applying the first total measure. In 3.3, we begin our analysis of the mantle of an
L[E] model under the following assumptions: L[E] is tame, has no strong cardinal,
is internally not fully iterable as guided by P-constructions, but is fully iterable in
V. The first step is to develop an appropriate variant of minimality. We show that
under these assumptions, minimal models exist, and that the mantle is contained
in the intersection of all linear iterates of such a minimal model reached by hitting
the least measure. We prove the other direction of this inclusion in 3.4, under one
extra assumption, which says that E is ordinal definable in L[E], and the canonical
extension of E to Col(ω, θ)-generic forcing extensions is ordinal definable in these
forcing extensions, whenever θ is a cutpoint of E.

Section 4 contains our results on the solid core. First, in 4.1, we assemble the
basics (and basic open questions) on the solid core, and 4.2 contains the main
results on the solid core: if there is an inner model with a Woodin cardinal, then
the solid core is a fine structural extender model, and if there is no such inner
model, then the core model may not be equal to the solid core.

Finally, we would like to thank the referee for reading the manuscript very
closely, and for providing very useful feedback.
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2 Set-theoretic Geology

2.1 Basics on set-theoretic geology

In the paper [3], the authors define new types of inner models, thereby creating
a line of research they term “Set-theoretic Geology”. Exploiting the discovery
that any model of which the set-theoretic universe is a set-forcing extension (such
models are called “grounds”) is uniformly definable, using a parameter (see [7]
(using a proof that’s due to Hamkins), [17]) they define the Mantle M to be the
intersection of all grounds, and the Generic Mantle, gM, to be the intersection
of all grounds of all set-forcing extensions, i.e., the intersection of all Mantles of
all set-forcing extensions. There are many questions around the Mantle and the
generic Mantle, many of which expose disturbing lacks of knowledge concerning
very basic questions about forcing. Thus, we don’t know in general whether the
Mantle is a model of ZFC, or even of ZF – this is only known under appropriate
downward directedness of grounds hypotheses: If the grounds are downward di-
rected (meaning that any two grounds have a common ground), then the Mantle
is a model of ZF, and if the grounds are downward set-directed (meaning that any
collection of set-many grounds has a common ground), then the Mantle is a model
of ZFC. It is not known whether there can be a model of set theory the grounds of
which are not downward set-directed. The Generic Mantle turns out to be a more
robust concept than the Mantle. It is invariant under set-forcing (meaning that
the Generic Mantle is the same, whether it is computed in a model of set theory
or any set-forcing extension of that model). This has as a consequence that the
Generic Mantle is always a model of ZF. Moreover, under an appropriate down-
ward directedness hypothesis, namely that the grounds are downward set-directed
in any set-forcing extension (in fact, a local version of downward set-directedness
suffices), it can be shown that the Axiom of Choice holds in the Generic Mantle.

A third type of inner model that is investigated in Set-theoretic Geology is
the Generic HOD, gHOD. It is the intersection of all HODs of all set-forcing
extensions, which is the same as the intersection

⋂
α∈On HOD

Col(ω,α). This model
was introduced in [2], where it was also shown that it satisfies the ZFC axioms. Its
relationship to the other protagonists of Set-theoretic Geology was investigated in
[3], where it was shown that in general, the Generic HOD is contained in HOD,
and that the Generic HOD is contained in the Generic Mantle, which is contained
in the Mantle.

It turns out that there is one assumption that conflates these different concepts,
and hence simplifies Set-theoretic Geology considerably: it was shown in [3] that
if the universe is constructible from a set, then the generic Mantle, the Mantle and
the generic HOD coincide, and hence they satisfy ZFC. Here, we prove a slight
generalization of this fact, viz. Theorem 2.4. This generalization was observed by
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the first author while attending a talk by Hugh Woodin at the Apalachian Set
Theory meeting 2012 at Cornell, where he made use of a strong form of Vopěnka’s

theorem in order to show that HOD is a forcing extension of HODVCol(ω,α)

. The
form of Vopěnka’s theorem needed is as follows:

Theorem 2.1. For every ordinal κ, there exists a B ∈ HOD such that

HOD |= B is a complete Boolean algebra

and for every a ⊆ κ, there exists a HOD-generic filter G on B such that

HOD[a] ⊆ HOD{G} = HOD{a} = HOD[G].

For a proof of this theorem, see [16, Theorem 6].
A consequence of this theorem is that HOD{a} is a set-forcing extension of HOD.

To streamline some arguments to follow, let’s note a lemma which is implicit in
[3]:

Lemma 2.2. If M is a ground of V, then there is an α such that HODVCol(ω,α) ⊆M .

Proof. This is an argument from [3]. Let V = M [g] via P, and let α be the
cardinality of P. Let G ⊆ Col(ω, α) be V-generic. Then

V[G] = M [g][G] = M [G′],

for some G′ which is M -generic for Col(ω, α), by the absorption property of the

collapse. So HODV Col(ω,α)

= HODV[G] = HODM [G′] ⊆ M , by the homogeneity of
Col(ω, α).

Let us note as a corollary a result which was shown in [3] as well:

Corollary 2.3. gHOD ⊆M.

The following theorem is the above-mentioned generalization of a result from
[3].

Theorem 2.4. If there is a set a such that V = HOD{a}, then M = gHOD, and

{HODVCol(ω,α) | α ∈ On} is a collection of grounds which is dense in the grounds. In
particular, the grounds are downward set-directed, and M = gM = gHOD |= ZFC.

Proof. Let V = HOD{a}, where we may assume that a is a set of ordinals. In view
of Lemma 2.2, it suffices to prove:

For every α, HODVCol(ω,α)

is a ground of V.
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Let G be Col(ω, α)-generic over V. In V[G], V is definable, using a parameter,

say b, being a ground model of V[G]. It follows then that V ⊆ HOD
V[G]
{a,b}, for

given an element x ∈ V, x is definable in V from an ordinal and the set a, say
x = {y | ϕ(y, β, a)} in V. But since V is definable in V[G], using b, say V =
{z | ψ(z, b)}, the first definition can be relativized by the second, and we get, in
V[G]: x = {y | ϕ(y, β, a)}{z | ψ(z,b)}. So altogether, x is defined in V[G], using
parameters a, b and β.

By the Vopěnka Theorem 2.1, HOD
V[G]
{a,b} = HODV[G][g], for some g which is

set-generic over HODV[G]. And by homogeneity of the collapse, HODV [G] ⊆ V. So
we have

HODV [G] ⊆ V ⊆ HOD
V[G]
{a,b} = HODV[G][g],

so that V is wedged in between HODV[G] and HODV[G][g], and hence is a forcing

extension of HODV[G] = HODVCol(ω,α)

.
This can be pushed even further.

Theorem 2.5. If V has a set-forcing extension V[G] such that for some a ∈ V[G],

V ⊆ HOD
V[G]
{a} , then for α greater than the size of the forcing for which G is

generic, HODVCol(ω,α)

is a ground of V, and for every ground M , there is an α

such that HODVCol(ω,α) ⊆M . So again, the grounds are downward set-directed, and
M = gM = gHOD |= ZFC.

Proof. Let G ⊆ P be V-generic, so that the assumptions are satisfied, as witnessed
by a, and let α be greater than the size of P. Let H be Col(ω, α)-generic over
V[G]. In V[G][H], V[G] is definable, using a parameter b. It follows then that V ⊆
HOD

V[G][H]
{a,b} , for given an element x ∈ V, x is definable in V[G] from an ordinal and

the set a, say x = {y | ϕ(y, β, a)} in V[G]. But since V[G] is definable in V[G][H],
using b, say V[G] = {z | ψ(z, b)}, it follows that x = {y | ϕ(y, β, a)}{z | ψ(z,b)} in
V[G][H]. So altogether, x is defined in V[G][H], using the parameters a, b and β.

By the Vopěnka Theorem 2.1, HOD
V[G][H]
{a,b} = HODV[G][H][g], for some g which is

set-generic over HODV[G][H]. By the absorption property of the collapse (since α is
greater than the size of P), there is H∗ generic for Col(ω, α) such that V[G][H] =
V[H∗], and by the homogeneity of the collapse, HODV [H∗] ⊆ V. So we have

HODV [G][H] = HODV [H∗] ⊆ V ⊆ HOD
V[G][H]
{a,b} = HODV[G][H][g],

so that V is wedged in between HODV[G][H] and HODV[G][H][g], and hence is a

forcing extension of HODV[G][H] = HODV[H∗] = HODVCol(ω,α)

. So HODVCol(ω,α)

is a
ground of V, as claimed. The other claims follow from Lemma 2.2.

6



3 Calculating the Mantle

In this section, we will calculate the mantle of V in certain situations. The most
striking results will work under the assumption that there is an inner model with a
Woodin cardinal. Before heading in this direction, let us make a simple observation
about the situation where there is no inner model with a Woodin cardinal.

Observation 3.1. When there is no inner model with a Woodin cardinal, then K
exists, and K ⊆M, even K ⊆ gM.

3.1 Minimal Models

In this subsection we will recall some facts on inner models with Woodin cardinals,
many of which are part of the folklore. We will need these in the next subsection.
We refer the reader to [14] and [15] for inner model theoretic background.

For the purpose of this and the next subsection, we will define “shortness” and
“maximality” as follows.

Definition 3.2. A normal iteration tree T on a premouse M is called 0–short if
for every limit ordinal λ ≤ lh(T ),1

L[M(T � λ)] |= “δ(T � λ) is not a Woodin cardinal.”

T is called 0–maximal iff T has limit length, T � λ is 0–short for every limit
ordinal λ < lh(T ), but T is not 0–short.

More generally, a tree T on M would be called n–short, where n < ω, if for
every limit ordinal λ ≤ lh(T ),

Mn[M(T � λ)] |= “δ(T � λ) is not a Woodin cardinal.”2

Generalizing this even further, we may consider trees whose cofinal branches at
limit stages are determined by Q–structures. As for now we won’t have a use
for trees guided by arbitrary Q–structures, we shall just say “short” instead of
“0–short,” and we shall also say “maximal” instead of “0–maximal.” The moral of
Definition 3.2 is that for now our Q–structures will be provided by initial segments
of L[M(T �λ)]. This will change in subsection 3.3.

All of our iteration trees will be finite stacks of normal trees.

1Here, M(T ) denotes the common part model of T , and δ(T ) denotes the supremum of the
lengths of extenders used in T .

2Mn is the least sufficiently iterable inner model with n Woodin cardinals.
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Definition 3.3. Let M be a premouse. We call M 0–pseudo–iterable iff M is
iterable with respect to (0–)short trees. For n ∈ ω, we call M (n + 1)–pseudo–
iterable iff M is iterable with respect to (0–)short trees and whenever T is a
maximal tree on M, then L[M(T )] is n–pseudo–iterable. We call M pseudo–
iterable iff M is n–pseudo–iterable for every n ∈ ω.

There are 1–small pseudo–iterable premice M with no Woodin cardinal such
that there is a maximal iteration tree T on M. For instance, let M1 be the
least sufficiently iterable inner model with a Woodin cardinal, let j : M1 → W be
an embedding obtained by forcing with the countable stationary tower over M1.
Hence crit(j) = ωM1

1 , and we may let M be the least initial segment of W end–
extending M1||ωM1

1 which projects to ω. By absoluteness,M is 0–pseudo–iterable.
As there is a subset of ω which is definable overM but not contained in M1, it is
straightforward to verify that the comparison ofM with M1 will have to produce
a maximal T on M.

In what follows, by a Kc–construction we shall mean a construction as in [8]
and by an L[E]–construction we shall mean a construction as in [9, §11], albeit
with no smallness restriction on the initial segments.

Lemma 3.4. Let W ∗ be any inner model, and let W be an extender model which
is the result of a Kc or of an L[E] construction performed inside W ∗. Then in V ,
W is pseudo–iterable.

Proof. Suppose W was not pseudo-iterable in V. By definition, this means that
for some N < ω, W is not N -pseudo iterable in V. Let N be minimal so that W
is not N -iterable. Then there is a sequence 〈(Pi, Ti) | i ≤ N〉 so that

1. P0 = W ,

2. for i < N , Ti is a maximal, normal iteration tree on Pi,

3. TN is a short, normal, putative iteration tree on PN ,

4. for 0 < i ≤ N , Pi = L[M(Ti−1)], and

5. either TN has a last model which is ill-founded, or TN has limit length but
no cofinal well-founded branch.

By taking a Skolem hull, there is then some elementary σ∗ : R −→ Vθ, where Vθ

is a sufficiently elementary submodel of V, such that R is countable and transitive,
and such that, letting W̄ = (σ∗)−1(W |θ) and σ = σ∗�W̄ , we have:

1. R |= ZFC−,

2. σ : W̄ −→ W is sufficiently elementary,
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3. there is a sequence 〈〈P̄i, T̄i〉 | i ≤ N〉 = (σ∗)−1(〈〈Pi, Ti〉 | i ≤ N〉) which re-
flects the properties listed above, so that, in R, the following hold:

(a) P̄0 = W̄ and W̄ ∩On = R ∩On,

(b) for i < N , R |= “T̄i is a maximal, normal iteration tree on P̄i,”
(c) T̄N is a short, normal, putative iteration tree on P̄N ,

(d) for 0 < i ≤ N , P̄i = LR∩On[M(T̄i−1)],

(e) either T̄N has a last model which is ill-founded, or T̄N has limit length
but no cofinal well-founded branch.

There is a tree U ∈ W ∗ of height ω searching for such objectsR, σ, W̄ , 〈〈P̄i, T̄i〉 |
i ≤ N〉. Since the search is successful in V, U is ill-founded. So by absoluteness,
the search is successful in W ∗ as well, which means that such objects also exist in
W ∗. Let us denote them again by R, σ, W̄ , 〈〈P̄i, T̄i〉 | i ≤ N〉.

The iterability proof from [13] for Kc or L[E], run inside W ∗, then allows us
to show inductively that

1. every tree T̄i is formed according to the realization strategy, i.e., every model
occurring in T̄i can be embedded into a model Mξ from the Kc- or L[E]-
construction of W ∗, and

2. for every i < N , there is a cofinal realizable branch, say bi, through T̄i such
that W̄i+1 EMT̄i

bi
, and if T̄N has limit length, then there is a cofinal realizable

branch, say bN , through T̄N .

This gives a contradiction by standard arguments. E.g., if T̄N has limit length,
then by uniqueness, absoluteness, and homogeneity of Col(ω, δ(T̄N)), bN ∈ R, cf.
[13, §2].

In what follows, we shall call a sequence 〈(Pi, Ti) | i ≤ N〉 as in the preceding
proof a pseudo–iteration of P0.

We will frequently use the following notation.

Definition 3.5. If M is any model of set theory, we let δM be its least Woodin
cardinal, and we let κM be its least measurable cardinal, if these exist. If M
doesn’t have a Woodin cardinal, then we set δM = M∩ On, and if M doesn’t
have a measurable cardinal, then we set κM =M∩On.

If M is fine-structural, and T is an iteration tree on M, then we say that T
lives strictly below δM iff there is some γ < δM such that all extenders used on T
are taken from M||γ and its images, i.e., if ξ < lh(T ) and [0, ξ]T ∩ DT = ∅, then
lh(ETξ ) < πT0ξ(γ).
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Definition 3.6. Let M be a premouse with a Woodin cardinal. An infinite
sequence (Wi, Ti : i ∈ ω) is called a degenerate pseudo–iteration of M iff W0 =M,
and for each i < ω, Ti is a maximal tree on Wi living strictly below δWi and
Wi+1 = L[M(Ti)].

Lemma 3.7. Let W ∗ be an inner model, and let W be an extender model which
is the result of a Kc– or an L[E]–construction performed inside W ∗. In V , there
is then no degenerate pseudo–iteration of W .

Proof. This follows from the proof of Lemma 3.4. As there, inside W ∗ we may get
objects R, σ, W̄ , 〈〈P̄i, T̄i〉 | i < ω〉 such that

1. R |= ZFC− and R is countable,

2. σ : W̄ −→ W is sufficiently elementary,

3. P̄0 = W̄ and W̄ ∩On = R ∩On,

4. for i < ω, R |= “T̄i is a maximal, normal iteration tree on P̄i living strictly
below δW̄i ,”

5. for 0 < i ≤ N , P̄i = LR∩On[M(T̄i−1)],

We again get that

1. every tree T̄i is formed according to the realization strategy, i.e., every model
occurring in T̄i can be embedded into a model Mξ from the Kc- or L[E]-
construction of W ∗, and

2. for every i < ω, there is a cofinal realizable branch, say bi, through T̄i such
that W̄i+1 EMT̄i

bi
.

The point now is that as T̄i lives strictly below δW̄i , we must in fact have that
W̄i+1 /MT̄i

bi
, so that if σi : MT̄i

bi
→Mξi are the realization maps, then ξi+1 < ξi for

every i < ω. Contradiction!

Lemma 3.8. Suppose there is an inner model with a Woodin cardinal. There is
then a 1–small fine structural inner model W with a Woodin cardinal which is
pseudo–iterable and such that there is no degenerate pseudo–iteration of W .

Proof. We may find such a W as follows. Let W ∗ be an inner model with a
Woodin cardinal, and let Mξ and Nξ = core(Mξ) be the models from the L[E]–
construction performed inside W ∗.

If there is a ξ such that Mξ is undefined, then there is some ξ̄ < ξ such that
Mξ̄ is defined and not 1–small. If there is some ξ such that Mξ is not 1–small
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and if ξ̄ is the least such ξ, then we may let W be the result of iterating the top
extender of Mξ̄ out of the universe.

If every Mξ is 1–small, then MOn exists and has a Woodin cardinal, so that
we may set W =MOn. Notice that W is as desired by Lemmas 3.4 and 3.7.

The following Definition 3.9 is crucial.

Definition 3.9. Let W be a fine structural inner model. We call W minimal iff
W is 1–small, iterable with respect to short trees, δW ∈ W (and is hence a Woodin
cardinal in W ), and for all γ < δW , there is no maximal tree on W ||γ.

If W is minimal, then W ||γ is fully iterable for every γ < δW , since every tree
on W ||γ is short and W is iterable with respect to short trees. It is easy to see
that the requirement that W be 1–small is redundant in Definition 3.9 and follows
from the rest.

The following Lemma 3.10 is an immediate consequence of Lemma 3.8.

Lemma 3.10. Suppose that there is an inner model with a Woodin cardinal. There
is then a minimal fine structural inner model.

Lemma 3.11. Let W and W ′ be minimal fine structural inner models, and set
κ = min({κW , κW ′}). Then W ||κ = W ′||κ.

Proof. Suppose not. Let us start comparing W with W ′, and let us suppose
without loss of generality that W ||κ moves. By the minimality of W , W ||κ is fully
iterable. As W ||κ is a lower–part model, the comparison of W with W ′ may be
construed as a comparison of just W ||κ with W ′. Let T denote the iteration tree
on the W– (equivalently, W ||κ–) side of the comparison.

Let U be the tree produced on the W ′–side of the comparison. Then either
U has last model, MU

∞, and there is no drop along [0,∞]U , or U is maximal.
Let us write δ = πU0∞(δW

′
) and M = MU

∞||δ in the first case and δ = δ(U) and
M =M(U) in the second. In both cases we will have that L[M] |= “δ is Woodin,”
as either L[M] =MU

∞ or L[M] = L[M(U)].
Let α < lh(T ) be minimal such that MT

α DM. Then ρω(MT
α ) < δ, so that

MT
α ,and hence W , can’t be 1–small. Contradiction!

Lemma 3.12. Let W be minimal in V . Then W is minimal in every forcing
extension of V .

Proof. Let W be a fine structural inner model. Let α be arbitrary, and let g be
Col(ω, α)–generic over V . Suppose that W is not minimal in V [g]. We aim to
prove that W is not minimal in V .

By absoluteness, W is still iterable with respect to short trees in V [g].
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Let γ < δW and T ∈ V [g] be such that T is a maximal tree on W ||γ. Let
λ > max{α+, γ, δ(T )} be a cardinal such that 2<λ = λ. Let F be the family of all
L[M(U)], where U ∈ V [g] is a maximal tree on W ||γ with δ(U) < λ.

We may jointly pseudo–coiterate all M ∈ F , which produces a common
pseudo–coiterate W∞ with a Woodin cardinal ≤ λ+. As W∞ is ordinal–definable,
W∞||δW∞ ∈ V by the homogeneity of Col(ω, α).

Let us assume towards a contradiction that W is minimal in V . Then W ||γ is
fully iterable in V , which is easily seen to imply that we may successfully coiterate
W ||γ with W∞||δW∞ and if R and S are the induced iteration trees on W ||γ and
W∞||δW∞ , respectively, then MR

∞ /MS
∞.

Let p ∈ Col(ω, α) and Ṫ , Ẇ ∈ V Col(ω,α) be such that p 
 “Ṫ is a maximal tree
on (W ||γ)̌ , and Ẇ is a maximal tree onM(Ṫ ) such thatM(Ẇ) = (W∞||δW∞ )̌ .”
Let X ≺ Hθ+ , where θ is regular and big enough, X is countable, and {W ||δW ,
γ, W∞||δW∞ , α, p, Ṫ , Ẇ , R, S} ⊂ X. Let σ : H̄ ∼= X be the inverse of the
transitive collapse, and let W̄ = σ−1(W ||θ), γ̄ = σ−1(γ), W̄∞ = σ−1(W∞||δW∞),
R̄ = σ−1(R), and S̄ = σ−1(S). Let ḡ ∈ V be Col(ω, σ−1(α))–generic over H̄, with
σ−1(p) ∈ ḡ, and let T̄ = (σ−1(Ṫ ))ḡ and W̄ = (σ−1(Ẇ))ḡ. Write Ω = H̄ ∩On.

There is a cofinal branch b through T̄ such that LΩ[M(T̄ )] /MT̄
b . We may

then construe W̄ to be a tree on MT̄
b which has a cofinal branch c such that

LΩ[W̄∞] /MW̄
c . I.e., T0 = T̄ _b_W̄_c is a tree on W̄ ||γ̄ such that LΩ[W̄∞] /MT0

∞.
On the other hand, we have that MR̄

∞ /MS̄
∞, where R̄ is a tree on W̄ ||γ̄ and S̄

is a tree on W̄∞. The iteration map πR̄0∞ then embeds W̄ ||γ̄ into MR̄
∞, where the

latter is a strict initial segment of a non–simple iterate of W̄ ||γ̄ via T0
_S̄. This

contradicts the Dodd–Jensen Lemma!

A simplified version of the preceding argument yields the following folklore
result.

Lemma 3.13. Forcing cannot add an inner model with a Woodin cardinal, i.e., if
V does not have an inner model with a Woodin cardinal, then no generic extension
of V does.

Proof. Let α be arbitrary, and let g be Col(ω, α)–generic over V . Suppose that
V [g] has an inner model with a Woodin cardinal, δ. LetM∞ be the joint pseudo–
comparison of all short tree iterable fine structural inner models of V [g] which have
a Woodin cardinal≤ δ. M∞ has a Woodin cardinal η ≤ δ+ andM∞||η ∈ V , again,
because this is ordinal definable in V[g] and Col(ω, α) is almost homogeneous. So
V also has an inner model with a Woodin cardinal.

The following will not be used explicitly in this paper, and we state it without
proof. (For a proof see [11].) It helps understand the hypothesis of Theorem 3.18,
though.
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Theorem 3.14. (Woodin) Suppose that there is an inner model with a Woodin
cardinal. Then the following are equivalent.

(1) There is a fully iterable inner model with a Woodin cardinal.

(2) V is closed under X 7→ X#.

Minimality in the sense of Definition 3.9 is the best substitute for full iterability
in the absence of a fully iterable inner model with a Woodin cardinal:

Lemma 3.15. Let W be a fully iterable fine structural 1–small inner model with
a Woodin cardinal. Then W is minimal.

3.2 The Mantle of L[x] in the presence of an inner model
with a Woodin cardinal

The assumption that the universe is constructible from a set simplifies set-theoretic
geology a lot (see Theorem 2.4). We shall assume in this subsection, in addition,
that there is an inner model with a Woodin cardinal. The main result of this
section is that in this situation, the mantle M is a fine-structural inner model, see
Theorem 3.18. This shows that this is a special situation indeed, since one of the
main results of [3] is that in general, the mantle of a model of set theory can be
anything (quite literally: every model of set theory has a class forcing extension
whose mantle is the original model).

Definition 3.16. If W is an fine structural inner model with a measurable car-
dinal, then let Wα denote the αth iterate of W which is produced by hitting the
least measure of W and its images α times.

Theorem 3.17. Suppose V = L[x], where x is a set, and assume that there is an
inner model with a Woodin cardinal. Let W be any fine structural inner model with
a Woodin cardinal which is (normally) iterable with respect to short trees. Then

M ⊆
⋂
α<∞

Wα.

Proof. Set κα = κW
α

and δα = δW
α
; see Definition 3.5. To see that M ⊆⋂

α<∞W
α, it suffices to show:

(∗) For every α, there is a non-dropping normal iteration tree Tα on Wα so that
Nα := L[M(Tα)] is a ground.

13



For if we know this, then by definition,

M ⊆
⋂
α<∞

Nα ⊆
⋂
α<∞

Wα;

for the second inclusion, let a ∈
⋂
α<∞Nα. Pick α large enough so that rnk(a) <

κα. Then a ∈ Nα||κα = Wα||κα, since the iteration from Wα to Nα is beyond κα,
and so, a ∈

⋃
β<∞W

β||κβ =
⋂
β<∞W

β.
The proof of (∗) is a routine application of the extender algebra, cf. e.g. [14].

Let α be given. We may assume x to be a set of ordinals. Let ξ be the strict
supremum of x. We may also assume that κα ≥ ξ, for otherwise, we can start
the iteration of Wα which is going to produce Nα by hitting κα and its images
sufficiently many times. In particular, δα > ξ. Now Tα will be a non–dropping
genericity iteration of Wα to make x generic. At each successor stage β + 1, ETαβ

is equal to E
MTαβ
ν , where ν is minimal such that x does not satisfy one of the

axioms of the extender algebra corresponding to E
MTαβ
ν . At each limit stage λ of

this iteration, if Tα � λ is short, then there will be a unique cofinal well-founded
branch, by our hypothesis on W . If Tα � λ is not short, then λ will be the length
of the iteration Tα.

There will be some γ ≤ (δW
α
)+ such that either x satisfies all the axioms

corresponding to all extenders fromMTα
γ , or else γ, the length of Tα, will be a limit

ordinal and Tα is not short. Set Nα =MTγ
γ in the first case and Nα := L[M(Tα)]

in the second. Then x must be generic over Nα. Since V is constructible from x,
it follows that Nα is a ground of V.

We remark that if Tα is non–trivial, then V knows Nα but V doesn’t know an
elementary embedding from V to Nα, since there is never an elementary embedding
of a model to a nontrivial ground model, see [6].

Now let’s turn to the opposite direction. We would like to point out that under
the assumptions of the current section, while there is an inner model with a Woodin
cardinal, there is no fully iterable one, since the universe, being constructible from
a set, cannot be closed under sharps; see Theorem 3.14. But there is a minimal
one – see Lemma 3.10 and the following discussion.

Theorem 3.18. Suppose V = L[x], where x is a set, and assume that there is
an inner model with a Woodin cardinal. Let W be a minimal fine structural inner
model. Then

M =
⋂
α<∞

Wα =
⋃
α<∞

Wα||κWα

.

Proof. By Theorem 3.17, we only need to verify that
⋃
α<∞W

α||κWα ⊆M. To this
end, let W ∗ be a ground, and let α <∞. We need to show that Wα||κWα ⊂ W ∗.

14



As W ∗ is a ground of V , Lemma 3.13 readily implies the following.

(∗∗) W ∗ has an inner model with a Woodin cardinal.

By (∗∗), W ∗ will thus have a minimal fine structural inner model, W ′, say,

by Lemma 3.10. W ′ will still be minimal in V by Lemma 3.12. As (W ′)κ
Wα

is

then also minimal in V , (W ′)κ
Wα

||κWα
= Wα||κWα

by Lemma 3.11. But of course

(W ′)κ
Wα

||κWα ∈ W ∗.

3.3 Grounds and cores of an L[E] model

We are now going to analyze the mantle of a fine structural inner model.
For this subsection, we shall make the following assumption:

Assumption 3.19. M = L[E] is an extender model such that

(A1) M is tame.

(A2) M does not have a strong cardinal.

(A3) Inside M , M is not fully iterable as guided by P–constructions.

(A4) M is fully iterable in V , say via the iteration strategy Σ.

We will explain (A3) in what follows, cf. Definition 3.24 on p. 18. (A3) is an
apparent strengthening of the hypothesis that M does not know how to iterate
itself, and it implies that M has an inner model with a Woodin cardinal which
is “full” at the Woodin cardinal with respect to mice which exist (and can be
certified via P–constructions) inside M .

We should point out that we don’t know if (A2) is necessary or not, it may well
be that the presence of a strong cardinal in L[E] changes the picture substantially.
As a test question, one might try to analyze the mantle of the least L[E] which
has a Woodin cardinal strictly above a strong cardinal; we don’t know how to do
that.

We shall use methods and some notation from [10]. For details concerning
Definition 3.20, see [10], and for the proof of Lemma 3.21, see [10, Lemma 1.3].

Definition 3.20. ([10, Lemma 1.3]) IfM is a premouse and δ is a Woodin cardinal
of M, then we write PM|δ for the “δ generator” version of Woodin’s extender
algebra.

In this situation, PM|δ ⊆ M|δ is definable over M|δ, and PM|δ has the δ-c.c.
in M.
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Lemma 3.21. Let M be a normally (ω, κ+ + 1)-iterable premouse, and let δ be
a Woodin-cardinal of M such that δ < κ+. Let A ⊆ κ+. There is then a normal
non-dropping iteration tree U on M of length < κ and with last model MU

∞ such
that A ∩ πU0∞(δ) is πU0∞(PM|δ)–generic over MU

∞.

We will employ the “maximal P-construction” introduced in [10, pp. 757ff.].
This construction works in a setting where M is a premouse of height γ > δ, δ is
a cutpoint ofM, P̄ is a premouse with P̄ ∩On = δ+ω, δ is a Woodin cardinal in
P̄ , P̄|δ ⊆ M|δ is definable over M|δ, and P̄ [G] = M|(δ + 1) for some P̄-generic
G ⊆ PP̄|δ. The maximal P-construction produces a sequence (Pi | δ + 1 ≤ i ≤ γ̄),
for some γ̄ ≤ γ. First, Pδ+1 = P̄ . It will be maintained that δ is a Woodin
cardinal in the premouse Pi and that Pi[G] =M|i. At limit stages λ, Pλ will be
the union of the previous stages of the construction, augmented by the restriction
of the top extender of M||λ, if there is one. Successor stages Pi+1 will be defined
if i + 1 ≤ γ, δ is Woodin in Pi with respect to definable subsets of Pi and the
ultimate projectum of Pi is not less than δ. In that case, Pi+1 is the result of
constructing one step further (i.e., taking the rudimentary closure of Pi). The
construction terminates at stage i ≤ γ if δ is not definably Woodin over Pi or
ρω(Pi) < δ or i = γ, and we then set γ̄ = i. The maximal P–construction is then
the final model Pγ̄. We write P(M, P̄ , δ) for this model, cf. [10, p. 757].

The key idea of this section is that if P = P(L[E], P̄ , δ) is proper class sized for
some P̄ ∈ L[E] = M , where δ is a cutpoint of L[E] and for some G ⊆ PP̄|δ which
is P̄-generic, M |(δ + 1) = P̄ [G], then P is a ground of L[E], in fact P [G] = L[E].

One may relax the definition of P(M, P̄ , δ) and not demand that δ be a cut-
point ofM, cf. [10, pp. 759f.]. Namely, if δ is not a cutpoint ofM, then let α ≥ δ
be least such that EMα 6= ∅ and κ = crit(EMα ) ≤ δ. Let α ≤ ζ ≤ γ be maximal
such that κ+M|α = κ+M|ζ . Then P(M, P̄ , δ) = P(ultn(M||ζ;EMα ), P̄ , δ), where
n < ω is least such that ρn+1(M||ζ) ≤ κ (if it exists, otherwise n = 0).

[10, Lemmas 1.5 and 1.6] give important information on P(M, P̄ , δ).
In what follows we shall make use of the “+ω” notation from [10, p. 759]: if

R is a sound premouse, then R + ω is the premouse which end-extends R and is
obtained from R by constructing over R one step further.

Definition 3.22. LetM be an extender model, and let T be an iteration tree on
MT

0 (where possibly MT
0 6=M). Then set:

PM(T ) :=


P(M,M(T ) + ω, δ(T )) if T has limit length

and this is defined,

P(M,MT
∞||δM

T
∞ + ω, δM

T
∞) if T has successor length

and this is defined,
undefined otherwise.

All our iteration trees will be finite stacks of normal iteration trees.
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Let W be an extender model which is definable in M = L[E]. Let T ∈ L[E] be
an iteration tree on W which lives strictly below δW . We say that T is guided by
P–constructions in L[E] provided the following holds true. For every limit ordinal
λ < lh(T ), there is an iteration tree Uλ ∈ L[E] on M(T � λ) of successor length
such that for every limit ordinal η < lh(Uλ), PM(Uλ � η) is well–defined and

PM(Uλ � η) EMUλ
η(1)

is a Q–structure for Uλ � η, and there is some Q–structure Q EMT
λ together with

some sufficiently elementary embedding σ : Q → PM(Uλ) which is to exist inside
MCol(ω,PM (Uλ)).

Speaking vaguely, T is thus guided by P–constructions in L[E] iff the branches
which T picks at limit stages are determined by Q–structures which are in turn
pullbacks of Q–structures which have been obtained by maximal P–constructions
in L[E]. By our hypothesis (A4), if T is guided by P–constructions in L[E], then
T is in fact according to any iteration strategy for MT

0 .
It is clear how one would canonically find witnesses to show that a given T is

guided by P–constructions in L[E], cf. the construction of U in [10, pp. 763ff.].
For each limit ordinal λ < lh(T ) one would start iteratingM(T � λ) + ω to make
an initial segment of E generic over the iterate à la Lemma 3.21; at successor
stages of the iteration one would hit the least extender which violates an axiom
of the extender algebra with respect to E, and at limit stages one would use the
P–construction (1) to find the Q–structure and thus the branch, until by pulling
back via some map σ one finds the Q–structure and thus the branch for T � λ.
More details of such a construction will be presented in the proof of Lemma 3.29
below, cf. p. 20. Of course this recipe need not work out, and it may also be that
Uλ may be found by delaying the process of making an initial segment of E generic
over the iterate, i.e., that we also hit extenders which don’t violate an axiom.

We are now going to work towards identifying the “minimal core” of L[E].
Let W be an extender model which is definable in L[E], and which is fully

iterable in V . E.g., W = L[E] by our hypothesis (A4). Let 0 < N ≤ ω. We call

((W n : n < N), (T n : n+ 1 < N))

a W–based sequence of length N iff the following hold true for all n+ 1 < N .

1. W 0 = W ,

2. T n ∈ L[E] is an iteration tree on W n of limit length which is guided by
P–constructions in L[E],

3. W n+1 = P(L[E],M(T n) + ω, δ(T n)) is proper class sized,3 and

3Wn+1 is thus a class sized extender model such that Wn+1 |= “δ(T n) is a Woodin cardinal.”
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4. T n lives strictly below δW
n
.

Lemma 3.23. Let W be an extender model which is definable in L[E], and which
is fully iterable in V . There is then no W–based sequence of length ω.

Proof. Let ((W n : n < ω), (T n : n+ 1 < ω)) be a counterexample. Both M = L[E]
and W are fully iterable. Let us assume inductively that W n is fully iterable,
which is true for n = 0. T n is then according to any iteration strategy for W n,
as the iteration strategy Σ for M induces iteration strategies for iterating the
Q–structures found by the P–constructions in M above the δs of the respective
trees.

We may thus let bn ∈ V be the cofinal branch through T n given by any iteration
strategy for W n. As T n is strictly below δW

n
, δ(T n) is not definably Woodin

in MT n
bn

. Again, the iteration strategy Σ for M induces an iteration strategy
for iterating W n+1 = PM(T n) above δ(T n), so that MT n

bn
iterates past W n+1,

which shows that W n+1 is fully iterable and W n+1 <∗ W n. Here, <∗ denotes the
prewellordering of mice.

We therefore inductively get that every W n is fully iterable and W n+1 <∗ W n

for every n < ω. But there is no infinite descending sequence in the prewellordering
of mice. Contradiction!

Let us now discuss and apply our hypothesis (A3) on M .

Definition 3.24. Let W be a (set or class sized) premouse which is definable in
L[E] (from parameters in L[E]), and which is fully iterable in V . We say that W
is fully iterable inside M as guided by P–constructions iff for every tree T on W of
limit length which is guided by P–constructions in L[E] there is an iteration tree
T + on W of length lh(T )+1, extending T , which is also guided by P–constructions
in L[E].

I.e., we may always use P–constructions to find Q–structures and thus bran-
ches.

Definition 3.25. Let W be an extender model which is definable in L[E], and
which is fully iterable in V . W is called minimal (for L[E]) iff the following hold
true.

(1) W has a Woodin cardinal.

(2) There is no W–based sequence of length 2.

(3) (a) If U ∈ L[E] is an iteration tree onW |δW that is guided by P-constructions
in L[E] and U does not live strictly below δW (and is hence of limit
length), then PM(U) is a proper class, if defined.
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(b) If U ∈ L[E] is an iteration tree on W |δW of successor length such that U
is guided by P-constructions in L[E], and [0,∞]T does not drop, then
PM(U) is a proper class, if defined.

In particular, if W is minimal, then W is fully iterable inside L[E] with respect
to trees which live strictly below δW and the relevant iteration strategy is given
by P–constructions inside L[E]. If W ′ is an iterate of a minimal W via a tree in
L[E] which lives strictly below δW , then W ′ is minimal again.

By Lemma 3.23, it is now an immediate consequence of our hypothesis (A3)
that there is an extender model which is minimal for L[E].

Lemma 3.26. There is a minimal W .

Proof. Let us start withM itself and anM–based sequence ((W n : n < N), (T n : n+
1 < N)) with 0 < N < ω which may not be extended to an M–based sequence
which is strictly longer.

We claim that WN−1 is minimal. This is clear if N > 1, as the existence of U
and PM(U) as in (3) of Definition 3.25 would contradict the choice of T N−2 and
the fact that WN−1 = P(L[E],M(T N−2) + ω, δ(T N−2)) has to be proper class
sized, cf. p. 17. Let us then assume that N = 1, so that WN−1 = W 0 = W .

Let U on W be as in (3) (b) of Definition 3.25. Let Ω be large enough that
PM(U) = PM |Ω(U). Write W̃ = MU

∞. Inside W̃Col(ω,πU0∞(Ω)), there is a tree S of
height ω searching for:

(i) a model M̄ together with an elementary embedding σ : M̄ → πU0∞(M |Ω) and

(ii) a model Q such that either δW̃ is not definably Woodin in Q or ρω(Q) < δW̃ ,

and Q is equal to P(M̄, W̃ |δW̃ + ω, δW̃ ).

S is ill–founded in V Col(ω,πU0∞(Ω)), as witnessed by M̄ = M |Ω and σ = πU0∞. S is
thus also ill–founded in W̃Col(ω,πU0∞(Ω)). However, any Q which is obtained from a
branch through S must be iterable-above-δW̃ in V Col(ω,πU0∞(Ω)), due to the existence
of σ. There can thus be only at most one such Q, so that in fact the unique Q
which is obtained via a branch through S must be in W̃ . But this Q kills the
Woodinness of δW̃ , whereas δW̃ is Woodin in W̃ . Contradiction!

Let us now assume that U is as in (3) (a) of Definition 3.25. As U must
be according to any iteration strategy on W , we may let b be the cofinal branch
through U which is given by such a strategy. Let U+ be the tree of length lh(U)+1
which extends U by adding the limit model MU

b as its last model.
Let us assume that U is normal. As U does not live strictly below δW , [0,∞]U+

cannot drop. Also, πU0b(δ
W ) = δ(U). We may from now on argue exactly as in

the case that U is as in (3) (b) of Definition 3.25, albeit with U+ replacing U . If
U is not normal, then we consider the last normal component of U and argue as
before.
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Lemma 3.27. Let W and W ′ both be minimal, and set κ = min{κW , κW ′}. Then
W |κ = W ′|κ.

Proof. By the minimality of both W and W ′, we may successfully coiterate W |κ
with W ′|κ inside M . As the latter two models are lower part premice, at most one
side can move in the comparison. We aim to show that neither of W |κ and W ′|κ
moves, so by symmetry let us assume that W |κ moves. Let T be the resulting
iteration tree on W |κ.

We may extend T to an iteration tree T ∗ of successor length on W |κ resulting
from the comparison of W |κ with W ′|δW ′ . This comparison will also produce an
iteration tree U on W ′|δW ′ . As W ′ is iterable inside L[E] with respect to trees
which live strictly below δW

′
and the relevant iteration strategy is given by P–

constructions inside L[E], we will get one of the following two options.

(a) U has successor length, [0,∞)U does not drop,MU
∞ /MT ∗

∞ , and ρω(MT ∗
∞ ) <

MU
∞ ∩On.

(b) U has limit length, M(U) /MT ∗
∞ , and ρω(MT ∗

∞ ) <M(U) ∩On.

It is straightforward to see that in both cases we get a contradiction with clause
(3) in Definition 3.25.

For the notation used in the following theorem, see Definition 3.16.

Definition 3.28. The minimal core of L[E] is defined to be⋂
α<∞

Wα =
⋃
α<∞

Wα|κWα

,

where W is minimal.

Notice that the minimal core of L[E] exists and by Lemma 3.27 does not depend
on the choice of the minimal W .

Lemma 3.29.
ML[E] ⊆ the minimal core of L[E].

Proof. Let us fix a minimalW . We will in fact not make any use of hypothesis (2) of
Definition 3.25. We shall use the method of [10, pp. 763ff.] to perform a genericity
iteration on Wα to produce ground models. Let α < ∞ be a cutpoint of L[E]
which is a regular cardinal in L[E], e.g. α = β+L[E], where β is non–measurable
in M and there is no strong cardinal in M |β. (We here use our hypothesis (A2).)
We may also assume without loss of generality that δW

α
< α+L[E].

We are going to describe an iteration tree T on Mα which will be a member of
L[E] and which will be above κ := κM

α
. T will be a genericity iteration to make
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an initial segment of E generic over the iterate. When we’re done, P = PM(T )
will be defined, and it will be a proper class model which is a ground of L[E] that
coincides with Mα up to κ. The length of the iteration will be α+, as calculated
in L[E].

Let Ẽ code E in some natural way as a class of ordinals.
Successor case. Suppose T � (γ+1) is constructed already. Then choose ν least

such that E
MTα
ν is total on MT

α and violates some axiom of the extender algebra
with respect to Ẽ ∩ πT0,α(δM). If there is no such ν, then the process terminates:
α + 1 = lh(T ).

Limit case. Suppose T � λ is constructed, where λ is a limit ordinal.
Subcase 1. PM(T � λ) is a proper class. Then we’re done with the construction

and set lh(T ) = λ.
Subcase 2. PM(T � λ) is set-sized.
The case assumption together with [10, Lemma 1.6] implies that PM(T � λ)

is a Q–structure for M(T � λ), i.e., either δ(T � λ) is not definably Woodin
in PM(T � λ) or else ρω(PM(T � λ)) < δ(T � λ). As T � λ is according to the
iteration strategy for W , we may let b be the cofinal branch through T � λ given by
that strategy. By hypothesis (3) (a) of Definition 3.25, then, T must live strictly
below δW

α
. This implies that PM(T � λ) E MT �λ

b , and then by absoluteness,

b ∈ L[E]. We may thus extend T � λ) to T � λ + 1) by letting MT
λ =MT �λ

b and
[0, λ]T = b.

This finishes the construction of T .
By the usual comparison argument, lh(T ) ≤ α+L[E]. By [10, Lemma 1.6]

and hypothesis (3) (b) of Definition 3.25, T cannot have successor length. This is
because otherwise α < πT0∞(δW

α
) < α+L[E]. By [10, Lemma 1.6 (b)] and hypothesis

(3) (b) of Definition 3.25, πT0∞(δW
α
) must then be a cutpoint of M , so that in fact

PM(T ) would be a proper class model such that for some generic G ⊆ P :=

PMT∞|πT0∞(δW
α

), PM(T )[G] = L[E]. But P has the πT0∞(δW
α
)–c.c., so that πT0∞(δW

α
)

would be a cardinal in L[E]. Contradiction!
Therefore, T must have limit length, and by the argument just given we cannot

have that lh(T ) < α+L[E]. Therefore, lh(T ) = α+L[E] and δ(T ) = α+L[E]. Also,
P(T ) is a proper class and for some generic G ⊆ PM(T ), PM(T )[G] = L[E]. I.e.,
PM(T ) is a ground of L[E]. But Wα|κWα

/ PM(T ).

3.4 The mantle of an L[E] model

In order to prove the converse of Lemma 3.29, i.e., that the mantle of L[E] is equal
to the minimal core of L[E], we need a different representation of the latter model.

Definition 3.30. We recursively define a sequence (Lpi : 1 ≤ i ≤ On) as follows.
Lp1 = Jω, Lpλ =

⋃
i<λ Lpi for limit ordinals λ, and Lpi+1 is the union of all sound
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premiceM.Lpi such that ρω(M) ≤ Lpi∩OR andM is fully iterable inside M as
guided by P–constructions. We write LpP for LpOn and call it the maximal lower
part model which is certified by P–constructions.

Lemma 3.31. The maximal lower part model which is certified by P–constructions
is equal to the minimal core.

Proof. Let K denote the minimal core, and let us write Lp = LpP . As both K
and Lp are lower–part models which are fully iterable inside M as guided by P–
constructions, it is easy to see that if K 6= Lp, then there is some κ which is a
cardinal of both K and Lp such that K|κ+K / Lp|κ+Lp. LetM be least such that
K|κ+K /M / Lp|κ+Lp and ρω(M) ≤ κ. M then iterates past K, and in fact if W
is a minimal model with K|κ+K = W |κ+W , thenM iterates past W and we get a
contradiction as in the proof of Lemma 3.27.

In addition to our assumptions 3.19, in this subsection we shall now make the
extra

Assumption 3.32. M = L[E] is an extender model such that

(A5) E is OD in M , and there are arbitrarily large cardinal strong cutpoints4 θ
of M such that if G is Col(ω,M |θ)–generic over M and Ẽ is the sequence
of (partial and total) extenders of M [G] which canonically extend extenders
from E with critical points above θ to M [G], then the restriction of Ẽ to
indices greater than θ+M is OD in M [G].

The question when (A5) is satisfied is related to work of Schlutzenberg (see
[12]), one focus of which is an analysis of mice that satisfy V = HOD. In private
communication, Schlutzenberg pointed out that, in the notation of (A5), if L[E][G],
viewed as a G-premouse L[Ẽ](G), is internally fully normally iterable above θ (or
just internally iterable in the intervals between Woodin cardinals which by (A1)
all have to be cutpoints), then the restriction of Ẽ to indices greater than θ+M is
ordinal definable in M [G].

Theorem 3.33. The mantle of L[E] is equal to the minimal core of L[E].

Proof. In the light of Lemma 3.29, we are left with having to prove that if V̄ is a
ground of L[E], then every strict initial segment of the minimal core of L[E] is an
element of V̄ . Let us fix V̄ , let P ∈ V̄ be a partial order, and let g be P–generic
over V̄ such that V̄ [g] = L[E].

Let θ > Card(P) be as in (A5), and let G be Col(ω,M |θ)–generic over L[E].
Let H be Col(ω, θ)–generic over V̄ such that V̄ [H] = L[E][G].

4I.e., θ is a cardinal of M and there is no EMα 6= ∅ with α > θ and crit(EMα ) ≤ θ.
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In the light of Lemma 3.31, it suffices to verify that LpP is definable in
L[E][G] = V̄ [H], as then every proper initial segment of the minimal core will
be an element of V̄ . In order to show that LpP is definable in L[E][G], we are now
going to define a version of Lp inside L[E][G] and verify that this model is equal
to LpP .

We first define PM [G](U) in much the same way as PM(U) was defined, with a
small change in the maximal P-construction.

LetM = M [G]|γ, for some γ > θ+M , and let P̄ be a premouse with P̄ ∩On =
δ + ω, δ is a Woodin cardinal in P̄ , θ+M ≤ δ < γ, P̄|δ ⊆ M|δ is definable over
M|δ, and

(∗) u = |(P̄ [G∗])| = |M|(δ + 1)|,5 for some P̄-generic G∗ ⊆ PP̄|δ.

Notice that M may be construed as a H
M [G]

θ+M
-premouse with extender sequence

Ẽ|γ, restricted to indices greater than θ+M (Ẽ as in (A5)), soM|i makes sense for
all i with θ ≤ i ≤ γ. The modified maximal P-construction produces a sequence
〈P ′i | δ + 1 ≤ i < γ̄〉 of u-premice, for some γ̄ ≤ γ. First, P ′δ+1 = P̄ . It will be
maintained that δ is a Woodin cardinal in the premouse P ′i and that

(∗∗) P ′i[G∗] =M|i

where G∗ is as in (∗) and both structures are viewed as u-premice. At limit stages
λ, P ′λ will be the union of the previous stages of the construction, augmented by
the restriction of the top extender of M||λ, if there is one. Successor stages P ′i+1

will be defined if i+ 1 ≤ γ, δ is Woodin in P ′i with respect to definable subsets of
P ′i and the ultimate projectum of P ′i is not less than δ. In that case, P ′i+1 is the
result of constructing one step further (i.e., taking the rudimentary closure of P ′i).
The construction terminates at stage i ≤ γ if δ is not definably Woodin over P ′i
or ρω(P ′i) < δ or i = γ, and we then set γ̄ = i. We write P ′(M, P̄ , δ) = P ′γ̄.

Now, for an iteration tree U ∈ M [G] on a premouse MU
0 , we define PM [G](U)

by

PM [G](U) :=


P(M [G],M(U) + ω, δ(U)) if U has limit length

and this is defined,

P(M [G],MU
∞||δM

U
∞ + ω, δM

U
∞) if U has successor length

and this is defined,
undefined otherwise.

Let T ∈ L[E][G] be an iteration tree on some premouseM which lives strictly
below δM. We say that T is guided by P–constructions in L[E][G] provided the

5Here, |N | denotes the universe of the the model N .
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following holds true. For every limit ordinal λ < lh(T ), there is an iteration tree
Uλ ∈ L[E][G] on M(T � λ) of successor length such that for every limit ordinal
η < lh(Uλ), PM [G](Uλ � η) is well–defined and

PM [G](Uλ � η) EMUλ
η(2)

is a Q–structure for Uλ � η, and there is some Q–structure Q E MT
λ together

with some sufficiently elementary embedding σ : Q → PM [G](Uλ) which is to exist
inside MCol(ω,PM (Uλ)).

Definition 3.34. Let M ∈ L[E] be a premouse. We say that M is fully iterable
inside M [G] as guided by P–constructions iff for every tree T onM of limit length
which is guided by P–constructions in L[E][G] there is an iteration tree T + on
M of length lh(T ) + 1, extending T , which is also guided by P–constructions in
L[E][G].

Definition 3.35. We recursively define a sequence (Lp′i : 1 ≤ i ≤ On) as follows.
Lp′1 = Jω, Lp′λ =

⋃
i<λ Lp′i for limit ordinals λ, and Lp′i+1 is the union of all sound

premice M . Lp′i such that ρω(M) ≤ Lp′i ∩ OR and M is fully iterable inside
M [G] as guided by P–constructions. We write (LpP)M [G] for Lp′On and call it the
maximal lower part model which is certified by P–constructions.

The definition of (LpP)M [G] only needs

{H∗ ⊂ Col(ω, θ) : {n : (
⋃

H)(n) 6= (
⋃

H∗)(n)} is finite }

(rather than H itself or G) as a parameter. This is because for any such H∗,

H
M [G]

θ+M
= (Hθ+)V̄ [H∗], which is the crucial parameter in the definition of the maximal

P-constructions. We therefore have that (LpP)M [G] ⊆ V̄ .
It thus remains to verify the following.

Lemma 3.36. (LpP)M [G] = LpP .

Proof. Let us write LpG = (LpP)M [G] and Lp = LpP . As both LpG and Lp are
lower–part models, it is easy to see that if LpG 6= Lp, then there is some largest κ
which is a cardinal of both LpG and Lp such that LpG|κ = Lp|κ.

Claim 1. Let LpG|κ /M / LpG be such that ρω(M) ≤ κ. Then M / Lp.

Proof. Notice that M is OD in M [G] and hence M∈ V̄ ⊆M . We need to verify
that M is fully iterable inside M as guided by P–constructions. Otherwise there
is a counterexample tree T ∈M , so that there is a tree U onM(T ) +ω such that
PM(U) is class sized, δ(U) is Woodin in PM(U), and for some k which is generic for
the extender algebra, PM(U)[k] = L[E]. In particular, δ(U) is a regular cardinal
in L[E].
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But by hypothesis, L[E][G] can find the Q–structure Q for M(U) which is in
fact an initial segment of the limit model, call itMT_U

∞ , of the iteration tree T _U
on M. We must have ρ(MT_U

∞ ) < δ(U) and hence cf(δ(U)) < δ(U) in L[E][G].
Contradiction!

Claim 2. Let Lp|κ /M / Lp be such that ρω(M) ≤ κ. Then M / LpG.

Proof. This is similar to the proof of Lemma 3.12. Assume thatM is not an initial
segment of LpG. There is then a tree T ∈ L[E][G] on M such that we may not
find a Q–structure for M(T ) by pulling back Q–structures from P–constructions
over iterates of M(T ).

Let F be the family of all such T of minimal length, and let R the result of
pseudo–comparing all elements of F . We can’t find a Q–structure for R by pulling
back Q–structures from P–constructions over iterates of R, as otherwise we might
pull back such a Q–structure to get a Q–structure for T .

Obviously, R ∈ L[E], as it has been defined in L[E][G] just from the parameter
M ∈ V̄ ⊆ M (and an ordinal). We may now pseudo–coiterate M with R inside
L[E]. AsM /Lp, i.e.,M is fully iterable inside M as guided by P–constructions,
this procedure will finally produce a Q–structure for R. Contradiction!

4 The Solid Core

4.1 Basics on solid sets and the Solid Core

Definition 4.1. A set x is solid if for every set a of ordinals, whenever there is a
poset P ∈ L[a] and a filter G which is P-generic over L[a] such that x ∈ L[a][G],
then x ∈ L[a].

So a set x is solid if it can’t be added by forcing over an inner model of ZFC.
The definition above is a first order version of this.

Lemma 4.2. If x is solid in a forcing extension, then it is solid in the ground
model. In fact, if x ∈ W ⊆ V, where W is an inner model of V and x is solid in
V, then x is solid in W .

Proof. If x could be added by forcing over an inner model of W , then this inner
model would also be an inner model of V, so that x wouldn’t be solid in V.

Lemma 4.3. Every solid set belongs to the mantle.

Proof. If x is solid and W is a ground, then x ∈ W , by the definition of solidity.
W was an arbitrary ground, so this shows that x ∈M.

Lemma 4.4. If x is solid, then x ∈ HOD.
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Proof. Since x is generic over HOD (by the Vopěnka algebra), it follows that x ∈
HOD, because x is solid.

Question 4.5. Is the statement “x is solid” forcing absolute? I.e., in view of
Lemma 4.2: Is “x is solid” necessary if true?

We will show in [4] that the answer is no, in general, by showing that it is
consistent that M = K|θ is solid, but in a set-forcing extension W , θ may be ω1,
and M may be added to an inner model of W by adding a Cohen real.

Observation 4.6. If MP(R) holds, then “x is solid” is forcing absolute, for x ∈
R.6

Proof. Being solid passes down to grounds, as noted above. So suppose x ∈ R is
solid, but not solid in some forcing extension. x will then fail to be solid in any
further forcing extensions. By MP(R), x is not solid, a contradiction.

Definition 4.7. A set x is generically solid if every poset forces that x̌ is solid.

Lemma 4.8. The statement that x is generically solid is forcing-absolute. In fact,
generic solidity is downward absolute to arbitrary inner models.

Proof. Generic solidity is clearly absolute to forcing extensions: If x is generically
solid in V, and V[g] is a forcing extension of V, then x is solid in V[g], and since
every forcing extension of V[g] is a forcing extension of V, x is solid in every forcing
extension of V[g], which means that x is generically solid in V[g].

Vice versa: we show downward absoluteness to arbitrary inner models instead
of to just ground models. So suppose x is generically solid in V, and suppose
W ⊆ V is an inner model with x ∈ W . Suppose x was not generically solid in W .
Let h ⊆ Q ∈ W be such that x is not solid in W [h]. Let q ∈ Q be a condition
which forces over W that x̌ is not solid. Let q ∈ h′ ⊆ Q be generic over V. In
W [h′], there is an a and an L[a]-generic i such that x ∈ L[a][i] \ L[a]. So a and i
also exist in V[h′], showing that x is not solid in V[h′]. But V[h′] is a set-forcing
extension of V, where x is generically solid. This is a contradiction.

Lemma 4.9. Every generically solid set belongs to gHOD and gM.

Proof. If x is generically solid, then x is solid in every generic extension V[G], so
by what has been shown so far, x belongs to MV[G] and to HODV[G].

So the generically solid sets are canonically well-ordered. By listing all of those
which are sets of ordinals, in that order, say by A, we get an inner model of ZFC,

6MP(R), the maximality principle with real parameters, is the scheme expressing that every
statement about a real number that can be forced to be true in such a way that it stays true in
any further forcing extension is already true. See [5].
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L[A], which is forcing invariant, as gHOD and hence the ordering is. Moreover,
L[A] ⊆ gHOD, since A ∩ α is OD in every forcing extension, for every α.

Let us fix a natural way to form a sum of two sets x and y of ordinals, x⊕ y,
which is again a set of ordinals, from which both x and y can be defined in an
absolute way, and which itself is also absolutely definable from x and y.

Definition 4.10. For sets of ordinals x and y, set

x⊕ y = {≺α, 0� | α ∈ x} ∪ {≺β, 1� | β ∈ y}.

Observation 4.11. If x and y are solid sets of ordinals, then so is x⊕ y.

Proof. Let x⊕y ∈ L[a][G], where a and G are as in Definition 4.1. Since x is solid,
it follows that x ∈ L[a], as x ∈ L[a][G], being definable from x⊕ y there. For the
same reason, y ∈ L[a]. But then x⊕ y ∈ L[a] as well.

Definition 4.12. The solid core is the class

C =
⋃

x solid,x⊆On

L[x].

The reason for restricting to solid sets of ordinals in the definition of the solid
core is that we want to insure that the resulting model will satisfy the axiom of
choice. Alternatively, one could have defined the solid core to be the union of all
“self-well-ordered” solid sets (where a set x is self-well-ordered if L(x) satisfies the
axiom of choice). In this way, even though we do not know in general whether the
solid core satisfies ZF, it automatically satisfies the axiom of choice. Note that it
is not a good idea to consider the class of all solid sets in the hope of arriving at
a canonical model, because the solid sets are not transitive. For example, Lω1 [0

#]
is solid (and self-well-ordered), but contains real numbers that are Cohen-generic
over L, and hence not solid.

Theorem 4.13. C is a definable, transitive class containing all the ordinals, closed
under the Gödel operations.

Proof. To see that C is closed under the Gödel operations, let x0, x1, x2 ∈ C.
Then there are solid sets of ordinals y0, y1, y2 such that xi ∈ L[yi], for i < 3. By
Observation 4.11, z := (y0 ⊕ y1) ⊕ y2 is a solid set of ordinals, and xi ∈ L[z], for
all i < 3. Since L[z] is closed under the Gödel operations, the desired image of
(x0, x1, x2) is in L[z] ⊆ C.

Question 4.14. Is C almost universal? I.e., if x ⊆ C, then is there a y ∈ C with
x ⊆ y?

Definition 4.15. The solid sets of ordinals are upward set-directed if for every set
Z of solid sets of ordinals, there is a solid set of ordinals z such that Z ⊆ L[z].

27



Lemma 4.16. If the solid sets of ordinals are upward set-directed then C is a
model of ZFC.

Proof. To see that C is a model of ZF, it suffices to show that given α, v :=
Vα∩C ∈ C, for this implies that C is almost universal. For a ∈ v, pick a solid set of
ordinals xa such that a ∈ Vα ∩ L[xa]. By upward set-directedness of the solid sets
of ordinals, there is a solid set of ordinals y such that L[xa] ⊆ L[y], for all a ∈ v.

But then v = Vα∩L[y] = V
L[y]
α ∈ L[y] ⊆ C, which shows almost universality. That

C satisfies the axiom of choice is clear, since it is a union of models of choice.

Lemma 4.17. Assuming C is a model of ZFC, it follows that CC = C.

Proof. Of course, the left hand side is contained in the right hand side. For the
converse, suppose a ∈ C. Pick a solid x such that a ∈ L[x]. Clearly, x ∈ C. Solidity
is downward absolute, so x is solid in C, and hence, a ∈ CC.

Lemma 4.18. Assuming C is a model of ZFC, C satisfies the Ground Axiom.

Proof. C = CC ⊆MC ⊆ C. So MC = C.

Definition 4.19.
gC =

⋃
x⊆On generically solid

L[x].

Lemma 4.20. Assuming gC is a model of ZFC, it follows that

gCgC = gC.

Proof. As before, using the fact that generic solidity is downward absolute to inner
models.

4.2 Computing the Solid Core

Theorem 4.21. Suppose there is an inner model with a Woodin cardinal. Let
W be a minimal such model, “minimal” in the sense of Definition 3.9. Then
C =

⋂
αW

α, using the notation introduced in Definition 3.16.

Proof. For the inclusion from left to right, we can argue as in Theorem 3.17: Any
solid set a (of ordinals) can be made generic over an iterate of Wα, the genericity
iteration being above sup(a). By solidity of a then, a must belong to the iterate of
Wα, and since the genericity iteration was above sup(a), it follows that a ∈ Wα.
So any solid set belongs to

⋂
αW

α. As before, it is really a genericity pseudo
iteration, where we don’t have an embedding into the last model.

For the converse, we want to show that Wα||κWα
is solid, for any α. To see this,

fix α, and suppose M is an inner model in which there is a forcing notion P, such
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that there is a G ∈ V which is M -generic for P, and such that Wα||κWα ∈ M [G].
We have to show that Wα||κWα ∈M .

Case 1: M has an inner model with a Woodin cardinal.
In this case, in M , let W̄ be a minimal inner model with a Woodin cardinal.

Coiterate W̄ against Wα||κWα
in M [G]. Get that W̄α||κW̄ ||κα = Wα||κWα

, showing
that Wα||κWα ∈M . (Cf. Lemmas 3.11 and 3.12.)

Case 2: M has no inner model with a Woodin cardinal.
Then KM exists, and KM [G] = KM is also the core model of M [G]. Inside

M [G], coiterate KM [G] against Wα||κWα
, producig iteration trees T on KM [G]

and U on Wα||κWα
. Note that by absoluteness, Wα||κWα

is iterable also in M [G] ⊆
V. As KM [G] is universal, KM [G] wins the coiteration.

Wα||κWα
is a lower–part model, i.e., it doesn’t have any total extenders on

its sequence, so that as KM [G] wins U must be trivial in the sense that Wα||κWα

doesn’t move in the comparison. But then T must be linear, and it has to look
like this: For α0 many steps, iterate Eξ0 and its images. Then switch to a new
index ξ1 greater than the image of ξ0, and iterate that and its images for α1 many
times. When switching to the “new” extender, there is a drop. Continue like this.
Only finitely many switches can happen, because every time you switch, there is a
drop. If T were to look different, then it would leave a total measure behind and
Wα||κWα

would end up with a total measure on its sequence.

The iteration T of KM [G] is thus determined by the ordinals ~α and ~β. So
T ∈ M , and Wα||κWα

is an initial segment of the last model of the iteration. So
in this case, too, Wα||κWα ∈M .

Let us now explore the solid core in the absence of an inner model with a
Woodin cardinal. We will show in [4] that in that case, K ⊆ C. However, the op-
posite inclusion does not hold in general in this situation, as the following theorem
shows.

Theorem 4.22. It is consistent that there is no inner model with a Woodin car-
dinal and K 6= C. In fact, this is true in R. David’s class forcing extension L[r]
of L: there, 0# does not exist, r /∈ L, and r is generically solid. So L[r] is its own
generic solid core (and solid core, and mantle, and generic mantle, and generic
HOD, and HOD).

Proof. R. David proved in [1, Theorem 1] that there is a class forcing extension
L[r] of L, where r ⊆ ω, such that r /∈ L, 0# /∈ L[r], and r is a set-forcing-absolute
Π1

2-singleton, in the strong sense that there is a Π1
2-formula ϕ such that in every set-

forcing extension of L[r], r is unique with ϕ(r). That is, any set-forcing extension
of L[r] satisfies ∀s (ϕ(s) ⇐⇒ s = r). These properties, taken together, imply
that r is generically solid in L[r]. To see this, let g be set-generic over L[r], let
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W ⊆ L[r][g] be an inner model, and let h ∈ L[r][g] be generic for some forcing in
W , and assume that r ∈ W [h]. We have to show that r ∈ W .

Note that L[r] ⊆ W [h] ⊆ L[r][g], so there is an W [h]-generic filter i such that
W [h][i] = L[r][g], since W [h] is intermediate in between a model of ZFC and its
set-forcing extension. Let α be a cardinal at least as large as the cardinality of the
forcings for which g and h are generic. Let G be Col(ω, α)-generic over L[r][g]. By
the absorption property of the collapse, there is a W -generic filter H ⊆ Col(ω, α)
such that

L[r][g][G] = W [h][i][G] = W [H]

Since W [H] = L[r][g][G] is a forcing extension of L[r], r is a Π1
2-singleton in W [H].

So by the homogeneity of the collapse, it follows that r ∈ W .
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