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1 Introduction

Let {Sn} be a symmetric random walk on Z2 with covariance matrix Γ. Let

Bn =
∑

1≤j<k≤n
δ(Sj , Sk) (1.1)

where

δ(x, y) =
{

1 if x = y
0 otherwise

(1.2)

is the usual Kroenecker delta. We refer to Bn as the self-intersection local time up to time n.
We call

γn =: Bn − EBn

the renormalized self-intersection local time of the random walk up to time n.

In (13) and (16) it was shown that γn, appropriately scaled, converges to the renormalized
self-intersection local time of planar Brownian motion. (For a recent almost sure invariance
principle see (5).) Renormalized self-intersection local time for Brownian motion was originally
studied by Varadhan (18) for its role in quantum field theory. Renormalized self-intersection
local time turns out to be the right tool for the solution of certain “classical” problems such
as the asymptotic expansion of the area of the Wiener sausage in the plane and the range of
random walks, (4), (14), (13).

One of the applications of self-intersection local time is to polymer growth. If Sn is a
planar random walk and P is its law, one can construct self-repelling and self-attracting random
walks by defining

dQn/dP = cne
ζBn/n,

where ζ is a parameter and cn is chosen to make Qn a probability measure. When ζ < 0, more
weight is given to those paths with a small number of self-intersections, hence Qn is a model for
a self-repelling random walk. When ζ > 0, more weight is given to paths with a large number
of self-intersections, leading to a self-attracting random walk. Since EBn is deterministic, by
modifying cn, we can write

dQn/dP = cne
ζ(Bn−EBn)/n.

It is known that for small positive ζ the self-attracting random walk grows with n while for large
ζ it “collapses”; in the case of collapse its diameter remains bounded in mean square, while in
the case of non-collapse the diameter is of order n in mean square. It has been an open problem
to determine ζc, the critical value of ζ at which the phase transition takes place. The work (2)
suggested that the critical value ζc could be expressed in terms of the best constant κ(2, 2) of
a certain Gagliardo-Nirenberg inequality, but that work was for planar Brownian motion, not
for random walks. In (2) it was shown that E eζeγ1 is finite or infinite according to whether ζ is
less than or greater than κ(2, 2)−4, where γ̃1 is the renormalized self-intersection time for planar
Brownian motion. In the current paper we obtain moderate deviations estimates for γn and
these are in terms of the best constant of the Gagliardo-Nirenberg inequality; see Theorem 1.1.
However the critical constant ζc is different from κ(2.2)−4 (see Remark 1.4) and it is still an open
problem to determine it. See (6) and (7) for details and further information on these models.
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In the present paper we study moderate deviations of γn. Before stating our main theorem
we recall one of the Gagliardo-Nirenberg inequalities:

‖f‖4 ≤ C‖∇f‖1/2
2 ‖f‖1/2

2 , (1.3)

which is valid for f ∈ C1 with compact support, and can then be extended to

W 1,2(R2) =: {f ∈ L2(R2) |∇f ∈ L2(R2)} (1.4)

We define κ(2, 2) to be the best constant in (1.3), that is,

κ(2, 2) =: inf
{
C > 0

∣∣∣ ‖f‖4 ≤ C‖∇f‖1/2
2 ‖f‖1/2

2 , ∀f ∈W 1,2(R2)
}

(1.5)

In particular, 0 < κ(2, 2) <∞. We note for later reference that

sup
g∈F2

{(∫
R2

|g(x)|4dx
)1/2

− 1
2

∫
R2

〈∇g,∇g〉dx
}

=
1
2
κ4(2, 2) (1.6)

where
F2 =

{
g ∈W 1,2(R2) | ‖g‖2 = 1

}
. (1.7)

The identity (1.6) is a special case of (8, Lemma 8.2).

In this paper we will always assume that the smallest group which supports {Sn} is Z2.
For simplicity we assume further that our random walk is strongly aperiodic. This is needed to
get suitable estimates for the transition probability estimates in the proof of Lemma 2.1 and is
also used in an essential way in the proof of Theorem 4.1.

Theorem 1.1. Let {bn} be a positive sequence satisfying

lim
n→∞

bn = ∞ and bn = o(n). (1.8)

For any λ > 0,

lim
n→∞

1
bn

log P
{
Bn − EBn ≥ λnbn

}
= −λ

√
det Γ κ(2, 2)−4. (1.9)

We call Theorem 1.1 a moderate deviations theorem rather than a large deviations result
because of the second restriction in (1.8). Our techniques do not apply when this restriction is
not present, and in fact it is not hard to show that the value on the right hand side of (1.9)
should be different when bn ≈ n; see Remark 1.4.

Moderate deviations for −γn are more subtle. In the next theorem we obtain the correct
rate, but not the precise constant.

Theorem 1.2. Suppose E |S1|2+δ < ∞ for some δ > 0. There exist C1, C2 > 0 such that for
any sequence bn →∞ with bn = o(n)

− C1 ≤ lim inf
n→∞

b−1
n log P

{
EBn −Bn ≥ (2π)−1 det(Γ)−1/2n log bn

}
≤ lim sup

n→∞
b−1
n log P

{
EBn −Bn ≥ (2π)−1 det(Γ)−1/2n log bn

}
≤ −C2. (1.10)
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Here are the corresponding laws of the iterated logarithm for γn.

Theorem 1.3.
lim sup
n→∞

Bn − EBn
n log log n

= det(Γ)−1/2κ(2, 2)4 a.s. (1.11)

and if E |S1|2+δ <∞ for some δ > 0,

lim inf
n→∞

Bn − EBn
n log log log n

= −(2π)−1 det(Γ)−1/2 a.s. (1.12)

In this paper we deal exclusively with the case where the dimension d is 2. We note that
in dimension 1 no renormalization is needed, which makes the results much simpler. See (15; 9).
When d ≥ 3, the renormalized intersection local time is in the domain of attraction of a centered
normal random variable. Consequently the tails of the weak limit are expected to be of Gaussian
type, and in particular, the tails are symmetric; see (13). As far as we know, the interesting
question of moderate deviations in dimensions 3 and larger is still open.

Theorems 1.1-1.3 are the analogues of the theorems proved in (2) for the renormalized
self-intersection local time of planar Brownian motion. Although the proofs for the random
walk case have some elements in common with those for Brownian motion, the random walk
case is considerably more difficult. The major difficulty is the fact that we do not have Gaussian
random variables. Consequently, the argument for the lower bound of Theorem 1.1 needs to be
very different from the one given in (2, Lemma 3.4). This requires several new tools, such as
Theorem 4.1, which we expect will have applications beyond the specific needs of this paper.

Remark 1.4. Without the the restriction that bn = o(n), Theorem 1.1 is not true. To see this,
let N be an arbitrarily large integer, let ε = 2/N2, and let Xi be be an i.i.d. sequence of random
vectors in Z2 that take the values (N, 0), (−N, 0), (0, N), and (0,−N) with probability ε/4 and
P(X1 = (0, 0)) = 1− ε. The covariance matrix of the Xi will be the identity. Let bn = (1− ε)n.
Then the event that Si = S0 for all i ≤ n will have probability at least (1 − ε)n, and on this
event Bn = n(n− 1)/2. This shows that

log P(Bn − EBn > nbn/2) ≥ n log(1− ε),

which would contradict (1.4).

The same example shows that the critical constant ζc in the polymer model is different
than the one in (2). We have

E exp
{
C
Bn − EBn

n

}
≥ exp

{
− C

EBn
n

}
(1− ε)n exp

{
C
n− 1

2

}
.

This show that ζc is no more than 2 log 1
1−ε . On the other hand, if ε is sufficiently small,

2 log 1
1−ε < κ(2, 2)−4.

This paper is organized as follows. In Section 2 we establish some estimates which are
used throughout the paper. Section 3 begins the proof of Theorem 1.1, while a crucial element
of that proof, Theorem 4.1, is established in Section 4. Sections 5 and 6 prove the upper and
lower bounds for Theorem 1.2, and Section 7 is devoted to the laws of the iterated logarithm.
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2 Preliminary Estimates

Let {S′n} be an independent copy of the random walk {Sn}. Let

Im,n =
m∑
j=1

n∑
k=1

δ(Sj , S′k) (2.1)

and set In = In,n. Thus
In = #{(j, k) ∈ [1, n]2; Sj = S′k}. (2.2)

Lemma 2.1.
E Im,n ≤ c ((m+ n) log(m+ n)−m logm− n log n) . (2.3)

In particular
E (In) ≤ cn. (2.4)

We also have
E Im,n ≤ c

√
mn. (2.5)

Proof Using symmetry and independence

E Im,n =
m∑
j=1

n∑
k=1

E δ(Sj , S′k) (2.6)

=
m∑
j=1

n∑
k=1

E δ(Sj − S′k, 0)

=
m∑
j=1

n∑
k=1

E δ(Sj+k, 0) =
m∑
j=1

n∑
k=1

pj+k(0)

where pn(a) = P (Sn = a). By (17, p. 75),

pm(0) =
1

2π
√

det Γ
1
m

+ o

(
1
m

)
(2.7)

so that

E Im,n ≤ c

m∑
j=1

n∑
k=1

1
j + k

≤ c

∫ m

r=0

∫ n

s=0

1
r + s

dr ds (2.8)

and (2.3) follows. (2.4) is then immediate. (2.5) follows from (2.8) and the bound (r + s)−1 ≤
(
√
rs)−1.

It follows from the proof of (8, Lemma 5.2) that for any integer k ≥ 1

E (Ikn) ≤ (k!)22k(1 + E (In))k. (2.9)

Furthermore, by (13, (5.k)) we have that In/n converges in distribution to a random variable
with finite moments. Hence for any integer k ≥ 1

lim
n→∞

E (Ikn)
nk

= ck <∞. (2.10)
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Lemma 2.2. There is a constant c > 0 such that

sup
n

E exp
{ c
n
In

}
<∞. (2.11)

Proof. We need only to show that there is a C > 0 such that

E Imn ≤ Cmm!nm m,n ≥ 1.

We first consider the case m ≤ n and write l(m,n) = [n/m] + 1. Using (8, Theorem 5.1)
with p = 2 and a = m, and then (2.4), (2.9) and (2.10), we obtain(

E Imn
)1/2 ≤

∑
k1+···+km=m

k1,··· ,km≥0

m!
k1! · · · km!

(
E Ik1l(m,n)

)1/2 · · · (E Ikml(m,n)

)1/2
≤

∑
k1+···+km=m

k1,··· ,km≥0

Cmm!
k1! · · · km!

k1! · · · km!
(
E Il(m,n)

)k1/2 · · · (E Il(m,n)

)km/2 (2.12)

≤
(

2m− 1
m

)
m!Cm

( n
m

)m/2
≤
(

2m
m

)
m!Cm

( n
m

)m/2
where C > 0 can be chosen independently of m and n. Hence

E Imn ≤
(

2m
m

)2

Cm(m!)2
( n
m

)m
≤
(

2m
m

)2

Cmm!nm. (2.13)

Notice that (
2m
m

)
≤ 4m. (2.14)

For the case m > n, notice that In ≤ n2. Trivially,

E Imn ≤ n2m ≤ mmnm ≤ Cmm!nm,

where the last step follows from Stirling’s formula.

For any random variable X we define

X =: X − EX.

We write
(m,n]2< = {(j, k) ∈ (m,n]2; j < k} (2.15)

For any A ⊂
{
(j, k) ∈ (Z+)2; j < k

}
, write

B(A) =
∑

(j,k)∈A

δ(Sj , Sk) (2.16)

In our proofs we will use several decompositions of Bn. If J1, . . . , J` are consecutive disjoint
blocks of integers whose union is {1, . . . , n}, we have

Bn =
∑
i

B((Ji × Ji) ∩ (0, n]2<) +
∑
i<j

B(Ji × Jj)
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and also
Bn =

∑
i

B((Ji × Ji) ∩ (0, n]2<) +
∑
i

B(∪i−1
j=1Jj)× Ji).

Lemma 2.3. There is a constant c > 0 such that

sup
n

E exp
{ c
n
|Bn |

}
<∞. (2.17)

Proof. We first prove that there is c > 0 such that

M ≡ sup
n

E exp
{ c

2n
|B2n |

}
<∞. (2.18)

We have

B2n (2.19)

=
n∑
j=1

2j−1∑
k=1

B
((

(2k − 2)2n−j , (2k − 1)2n−j
]
×
(
(2k − 1)2n−j , (2k)2n−j

])
.

Write

αj,k = B
((

(2k − 2)2n−j , (2k − 1)2n−j
]
×
(
(2k − 1)2n−j , (2k)2n−j

])
(2.20)

−EB
((

(2k − 2)2n−j , (2k − 1)2n−j
]
×
(
(2k − 1)2n−j , (2k)2n−j

])
.

For each 1 ≤ j ≤ n, the random variables αj,k, k = 1, · · · , 2j−1 are i.i.d. with common
distribution I2n−j − E I2n−j . By the previous lemma there exists δ > 0 such that

sup
n

sup
j≤n

E exp
{
δ

1
2n−j

∣∣αj,1∣∣} <∞. (2.21)

By (3, Lemma 1), there exists θ > 0 such that

C(θ) ≡ sup
n

sup
j≤n

E exp
{
θ2j/2

1
2n

∣∣∣ 2j−1∑
k=1

αj,k

∣∣∣} (2.22)

= sup
n

sup
j≤n

E exp
{
θ2−j/2

1
2n−j

∣∣∣ 2j−1∑
k=1

αj,k

∣∣∣} <∞.

Write

λN =
N∏
j=1

(
1− 2−j/2

)
and λ∞ =

∞∏
j=1

(
1− 2−j/2

)
. (2.23)

999



Using Hölder’s inequality with 1/p = 1− 2−n/2, 1/q = 2−n/2 we have

E exp
{
λn

θ

2n

∣∣∣ n∑
j=1

2j−1∑
k=1

αj,k

∣∣∣} (2.24)

≤
(

E exp
{
λn−1

θ

2n

∣∣∣ n−1∑
j=1

2j−1∑
k=1

αj,k

∣∣∣})1−2−n/2

×
(

E exp
{

2n/2λn
θ

2n

∣∣∣ 2n−1∑
k=1

αn,k

∣∣∣})2−n/2

≤ E exp
{
λn−1

θ

2n

∣∣∣ n−1∑
j=1

2j−1∑
k=1

αj,k

∣∣∣}C(θ)2
−n/2

.

Repeating this procedure,

E exp
{
λn

θ

2n

∣∣∣ n∑
j=1

2j−1∑
k=1

αj,k

∣∣∣} (2.25)

≤ C(θ)2
−1/2+···+2−n/2 ≤ C(θ)2

−1/2(1−2−1/2)−1
.

So we have
sup
n

E exp
{
λ∞

θ

2n
|B2n |

}
<∞. (2.26)

We now prove our lemma for general n. Given an integer n ≥ 2, we have the following
unique representation:

n = 2m1 + 2m2 + · · ·+ 2ml (2.27)

where m1 > m2 > · · ·ml ≥ 0 are integers. Write

n0 = 0 and ni = 2m1 + · · ·+ 2mi , i = 1, · · · , l. (2.28)

Then

∑
1≤j<k≤n

δ(Sj , Sk) =
l∑

i=1

∑
ni−1<j<k≤ni

δ(Sj , Sk) +
l−1∑
i=1

B
(
(ni−1, ni]× (ni, n]

)
= :

l∑
i=1

B
(i)
2mi +

l−1∑
i=1

Ai. (2.29)

By Hölder’s inequality, with M as in (2.18)

E exp
{ c
n

∣∣∣ l∑
i=1

(B(i)
2mi − EB(i)

2mi )
∣∣∣} (2.30)

≤
l∏

i=1

(
E exp

{ c

2mi
|B(i)

2mi − EB(i)
2mi |

}) 2mi
n

≤
l∏

i=1

M2mi/n = M.
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Using Hölder’s inequality,

E exp
{ c
n

l−1∑
i=1

Ai

}
≤

l−1∏
i=1

(
E exp

{ c

2mi
Ai

}) 2mi
n

. (2.31)

Notice that for each 1 ≤ i ≤ l − 1,

Ai
d=

2mi∑
j=1

n−ni∑
k=1

δ(Sj , S′k) ≤
2mi∑
j=1

2mi∑
k=1

δ(Sj , S′k), (2.32)

where the inequality follows from

n− ni = 2mi+1 + · · ·+ 2ml ≤ 2mi . (2.33)

Using (2.32) and Lemma 2.1, we can take c > 0 so that

E exp
{ c

2mi
Ai

}
≤ sup

n
E exp

{ c
n
In

}
≡ N <∞. (2.34)

Consequently,

E exp
{ c
n

l−1∑
i=1

Ai

}
≤

l−1∏
i=1

N2mi/n ≤ N. (2.35)

In particular, this shows that

E
{ c
n

l−1∑
i=1

Ai

}
≤ N. (2.36)

Combining (2.35) and (2.36) with (2.30) we have

sup
n

E exp
{ c

2n
|Bn|

}
<∞. (2.37)

Lemma 2.4.
EBn =

1
2π
√

det Γ
n log n+ o(n log n), (2.38)

and if E |S1|2+2δ <∞ for some δ > 0 then

EBn =
1

2π
√

det Γ
n log n+O(n). (2.39)

Proof.
EBn = E

∑
1≤j<k≤n

δ(Sj , Sk) =
∑

1≤j<k≤n
pk−j(0) (2.40)

where pm(x) = E (Sm = x). If E |S1|2+2δ <∞, then by (12, Proposition 6.7),

pm(0) =
1

2π
√

det Γ
1
m

+ o

(
1

m1+δ

)
. (2.41)
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Since the last term is summable, it will contribute O(n) to (2.40). Also,

∑
1≤j<k≤n

1
k − j

=
n∑

m=1

n−m∑
i=1

1
m

=
n∑

m=1

n−m

m
= n

n∑
m=1

1
m
− n (2.42)

and our Lemma follows from the well known fact that
n∑

m=1

1
m

= log n+ γ +O

(
1
n

)
(2.43)

where γ is Euler’s constant.

If we only assume finite second moments, instead of (2.41) we use (2.7) and proceed as
above.

Lemma 2.5. For any θ > 0

sup
n

E exp
{ θ
n

(EBn −Bn)
}
<∞ (2.44)

and for any λ > 0

lim
n→∞

1
bn

log P
{

EBn −Bn ≥ λnbn

}
= −∞. (2.45)

Proof. By Lemma 2.3 this is true for some θo > 0. For any θ > θo, take an integer m ≥ 1 such
that θm−1 < θo. We can write any n as n = rm+ i with 1 ≤ i < m. Then

EBn −Bn (2.46)

≤
m∑
j=1

[
E

∑
(j−1)r<k,l≤jr

δ(Sk, Sl)−
∑

(j−1)r<k,l≤jr

δ(Sk, Sl)
]

+ EBn −mEBr.

We claim that
EBn −mEBr = O(n). (2.47)

To see this, write

EBn −mEBr = EBn −
m∑
l=1

EB(((l − 1)r, lr]2<) (2.48)

Notice that

Bn −
m∑
l=1

B(((l − 1)r, lr]2<) (2.49)

=
m∑
l=1

B(((l − 1)r, lr]× (lr,mr]) +B((mr, n]2<)

+B((0,mr]× (mr, n])

Since
B(((l − 1)r, lr]× (lr,mr]) d= Ir,(m−l)r (2.50)
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by (2.3) we have

EB(((l − 1)r, lr]× (lr,mr]) (2.51)

≤ C
{

(m− (l − 1))r) log(m− (l − 1))r)

−((m− l)r) log((m− l)r)− r log r
}

Therefore
m∑
l=1

EB(((l − 1)r, lr]× (lr,mr]) (2.52)

≤ C

m∑
l=1

{
(m− (l − 1))r) log(m− (l − 1))r)

−((m− l)r) log((m− l)r)− r log r
}

= C
{
mr logmr −mr log r

}
= Cmr logm.

Using (2.5) for EB((0,mr]× (mr, n]) = E Imr,i and (2.38) for EB((mr, n]2<) then completes the
proof of (2.47).

Note that the summands in (2.46) are independent. Therefore, for some constant C > 0
depending only on θ and m,

E exp
{ θ
n

(EBn −Bn)
}
≤ C

(
E exp

{ θ
n

(EBr −Br)
})m

(2.53)

which proves (2.44), since θ/n ≤ θ/mr < θo/r and r →∞ as n→∞.

Then, by Chebyshev’s inequality, for any fixed h > 0

P
{

EBn −Bn ≥ λnbn

}
≤ e−hλbnE exp

{h
n

(EBn −Bn)
}

(2.54)

so that by (2.44)

lim sup
n→∞

1
bn

log P
{

EBn −Bn ≥ λnbn

}
≤ −hλ. (2.55)

Since h > 0 is arbitrary, this proves (2.45).

3 Proof of Theorem 1.1

By the Gärtner-Ellis theorem ( (11, Theorem 2.3.6)), we need only prove

lim
n→∞

1
bn

log E exp
{
θ

√
bn
n
|Bn − EBn|1/2

}
=

1
4
κ(2, 2)4θ2 det(Γ)−1/2. (3.1)

Indeed, by the Gärtner-Ellis theorem the above implies that

lim
n→∞

1
bn

log P
{
|Bn − EBn| ≥ λnbn

}
= −λ

√
det(Γ)κ(2, 2)−4. (3.2)
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Using (2.45) we will then have Theorem 1.1. It thus remains to prove (3.1).

Let f be a symmetric probability density function in the Schwartz space S(R2) of C∞

rapidly decreasing functions. Let ε > 0 and write

fε(x) = ε−2f(ε−1x), x ∈ R2 (3.3)

and

l(n, x) =
n∑
k=1

δ(Sk, x), l(n, x, ε) =
n∑
k=1

fε(b−1
n n)1/2(Sk − x). (3.4)

l(n, x) is the local time at x, that is, the number of visits to x up till time n. l(n, x, ε) is a
smoothed version of the local time. Note that

1
2

∑
x

l2(n, x) =
1
2

n∑
i,j=1

δ(Si, Sj) = Bn +
1
2
n. (3.5)

Hence we can replace Bn in (3.1) by 1
2

∑
x l

2(n, x). This motivates the next Theorem, proved
below, which shows that in certain sense Bn − EBn is close to 1

2

∑
x∈Z2 l2(n, x, ε).

Theorem 3.1. For any θ > 0,

lim
ε→0

lim
n→∞

1
bn

log E exp
{
θ

√
bn
n
|Bn − EBn −

1
2

∑
x∈Z2

l2(n, x, ε)|1/2
}

= 0.

This Theorem together with a careful use of Hölder’s inequality, the details of which are
spelled out in the proof of (10, Theorem 1), shows that

lim
n→∞

1
bn

log E exp
{
θ

√
bn
n
|Bn − EBn|1/2

}
(3.6)

= lim
ε→0

lim
n→∞

1
bn

log E exp
{
θ√
2

√
bn
n

( ∑
x∈Z2

l2(n, x, ε)
)1/2

}
.

By a minor modification of (8, Theorem 3.1),

lim
n→∞

1
bn

log E exp
{
θ√
2

√
bn
n

( ∑
x∈Z2

l2(n, x, ε)
)1/2

}
(3.7)

= sup
g∈F2

{
θ√
2

(∫
R2

|g2 ∗ fε(x)|2dx
)1/2

− 1
2

∫
R2

〈∇g,Γ∇g〉dx
}
.

It is easy to see that

lim
ε→0

sup
g∈F2

{
θ√
2

(∫
R2

|g2 ∗ fε(x)|2dx
)1/2

− 1
2

∫
R2

〈∇g,Γ∇g〉dx
}

(3.8)

= sup
g∈F2

{
θ√
2

(∫
R2

|g(x)|4dx
)1/2

− 1
2

∫
R2

〈∇g,Γ∇g〉dx
}
.
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The upper bound is immediate since by Young’s inequality ‖g2 ∗fε‖2 ≤ ‖g2‖2, whereas the lower
bound follows from the fact that for any g ∈ F2 the left hand side is greater than

lim
ε→0

{
θ√
2

(∫
R2

|g2 ∗ fε(x)|2dx
)1/2

− 1
2

∫
R2

〈∇g,Γ∇g〉dx
}

(3.9)

=
{
θ√
2

(∫
R2

|g(x)|4dx
)1/2

− 1
2

∫
R2

〈∇g,Γ∇g〉dx
}
.

Furthermore, by writing g(x) = θ det(Γ)−1/2
√

2
f( θ det(Γ)−1/4

√
2

Γ−1/2x) we see that

sup
g∈F2

{
θ√
2

(∫
R2

|g(x)|4dx
)1/2

− 1
2

∫
R2

〈∇g,Γ∇g〉dx
}

(3.10)

=
θ2

2
det(Γ)−1/2 sup

f∈F2

{(∫
R2

|f(x)|4dx
)1/2

− 1
2

∫
R2

〈∇f,∇f〉dx
}

=
θ2

4
det(Γ)−1/2κ(2, 2)4

where the last step used (1.6). (3.1) then follows from (3.6)-(3.10).

Proof of Theorem 3.1: Bn is a double sum over i, j and the same is true of∑
x∈Z2 l2(n, x, ε). The basic idea of our proof is that the contribution to Bn in the scale of

interest to us from i, j near the diagonal is almost deterministic and therefore will be controlled
by EBn, while the contribution to

∑
x∈Z2 l2(n, x, ε) from i, j near the diagonal is itself negligible,

due to the smoothed out nature of l(n, x, ε). This is the content of Lemma 3.2. The heart of the
proof of our Theorem is to show that the contributions to Bn and

∑
x∈Z2 l2(n, x, ε) from i, j far

from the diagonal are ‘almost’ the same. This is the content of Lemma 3.3 whose proof extends
through the following section. In order to get started we need some terminology to formalize
the idea of ‘near the diagonal’ and ‘far from the diagonal’.

Let l > 1 be a large but fixed integer. Divide [1, n] into l disjoint subintervals D1, · · · , Dl,
each of length [n/l] or [n/l] + 1. Write

D∗
i = {(j, k) ∈ D2

i ; j < k} i = 1, · · · , l (3.11)

With the notation of (2.16) we have

Bn =
l∑

i=1

B(D∗
i ) +

∑
1≤j<k≤l

B(Dj ×Dk) (3.12)

Define aj , bj so that Dj = (aj , bj ] (1 ≤ j ≤ l). Notice that

B(Dj ×Dk) =
∑

n1∈Dj ,n2∈Dk

δ(Sn1 , Sn2)

=
∑

n1∈Dj ,n2∈Dk

δ((Sn1 − Sbj ) + Sbj , Sak + (Sn2 − Sak))

=
∑

n1∈Dj ,n2∈Dk

δ((Sn1 − Sbj ), Z + (Sn2 − Sak)) (3.13)
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with Z d= Sak − Sbj , so that Z, Sn1 − Sbj , Sn2 − Sak are independent. Then as in (2.6)

EB(Dj ×Dk) = E
∑

n1∈Dj ,n2∈Dk

pbj−n1+n2−ak(Z). (3.14)

Note that since X1 is symmetric its characteristic function φ(λ) is real so that φ2(λ) ≥ 0. Thus
for any m

sup
x
p2m(x) = sup

x

1
2π

∫
eiλ·xφ2m(λ) dλ ≤ 1

2π

∫
φ2m(λ) dλ = p2m(0) (3.15)

and supx p2m+1(x) = supx
∑

y p1(y)p2m(x− y) ≤ p2m(0). Then using (3.14) we have

EB(Dj ×Dk) ≤ 2
∑

n1∈Dj ,n2∈Dk

(pbj−n1+n2−ak(0) + pbj−n1+n2−ak−1(0)). (3.16)

As in the proof of (2.4) we then have that

EB(Dj ×Dk) ≤ cn/l. (3.17)

Hence,

Bn − EBn (3.18)

=
l∑

i=1

[
B(D∗

i )− EB(D∗
i )
]
+

∑
1≤j<k≤l

B(Dj ×Dk)− E
∑

1≤j<k≤l
B(Dj ×Dk)

=
l∑

i=1

[
B(D∗

i )− EB(D∗
i )
]
+

∑
1≤j<k≤l

B(Dj ×Dk) +O(n)

where the last line follows from (3.17).

Write
ξi(n, x, ε) =

∑
k∈Di

fε(b−1
n n)1/2(Sk − x). (3.19)

Then ∑
x∈Z2

l2(n, x, ε) =
l∑

i=1

∑
x∈Z2

ξ2i (n, x, ε) + 2
∑

1≤j≤k≤l

∑
x∈Z2

ξj(n, x, ε)ξk(n, x, ε). (3.20)

Therefore, by (3.18) ∣∣∣(Bn − EBn)−
1
2

∑
x∈Z2

l2(n, x, ε)
∣∣∣ (3.21)

≤
l∑

i=1

∣∣B(D∗
i )− EB(D∗

i )
∣∣+ 1

2

l∑
i=1

∑
x∈Z2

ξ2i (n, x, ε)

+
∑

1≤j<k≤l

∣∣∣B(Dj ×Dk)−
∑
x∈Z2

ξj(n, x, ε)ξk(n, x, ε)
∣∣∣+O(n).

The proof of Theorem 3.1 is completed in the next two lemmas.
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Lemma 3.2. For any θ > 0,

lim sup
n→∞

1
bn

log E exp
{
θ

√
bn
n

( l∑
i=1

∑
x∈Z2

ξ2i (n, x, ε)
)1/2}

(3.22)

≤ l−1 1
2
κ(2, 2)4θ2 det(Γ)−1/2

and

lim sup
n→∞

1
bn

log E exp
{
θ

√
bn
n

( l∑
i=1

∣∣B(D∗
i )− EB(D∗

i )
∣∣)1/2}

≤ l−1Hθ2, (3.23)

where

H =
(

sup
{
λ > 0; sup

n
E exp

{
λ

1
n
|Bn − EBn|

}
<∞

})−1

. (3.24)

Proof. Replacing θ by θ/
√
l, n by n/l, and bn by b∗n = bln (notice that b∗n/l = bn)

lim sup
n→∞

1
bn

log E exp
{
θ

√
bn
n

( ∑
x∈Z2

ξ2i (n, x, ε)
)1/2}

(3.25)

= lim sup
n→∞

1
b∗n/l

log E exp
{
θ√
l

√
b∗n/l

n/l

( ∑
x∈Z2

ξ2i (n, x, ε)
)1/2}

Applying Jensen’s inequality on the right hand side of (3.7),∫
R2

|g2 ∗ fε(x)|2 =
∫

R2

[ ∫
R2

g2(x− y)fε(y) dy
]2
dx

≤
∫ ∫

g4(x− y)fε(y) dy dx =
∫
fε(y)

[ ∫
g4(x− y) dx

]
dy

=
[ ∫

g4(x) dx
] ∫

fε(y) dy =
∫

R2

g4(y) dy.

Combining the last two displays with (3.7) we have that

lim sup
n→∞

1
bn

log E exp
{
θ

√
bn
n

( ∑
x∈Z2

ξ2i (n, x, ε)
)1/2}

(3.26)

≤ sup
g∈F2

{
θ√
l

(∫
R2

|g(x)|4dx
)1/2

− 1
2

∫
R2

〈∇g(x),Γ∇g(x)〉dx
}

= l−1θ2 det(Γ)−1/2 sup
h∈F2

{(∫
R2

|h(x)|4dx
)1/2

− 1
2

∫
R2

|∇h(x)|2dx
}

=
1
2
l−1 det(Γ)−1/2κ(2, 2)4θ2,
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where the third line follows from the substitution g(x) =
√
|det(A)|f(Ax) with a 2× 2 matrix

A satisfying

AτΓA =
1
2
l−1θ2 det(Γ)−1/2I2 (3.27)

and the last line of(8, Lemma A.2 ); here I2 is the 2× 2 identity matrix.

Given δ > 0, there exist a1 = (a1,1, · · · , a1,l), · · · , am = (am,1, · · · , am,l) in Rl such that
|a1| = · · · = |am| = 1 and

|z| ≤ (1 + δ) max{a1 · z, · · · , am · z}, z ∈ Rl. (3.28)

In particular, with

z =
(( ∑

x∈Z2

ξ21(n, x, ε)
)1/2

, . . . ,

( ∑
x∈Z2

ξ2l (n, x, ε)
)1/2)

(3.29)

we have ( l∑
i=1

∑
x∈Z2

ξ2i (n, x, ε)
)1/2

≤ (1 + δ) max
1≤j≤m

l∑
i=1

aj,i

( ∑
x∈Z2

ξ2i (n, x, ε)
)1/2

. (3.30)

Hence

E exp
{
θ

√
bn
n

( l∑
i=1

∑
x∈Z2

ξ2i (n, x, ε)
)1/2}

(3.31)

≤
m∑
j=1

E exp
{
θ

√
bn
n

(1 + δ)
l∑

i=1

aj,i

( ∑
x∈Z2

ξ2i (n, x, ε)
)1/2}

=
m∑
j=1

l∏
i=1

E exp
{
θ

√
bn
n

(1 + δ)aj,i

( ∑
x∈Z2

ξ2i (n, x, ε)
)1/2}

,

where the last line follows from independence of ‖ξi(n, x, ε)‖L2(Z2), i = 1, . . . , l. Therefore

lim sup
n→∞

1
bn

log E exp
{
θ

√
bn
n

( l∑
k=1

∑
x∈Z2

ξ2k(n, x, ε)
)1/2}

(3.32)

≤ max
1≤j≤m

1
2
l−1κ(2, 2)4(1 + δ)2θ2

( l∑
i=1

a2
j,i

)
=

1
2
l−1 det(Γ)−1/2κ(2, 2)4(1 + δ)2θ2.

Letting δ → 0+ proves (3.22).

By the inequality ab ≤ a2 + b2 we have that

E exp
{
θ

√
bn
n
|Bn − EBn|1/2

}
(3.33)

≤ exp
{
c2θ2bn

}
E exp

{
c−2 1

n
|Bn − EBn|

}
,

1008



and taking c−2 ↑ H−1 we see that for any θ > 0,

lim sup
n→∞

1
bn

log E exp
{
θ

√
bn
n
|Bn − EBn|1/2

}
≤ Hθ2. (3.34)

Notice that for any 1 ≤ i ≤ l,

B(D∗
i )− EB(D∗

i )
d= B#(Di) − EB#(Di). (3.35)

We have

E exp
{
θ

√
bn
n
|B(D∗

i )− EB(D∗
i )|1/2

}
= E exp

{ θ√
l

√
bn
n/l

|B(D∗
i − EB(D∗

i )|1/2
}
.

Replacing θ by θ/
√
l, n by n/l, and bn by b∗n = bln (notice that b∗n/l = bn) gives

lim sup
n→∞

1
bn

log E exp
{
θ

√
bn
n
|B(D∗

i )− EB(D∗
i )|1/2

}
≤ l−1Hθ2. (3.36)

Thus (3.23) follows by the same argument we used to prove (3.22).

Lemma 3.3. For any θ > 0 and any 1 ≤ j < k ≤ l,

lim sup
ε→0+

lim sup
n→∞

1
bn

log E exp
{
θ

√
bn
n

∣∣B(Dj ×Dk)−
∑
x∈Z2

ξj(n, x, ε)ξk(n, x, ε)
∣∣1/2} = 0. (3.37)

Proof. We will exploit the fact that for j < k the random walk during the time interval Dk is
almost independent of its behavior during the time interval Dj . In the next section we will state
and prove Lemma 4.1 which is similar to our Lemma but involves objects defined with respect
to two independent random walks. In the remainder of this section we reduce the proof of our
Lemma to that of Lemma 4.1.

Fix 1 ≤ j < k ≤ l and estimate

B(Dj ×Dk)−
∑
x∈Z2

ξj(n, x, ε)ξk(n, x, ε). (3.38)

Without loss of generality we may assume that v =: [n/l] = #(Dj) = #(Dk). For y ∈ Z2 set

In(y) =
n∑

n1,n2=1

δ(Sn1 , S
′
n2

+ y). (3.39)

Note that In = In(0). By (3.13) we have that

B(Dj ×Dk)
d= Iv(Z) (3.40)

with Z independent of S, S′.

1009



Similarly, we have∑
x∈Z2

ξj(n, x, ε)ξk(n, x, ε)

=
∑
x∈Z2

∑
n1∈Dj ,n2∈Dk

fε(b−1
n n)1/2(Sn1 − x)fε(b−1

n n)1/2(Sn2 − x)

=
∑
x∈Z2

∑
n1∈Dj ,n2∈Dk

fε(b−1
n n)1/2(x)fε(b−1

n n)1/2(Sn2 − Sn1 − x)

=
∑

n1∈Dj ,n2∈Dk

fε(b−1
n n)1/2 ~ fε(b−1

n n)1/2(Sn2 − Sn1)

=
∑

n1∈Dj ,n2∈Dk

fε(b−1
n n)1/2 ~ fε(b−1

n n)1/2((Sn2 − Sak)− (Sn1 − Sbj ) + Z) (3.41)

where
f ~ f(y) =

∑
x∈Z2

f(x)f(y − x) (3.42)

denotes convolution in L1(Z2). It is clear that if f ∈ S(R2) so is f ~ f . For y ∈ Z2, define the
link

Ln,ε(y) =
n∑

n1,n2=1

fε ~ fε(S′n2
− Sn1 + y). (3.43)

By (3.41) we have that ∑
x∈Z2

ξj(n, x, ε)ξk(n, x, ε)
d= Ln,(b−1

n n)1/2ε(Z) (3.44)

with Z independent of S, S′.

Lemma 3.4. Let f ∈ S(R2) with Fourier transform f̂ supported on (−π, π)2. Then for any
r ≥ 1 ∫

e−iλy(fr ~ fr)(y) dy = (f̂(rλ))2, ∀λ ∈ R2. (3.45)

Proof. We have∫
e−iλy(f ~ f)(y) dy =

∑
x∈Z2

f(x)
∫
e−iλyf(y − x) dy (3.46)

= f̂(λ)
∑
x∈Z2

f(x)e−iλx

= f̂(λ)
∑
x∈Z2

(
1

(2π)2

∫
eipxf̂(p) dp

)
e−iλx.

For x ∈ Z2 ∫
eipxf̂(p) dp =

∑
u∈Z2

∫
[−π,π]2

eipxf̂(p+ 2πu) dp (3.47)
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and using Fourier inversion∑
x∈Z2

(∫
eipxf̂(p) dp

)
e−iλx

=
∑
u∈Z2

∑
x∈Z2

(∫
[−π,π]2

eipxf̂(p+ 2πu) dp

)
e−iλx (3.48)

= (2π)2
∑
u∈Z2

f̂(λ+ 2πu).

Thus from (3.46) we find that∫
e−iλyf ~ f(y) dy = f̂(λ)

∑
u∈Z2

f̂(λ+ 2πu). (3.49)

Since f̂r(λ) = f̂(rλ) we see that for any r > 0∫
e−iλy(fr ~ fr)(y) dy = f̂(rλ)

∑
u∈Z2

f̂(rλ+ 2πru). (3.50)

Then if r ≥ 1, using the fact that f̂(λ) is supported in (−π, π)2, we obtain (3.45).

Taking f ∈ S(R2) with f̂(λ) supported in (−π, π)2, Lemma 3.3 will follow from Theorem
4.1 of the next section.

4 Intersections of Random Walks

Let S1(n), S2(n) be independent copies of the symmetric random walk S(n) in Z2 with a finite
second moment.

Let f be a positive symmetric function in the Schwartz space S(R2) with
∫
f dx = 1 and

f̂ supported in (−π, π)2. Given ε > 0, and with the notation of the last section, let us define
the link

In,ε(y) =
n∑

n1,n2=1

f(b−1
n n)1/2ε ~ f(b−1

n n)1/2ε(S2(n2)− S1(n1) + y)) (4.1)

with In,ε = In,ε(0).

Theorem 4.1. For any λ > 0

lim sup
ε→0

lim sup
n→∞

sup
y

(4.2)

1
bn

log E

exp

λ
∣∣∣∣∣In(y)− In,ε(y)

b−1
n n

∣∣∣∣∣
1/2

 = 0.
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Proof of Theorem 4.1. We prove this result by obtaining moment estimates using Fourier
analysis. The fact that f̂ is supported in (−π, π)2 plays a critical role by allowing us to express
both In(y) and In,ε(y) as Fourier integrals over the same region. Compare (4.4), (4.6) and (4.9).

We have

1
b−1
n n

In(y) (4.3)

=
1

b−1
n n

n∑
n1,n2=1

δ(S1(n1), S2(n2) + y)

=
1

b−1
n n(2π)2

n∑
n1,n2=1

[ ∫
[−π,π]2

eip·(S2(n2)+y−S1(n1)) dp

]
where from now on we work modulo ±π. Then by scaling we have

1
b−1
n n

In(y) (4.4)

=
1

(b−1
n n)2(2π)2

n∑
n1,n2=1

[ ∫
(b−1
n n)1/2[−π,π]2

eip·(S2(n2)+y−S1(n1))/(b−1
n n)1/2 dp

]

As in (4.3)-(4.4), using Lemma 3.4, the fact that ε(b−1
n n)1/2 ≥ 1 for ε > 0 fixed and large

enough n, and abbreviating ĥ = ( f̂ )2

1
b−1
n n

In,ε(y) (4.5)

=
1

b−1
n n(2π)2

n∑
n1,n2=1

[ ∫
R2

eip·(S2(n2)+y−S1(n1)) ĥ(ε(b−1
n n)1/2p) dp

]

=
1

(b−1
n n)2(2π)2

n∑
n1,n2=1

[ ∫
R2

eip·(S2(n2)+y−S1(n1))/(b−1
n n)1/2 ĥ(εp) dp

]
.

Using our assumption that ĥ supported in [−π, π]2, and that ε−1 ≤ (b−1
n n)1/2 for ε > 0 fixed

and large enough n, we have that

1
b−1
n n

In,ε(y) (4.6)

=
1

(b−1
n n)2(2π)2

n∑
n1,n2=1[ ∫

ε−1[−π,π]2
eip·(S2(n2)+y−S1(n1))/(b−1

n n)1/2 ĥ(εp) dp
]

=
1

(b−1
n n)2(2π)2

n∑
n1,n2=1[ ∫

(b−1
n n)1/2[−π,π]2

eip·(S2(n2)+y−S1(n1))/(b−1
n n)1/2 ĥ(εp) dp

]
.
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To prove (4.2) it suffices to show that for each λ > 0 we have

sup
y

E

exp

λ
∣∣∣∣∣In(y)− In,ε(y)

b−1
n n

∣∣∣∣∣
1/2

 (4.7)

≤ Cbn(1− Cλεm/4)−1(1 + Cλε1/4b1/2n )eCλ
2ε1/2bn .

for some C <∞ and all ε > 0 sufficiently small.

We begin by expanding

E

exp

λ
∣∣∣∣∣In(y)− In,ε(y)

b−1
n n

∣∣∣∣∣
1/2

 (4.8)

=
∞∑
m=0

λm

m!
E

∣∣∣∣∣ 1
b−1
n n

(In(y)− In,ε(y))

∣∣∣∣∣
m/2


≤
∞∑
m=0

λm

m!

(
E

({
1

b−1
n n

(In(y)− In,ε(y))
}2m

))1/4

By (4.4), (4.6) and the symmetry of S1 we have

E
({

1
b−1
n n

(In(y)− In,ε(y))
}m)

(4.9)

=
1

(b−1
n n)2m(2π)2m

n∑
n1,j ,n2,j=1

j=1,...,m

∫
(b−1
n n)1/2[−π,π]2m

E
(
ei

Pm
j=1 pj ·(S2(n2,j)+y+S1(n1,j))/(b

−1
n n)1/2

) m∏
j=1

(1− ĥ(εpj)) dpj .

Then ∣∣∣∣∣E
({

1
b−1
n n

(In(y)− In,ε(y))
}m) ∣∣∣∣∣ (4.10)

≤ 1
(b−1
n n)2m(2π)2m

n∑
n1,j=1

j=1,...,m

n∑
n2,j=1

j=1,...,m

∫
(b−1
n n)1/2[−π,π]2m∣∣∣∣∣E (eiPm

j=1 pj ·S1(n1,j)/(b
−1
n n)1/2

) ∣∣∣∣∣∣∣∣∣∣E (eiPm
j=1 pj ·S2(n2,j)/(b

−1
n n)1/2

) ∣∣∣∣∣
m∏
j=1

|1− ĥ(εpj)| dpj .
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By the Cauchy-Schwarz inequality∫
(b−1
n n)1/2[−π,π]2m

∣∣∣∣∣E (eiPm
j=1 pj ·S1(n1,j)/(b

−1
n n)1/2

) ∣∣∣∣∣ (4.11)∣∣∣∣∣E (eiPm
j=1 pj ·S2(n2,j)/(b

−1
n n)1/2

) ∣∣∣∣∣
m∏
j=1

|1− ĥ(εpj)| dpj

≤
2∏
i=1

{∫
(b−1
n n)1/2[−π,π]2m∣∣∣∣∣E (eiPm

j=1 pj ·S(ni,j)/(b
−1
n n)1/2

) ∣∣∣∣∣
2 m∏
j=1

|1− ĥ(εpj)| dpj


1/2

. (4.12)

Thus ∣∣∣∣∣E
({

1
b−1
n n

(In(y)− In,ε(y))
}m) ∣∣∣∣∣

1/2

(4.13)

≤
n∑

nj=1

j=1,...,m

1
(b−1
n n)m(2π)m

{∫
(b−1
n n)1/2[−π,π]2m

∣∣∣∣∣E (eiPm
j=1 pj ·S(nj)/(b

−1
n n)1/2

) ∣∣∣∣∣
2 m∏
j=1

|1− ĥ(εpj)| dpj


1/2

For any permutation ψ of {1. . . . ,m} let

Dm(ψ) = {(n1, . . . , nm)| 1 ≤ nψ(1) ≤ · · · ≤ nψ(m) ≤ n}. (4.14)

Using the (non-disjoint) decomposition

{1, . . . , n}m =
⋃
π

Dm(ψ)

we have from (4.13) that∣∣∣∣∣E
({

1
b−1
n n

(In(y)− In,ε(y))
}m) ∣∣∣∣∣

1/2

(4.15)

≤
∑
ψ

∑
Dm(ψ)

1
(b−1
n n)m(2π)m

{∫
(b−1
n n)1/2[−π,π]2m∣∣∣∣∣E (eiPm

j=1 pj ·S(nj)/(b
−1
n n)1/2

) ∣∣∣∣∣
2 m∏
j=1

|1− ĥ(εpj)| dpj


1/2

.

where the first sum is over all permutations ψ of {1. . . . ,m}.
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Set
φ(u) = E

(
eiu·S(1)

)
. (4.16)

It follows from our assumptions that φ(u) ∈ C2, ∂
∂ui
φ(0) = 0 and ∂2

∂ui∂uj
φ(0) =

−E
(
S(i)(1)S(j)(1)

)
where S(1) = (S(1)(1), S(2)(1)) so that for some δ > 0

φ(u) = 1− E
(
(u · S(1))2

)
/2 + o(|u|2), |u| ≤ δ. (4.17)

Then for some c1 > 0
|φ(u)| ≤ e−c1|u|

2
, |u| ≤ δ. (4.18)

Strong aperiodicity implies that |φ(u)| < 1 for u 6= 0 and u ∈ [−π, π]2. In particular, we can
find b < 1 such that |φ(u)| ≤ b for δ ≤ |u| and u ∈ [−π, π]2. But clearly we can choose c2 > 0
so that b ≤ e−c2|u|

2
for u ∈ [−π, π]2. Setting c = min(c1, c2) > 0 we then have

|φ(u)| ≤ e−c|u|
2
, u ∈ [−π, π]2. (4.19)

On Dm(ψ) we can write

m∑
j=1

pj · S(nj) =
m∑
j=1

(
m∑
i=j

pψ(i))(S(nψ(j))− S(nψ(j−1))). (4.20)

Hence on Dm(ψ)

E
(
ei

Pm
j=1 pj ·S(nj)/(b

−1
n n)1/2

)
=

m∏
j=1

φ((
m∑
i=j

pψ(i))/(b
−1
n n)1/2)(nψ(j)−nψ(j−1)). (4.21)

Now it is clear that

∑
Dm(ψ)

{∫
(b−1
n n)1/2[−π,π]2m

(4.22)

∣∣∣∣∣
m∏
j=1

φ((
m∑
i=j

pψ(i))/(b
−1
n n)1/2)(nψ(j)−nψ(j−1))

∣∣∣∣∣
2 m∏
j=1

|1− ĥ(εpj)| dpj


1/2

=
∑

1≤nψ(1)≤···≤nψ(m)≤n

{∫
(b−1
n n)1/2[−π,π]2m∣∣∣∣∣

m∏
j=1

φ((
m∑
i=j

pψ(i))/(b
−1
n n)1/2)(nψ(j)−nψ(j−1))

∣∣∣∣∣
2 m∏
j=1

|1− ĥ(εpj)| dpj


1/2

is independent of the permutation ψ. Hence writing

uj =
m∑
i=j

pi (4.23)

1015



we have from (4.15) that∣∣∣∣∣E
({

1
b−1
n n

(In(y)− In,ε(y))
}m) ∣∣∣∣∣

1/2

(4.24)

≤ m!
∑

1≤n1≤···≤nm≤n

1
(b−1
n n)m(2π)m

{∫
(b−1
n n)1/2[−π,π]2m∣∣∣∣∣

m∏
j=1

φ(uj/(b−1
n n)1/2)(nj−nj−1)

∣∣∣∣∣
2 m∏
j=1

|1− ĥ(εpj)| dpj


1/2

.

For each A ⊆ {2, 3, . . . ,m} we useDm(A) to denote the subset of {1 ≤ n1 ≤ · · · ≤ nm ≤ n}
for which nj = nj−1 if and only if j ∈ A. Then we have∣∣∣∣∣E

({
1

b−1
n n

(In(y)− In,ε(y))
}m) ∣∣∣∣∣

1/2

(4.25)

≤ m!
∑

A⊆{2,3,...,m}

∑
Dm(A)

1
(b−1
n n)m(2π)m

{∫
(b−1
n n)1/2[−π,π]2m∣∣∣∣∣

m∏
j=1

φ(uj/(b−1
n n)1/2)(nj−nj−1)

∣∣∣∣∣
2 m∏
j=1

|1− ĥ(εpj)| dpj


1/2

.

For any u ∈ Rd let ũ denote the representative of u mod (b−1
n n)1/22πZ2 of smallest abso-

lute value. We note that

|−̃u| = |ũ|, and |ũ+ v| = |ũ+ ṽ| ≤ |ũ|+ |ṽ|. (4.26)

Using the periodicity of φ we see that (4.19) implies that for all u

|φ(u/(b−1
n n)1/2)| ≤ e−c|eu|2/(b−1

n n). (4.27)

Then we have that on {1 ≤ n1 ≤ · · · ≤ nm ≤ n}∣∣∣∣∣
m∏
j=1

φ(uj/(b−1
n n)1/2)(nj−nj−1)

∣∣∣∣∣
2

≤
m∏
j=1

e−c|euj |2(nj−nj−1)/(b−1
n n) (4.28)

Using |1− ĥ(εpj)| ≤ cε1/2|pj |1/2 we bound the integral in (4.25) by

cmεm/2
∫

(b−1
n n)1/2[−π,π]2m

m∏
j=1

e−c|euj |2(nj−nj−1)/(b−1
n n)|pj |1/2 dpj . (4.29)

Using (4.23) and (4.26) we have that

m∏
j=1

|pj |1/2 ≤
m∏
j=1

(|ũj |1/2 + |ũj+1|1/2) (4.30)
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and when we expand the right hand side as a sum of monomials we can be sure that no factor
|ũk|1/2 appears more than twice. Thus we see that we can bound (4.29) by

Cmεm/2 max
h(j)

∫
(b−1
n n)1/2[−π,π]2m

m∏
j=1

e−c|euj |2(nj−nj−1)/(b−1
n n)|ũj |h(j)/2 dpj (4.31)

where the max runs over the the set of functions h(j) taking values 0, 1 or 2 and such that∑
j h(j) = m. Here we used the fact that the number of ways to choose the {h(j)} is bounded

by the number of ways of dividing m objects into 3 groups, which is 3m. Changing variables,
we thus need to bound ∫

Λn

m∏
j=1

e−c|euj |2(nj−nj−1)/(b−1
n n)|ũj |h(j)/2 duj (4.32)

where, see (4.23),

Λn = {(u1, . . . , um) |uj − uj+1 ∈ (b−1
n n)1/2[−π, π]2, ∀j}. (4.33)

Let Cn denote the rectangle (b−1
n n)1/2[−π, π]2 and let us call any rectangle of the form

2πk + Cn, where k ∈ Z2, an elementary rectangle. Note that any rectangle of the form v + Cn,
where v ∈ R2, can be covered by 4 elementary rectangles. Hence for any v ∈ R2 and 1 ≤ s ≤ n∫

v+Cn

e
−c s

b−1
n n

|eu|2
|ũ|h/2 du (4.34)

≤ 4
∫
R2

e
−c s

(b−1
n n)

|u|2
|u|h/2 du

≤ C

(
s

b−1
n n

)−(1+h/4)

.

Similarly ∫
v+Cn

|ũ|h/2 du ≤ C(b−1
n n)(1+h/4). (4.35)

We now bound (4.32) by bounding successively the integration with respect to u1, . . . , um.
Consider first the du1 integral, fixing u2, . . . , um. By (4.33) the du1 integral is over the rectangle
u2 + Cn, hence the factors involving u1 can be bounded using (4.34). Proceeding inductively,
using (4.33) when nj − nj−1 > 0 and (4.35) when nj = nj−1, leads to the following bound of
(4.32), and hence of (4.29) on Dm(A):

cmεm/2
∫

(b−1
n n)1/2[−π,π]2m

m∏
j=1

e−c|euj |2(nj−nj−1)/(b−1
n n)|pj |1/2 dpj (4.36)

≤ Cmεm/2
∏
j∈A

(b−1
n n)(1+h(j)/4)

∏
j∈Ac

(
(nj − nj−1)

b−1
n n

)−(1+h(j)/4)

.
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Here Ac means the complement of A in {1, . . . ,m}, so that Ac always contains 1. If Ac =
{i1, . . . , ik} where i1 < · · · < ik we then obtain for the sum in (4.25) over Dm(A), the bound

Cmεm/4 max
h(j)

1
(b−1
n n)m

∏
j∈A

(b−1
n n)(1+h(j)/4) (4.37)

∑
1≤ni1<···<nik≤n

∏
j∈Ac

(
(nj − nj−1)

b−1
n n

)−(1+h(j)/4)/2

Note that
(b−1
n n)(1+h(j)/4)/2

1
b−1
n n

→ 0 as n→∞. (4.38)

Using this to bound the product over j ∈ A, and then bounding the sum by an integral, we can
bound (4.37) by

Cmεm/4 max
h(j)

∑
1≤ni1<···<nik≤n

∏
j∈Ac

(
(nj − nj−1)

b−1
n n

)−(1+h(j)/4)/2 1
b−1
n n

(4.39)

≤ Cmεm/4 max
h(j)

∫
0≤ri1<···<rik≤bn

∏
j∈Ac

(rj − rj−1)−(1/2+h(j)/8) drj

≤ Cmεm/4 max
h(j)

b
P
j∈Ac (1/2−h(j)/8)

n

Γ(
∑

j∈Ac(1/2− h(j)/8))

Using this together with (4.25), but with m replaced by 2m, and the fact that
(2m!)1/2/m! ≤ 2m, we see that (4.7) is bounded by

∞∑
m=0

Cmλmεm/4

 ∑
A⊆{2,3,...,2m}

max
h(j)

b
P
j∈Ac (1/2−h(j)/8)

n

Γ(
∑

j∈Ac(1/2− h(j)/8))

1/2

. (4.40)

We have
∑

A⊆{1,2,3,...,2m} 1 = 22m. Then noting that
∑

j∈Ac(1/2− h(j)/8) is an integer multiple
of 1/8 which is always less than m, we can bound the last line by

∞∑
l=0

( ∞∑
m=l

Cmλmεm/4

)
7∑
j=0

(
b
l+j/8
n

Γ(l + j/8)

)1/2

(4.41)

≤ Cbn

∞∑
l=0

( ∞∑
m=l

Cmλmεm/4

)(
bln

Γ(l)

)1/2

≤ Cbn(1− Cλεm/4)−1
∞∑
l=0

C lλl|ε|l/4bl/2n
(

1
Γ(l)

)1/2

for ε > 0 sufficiently small.
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(4.7) then follows from the fact that for any a > 0

∞∑
l=0

al
(

1
Γ(l)

)1/2

(4.42)

=
∞∑
m=0

(
a2m

(
1

Γ(2m)

)1/2

+ a2m+1

(
1

Γ(2m+ 1)

)1/2
)

≤ C(1 + a)
∞∑
m=0

a2m

(
1

Γ(2m)

)1/2

≤ C(1 + a)eCa
2
.

Remark 4.2. It follows from the proof that in fact for ρ > 0 sufficiently small, for any λ > 0

lim sup
ε→0

lim sup
n→∞

sup
y

(4.43)

1
bn

log E

exp

λ
∣∣∣∣∣In(y)− In,ε(y)

ερ b−1
n n

∣∣∣∣∣
1/2

 = 0.

5 Theorem 1.2: Upper bound for E Bn −Bn

Proof of Theorem 1.2.

We prove (1.10):

− C1 ≤ lim inf
n→∞

b−1
n log P

{
EBn −Bn ≥ (2π)−1 det(Γ)−1/2n log bn

}
≤ lim sup

n→∞
b−1
n log P

{
EBn −Bn ≥ (2π)−1 det(Γ)−1/2n log bn

}
≤ −C2 (5.1)

for any {bn} satisfying (1.8).

In this section we prove the upper bound for (5.1). We will derive this by using an analo-
gous bound for the renormalized self-intersection local time of planar Brownian motion. Let t > 0
and write K = [t−1bn]. Divide [1, n] into K > 1 disjoint subintervals (n0, n1], · · · , (nK−1, nK ],
each of length [n/K] or [n/K] + 1. Notice that

EBn −Bn ≤
K∑
i=1

[
EB

(
(ni−1, ni]2<

)
−B

(
(ni−1, ni]2<

)]
(5.2)

+EBn −
K∑
i=1

EB
(
(ni−1, ni]2<

)
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By (2.39),

K∑
i=1

EB
(
(ni−1, ni]2<

)
=

K∑
i=1

EBni−ni−1 (5.3)

=
K∑
i=1

[ 1
(2π)

√
det Γ

(n/K) log(n/K) +O(n/K)
]

=
1

(2π)
√

det Γ
n log(n/K) +O(n)

With K > 1, the error term can be taken to be independent of t and {bn}. Thus, by (2.39),
there is constant log a > 0 independent of t and {bn} such that

EBn −
K∑
j=1

EB
(
(ni−1, ni]2<

)
(5.4)

≤ 1
(2π)

√
det Γ

n
(

log(t−1bn) + log a
)
.

It is here that we use the condition that E |S1|2+δ <∞ for some δ > 0, needed for (2.39).

By first using Chebyshev’s inequality, then using (5.2), (5.4) and the independence of the
B
(
(ni−1, ni]2<

)
, for any φ > 0,

P
{

EBn −Bn ≥ (2π)−1 det(Γ)−1/2n log bn
}

(5.5)

≤ exp
{
− φbn log bn

}
E exp

{
− 2πφ

√
det Γ

bn
n

(Bn − EBn)
}

≤ exp
{
φbn(log a− log t)

}(
E exp

{
− 2πφ

√
det Γ

bn
n

(B[n/K] − EB[n/K])
})K

By (16, Theorem 1.2),

√
det Γ

bn
n

(B[n/K] − EB[n/K])
d−→ γ̃t, (n→∞) (5.6)

where γ̃t is the renormalized self-intersection local time of planar Brownian motion {Ws} up to
time t. By Lemma 2.5 and the dominated convergence theorem,

E exp
{
− 2πφ

√
det Γ

bn
n

(B[n/K] − EB[n/K])
}
−→ E exp

{
− 2πφtγ̃1

}
, (n→∞) (5.7)

where we used the scaling γ̃t
d= tγ̃1.

Thus,

lim sup
n→∞

b−1
n log P

{
EBn −Bn ≥ (2π)−1 det(Γ)−1/2n log bn

}
(5.8)

≤ φ(log a− log t) +
1
t

log E exp
{
− 2πφtγ̃1

}
= φ log(aφ) +

1
t

log E exp
{
− (φt) log(θt)− 2π(φt)γ̃1

}
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By (2, p. 3233), the limit

C ≡ lim
t→∞

1
t

log E exp
{
− t log t− 2πtγ̃1

}
(5.9)

exists. Hence

lim sup
n→∞

b−1
n log P

{
EBn −Bn ≥ (2π)−1 det(Γ)−1/2n log bn

}
(5.10)

≤ φ log(aφ) + Cφ.

Taking the minimizer φ = a−1e−(1+C) we have

lim sup
n→∞

b−1
n log P

{
EBn −Bn ≥ (2π)−1 det(Γ)−1/2n log bn

}
(5.11)

≤ −a−1e−(1+C).

This proves the upper bound for (5.1).

6 Theorem 1.2: Lower bound for E Bn −Bn

In this section we complete the proof of Theorem 1.2 by proving the lower bound for (5.1). As
before, we will see that the contribution to Bn in the scale of interest to us from i, j near the
diagonal is almost deterministic and therefore will be comparable to EBn. The heart of the
proof of our Theorem is to show that with probability which is not too small the contributions
to Bn from i, j far from the diagonal is not too large. We accomplish this showing that with
probability which is not too small we can assure that the random walk has a drift so that Si 6= Sj
for i, j far apart.

Let Fk = σ{Xi : i ≤ k}. Let us assume for simplicity that the covariance matrix for the
random walk is the identity; routine modifications are all that are needed for the general case.
We write Θ for (2π)−1 det (Γ)−1/2 = (2π)−1. We write D(x, r) for the disc of radius r in Z2

centered at x.

Let K = [bn] and L = n/K. Let us divide {1, 2, . . . , n} into K disjoint contiguous blocks,
each of length strictly between L/2 and 3L/2. Denote the blocks J1, . . . , JK . Let vi = #(Ji),
wi =

∑i
j=1 vj . Let

B(i)
vi =

∑
j,k∈Ji,j<k

δ(Sj , Sk), Ai =
∑

j∈Ji−1,k∈Ji

δ(Sj , Sk). (6.1)

Define the following sets:

Fi,1 = {Swi ∈ D(i
√
L,
√
L/16)},

Fi,2 = {S(Ji) ⊂ [(i− 1)
√
L−

√
L/8, i

√
L+

√
L/8]× [−

√
L/8,

√
L/8]},

Fi,3 = {B(i)
vi − EB(i)

vi ≤ κ1L},

Fi,4 = {
∑
j∈Ji

1D(x,r
√
L)(Sj) ≤ κ2rL for all x ∈ D(i

√
L, 3

√
L), 1/

√
L < r < 2},

Fi,5 = {Ai < κ3L},
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where κ1, κ2, κ3 are constants that will be chosen later and do not depend on K or L. Let

Ci = Fi,1 ∩ Fi,2 ∩ Fi,3 ∩ Fi,4 ∩ Fi,5 (6.2)

and
E = ∩Ki=1Ci. (6.3)

We want to show
P(Ci | Fwi−1) ≥ c1 > 0 (6.4)

on the event C1 ∩ · · · ∩ Ci−1. Once we have (6.4), then

P(∩mi=1Ci) = E
(
P(Cm | Fwm−1);∩m−1

i=1 Ci

)
≥ c1P(∩m−1

i=1 Ci), (6.5)

and by induction
P(E) = P(∩Ki=1Ci) ≥ cK1 = eK log c1 = e−c2K . (6.6)

On the set E, we see that S(Ji) ∩ S(Jj) = ∅ if |i− j| > 1. So we can write

Bn =
K∑
k=1

(B(k)
vk

− EB(k)
vk

) +
K∑
k=1

EB(k)
vk

+
K∑
k=1

Ak. (6.7)

On the event E, each B
(k)
vk − EB(k)

vk is bounded by κ1L and each Ak is bounded by κ3L. By
(2.38), each EB(k)

vk = Θvk log vk +O(L) = Θvk logL+O(vk). Therefore

Bn ≤ κ1KL+ ΘKL logL+O(n) + κ3KL, (6.8)

and using (2.38) again,

EBn −Bn ≥ Θn log n− c3n−Θn log(n/bn) (6.9)
= Θn log bn − c3n

on the event E. We conclude that

P(EBn −Bn ≥ Θn log bn − c3n) ≥ e−c2bn . (6.10)

We apply (6.10) with bn replaced by b′n = c4bn, where Θ log c4 = c3. Then

Θn log b′n − c3n = Θn log bn + Θn log c4 − c3n = Θn log bn. (6.11)

We then obtain

P(EBn −Bn ≥ Θn log bn) = P(EBn −Bn ≥ Θn log b′n − c3n) ≥ e−c2b
′
n , (6.12)

which would complete the proof of the lower bound for (5.1), hence of Theorem 1.2.

So we need to prove (6.4). By scaling and the support theorem for Brownian motion (see
(1, Theorem I.6.6)), if Wt is a planar Brownian motion and |x| ≤

√
L/16, then

Px
(
Wvi ∈ D(

√
L,
√
L/16) and (6.13)

{Ws; 0 ≤ s ≤ vi} ⊂ [−
√
L/8, 9

√
L/8]× [−

√
L/8,

√
L/8]

)
> c5,
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where c5 does not depend on L. Using Donsker’s invariance principle for random walks with
finite second moments together with the Markov property,

P(Fi,1 ∩ Fi,2 | Fwi−1) > c6. (6.14)

By Lemma 2.3, for L/2 ≤ ` ≤ 3L/2

P(B` − EB` > κ1L) ≤ c6/2 (6.15)

if we choose κ1 large enough. Again using the Markov property,

P(Fi,1 ∩ Fi,2 ∩ Fi,3 | Fwi−1) > c6/2. (6.16)

Now let us look at Fi,4. By (17, p. 75), P(Sj = y) ≤ c7/j with c7 independent of y ∈ Z2

so that

P(Sj ∈ D(x, r
√
L)) =

∑
y∈D(x,r

√
L)

P(Sj = y) ≤ c8r
2L

j
. (6.17)

Therefore

E
∑
j∈J1

1D(x,r
√
L)(Sj) ≤

[2L]∑
j=1

P(Sj ∈ D(x, r
√
L)) (6.18)

≤ r2L+
[2L]∑
j=r2L

c9r
2L

j

≤ r2L+ c10Lr
2 log(1/r) ≤ c11Lr

2 log(1/r)

if 1/
√
L ≤ r ≤ 2. Let Cm =

∑
j<m 1D(x,r

√
L)(Sj) for m ≤ [2L] + 1 and let Cm = C[2L]+1 for

m > L. By the Markov property and independence,

E [C∞ − Cm | Fm] ≤ 1 + E [C∞ − Cm+1 | Fm] (6.19)
≤ 1 + E SmC∞ ≤ c12Lr

2 log(1/r).

By (1, Theorem I.6.11), we have

E exp
(
c13

C[2L]+1

c12Lr2 log(1/r)

)
≤ c14 (6.20)

with c13, c14 independent of L or r. We conclude

P
(∑
j∈J1

1D(x,r
√
L)(Sj) > c15Lr

2 log(1/r)
)
≤ c16e

−c17c15 . (6.21)

Suppose 2−s ≤ r < 2−s+1 for some s ≥ 0. If x ∈ D(0, 3
√
L), then each point in the disc

D(x, r
√
L) will be contained in D(xi, 2−s+3

√
L) for some xi, where each coordinate of xi is an

integer multiple of 2−s−2
√
L. There are at most c1822s such balls, and Lr2 log(1/r) ≤ c192s/2Lr,

so

P
(

sup
x∈D(0,3

√
L),2−s≤r<2−s+1

∑
j∈J1

1D(x,r
√
L)(Sj) > c20rL

)
≤ c2122se−c22c202s/2 . (6.22)
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If we now sum over positive integers s and take κ2 = c20 large enough, we see that

P(F c1,4) ≤ c6/4. (6.23)

By the Markov property, we then obtain

P(Fi,1 ∩ Fi,2 ∩ Fi,3 ∩ Fi,4 | Fwi−1) > c6/4. (6.24)

Finally, we examine Fi,5. We will show

P(F ci,5 | Fwi−1) ≤ c6/8 (6.25)

on the set ∩i−1
j=1Cj if we take κ3 large enough. By the Markov property, it suffices to show

P
( [2L]∑
j=1

1(Sj∈G) ≥ κ3L
)
≤ c6/8 (6.26)

whenever G ∈ Z2 is a fixed nonrandom set consisting of [2L] points satisfying the property that

#(G ∩D(x, r
√
L)) ≤ κ2rL, x ∈ D(0, 3

√
L), 1/

√
L ≤ r ≤ 2. (6.27)

We compute the expectation of

[2L]∑
j=1

1(Sj∈G∩(D(0,2−k
√
L)\D(0,2−k+1

√
L))). (6.28)

When j ≤ 2−2kL, then the fact that the random walk has finite second moments implies that
the probability that |Sj | exceeds 2−k+1

√
L is bounded by c23j/(2−2k+2L). When j > 2−2kL, we

use (17, p. 75), and obtain

P(Sj ∈ G ∩ (D(0, 2−k
√
L) ≤ c24

κ22−kL
j

. (6.29)

So

E
[2L]∑
j=1

1G(Sj) (6.30)

≤
∑
k

∑
[2L]≥j>2−2kL

c24
κ22−kL

j
+
∑
k

∑
j≤2−2kL

c23
j

2−2k+2L

≤
∑
k

(c25κ2k2−kL+ c262−2kL) ≤ c27L.

So if take κ3 large enough, we obtain (6.26).

This completes the proof of (6.4), hence of Theorem 1.2.
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7 Laws of the iterated logarithm

7.1 Proof of the LIL for Bn − E Bn

First, let Sj , S′j be two independent copies of our random walk. Let

`(n, x) =
n∑
i=1

δ(Si , x), `′(n, x) =
n∑
i=1

δ(S′i , x) (7.1)

and note that

Ik,n =
k∑
i=1

n∑
j=1

δ(Si, S′j) =
∑
x∈Z2

`(k, x)`′(n, x). (7.2)

Lemma 7.1. There exist constants c1, c2 such that

P(Ik,n > λ
√
kn) ≤ c1e

−c2λ. (7.3)

Proof. Clearly

(Ik,n)m =
∑
x1∈Z2

· · ·
∑

xm∈Z2

( m∏
i=1

`(k, xi)
)( m∏

i=1

`′(n, xi)
)

(7.4)

Using the independence of S and S′,

E ((Ik,n)m) =
∑
x1∈Z2

· · ·
∑

xm∈Z2

E
( m∏
i=1

`(k, xi)
)
E
( m∏
i=1

`′(n, xi)
)
. (7.5)

By Cauchy-Schwarz, this is less than[ ∑
x1∈Z2

· · ·
∑

xm∈Z2

(
E
( m∏
i=1

`(k, xi)
))2]1/2

(7.6)

[ ∑
x1∈Z2

· · ·
∑

xm∈Z2

(
E
( m∏
i=1

`′(n, xi)
))2]1/2

=: J1/2
1 J

1/2
2 .

We can rewrite

J1 =
∑
x1∈Z2

· · ·
∑

xm∈Z2

E
( m∏
i=1

`(k, xi)
)
E
( m∏
i=1

`′(k, xi)
)

= E ((Ik)m) , (7.7)

and similarly J2 = E ((In)m).
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Therefore,

E exp(aIk,n/
√
kn) (7.8)

=
∞∑
m=0

am

km/2nm/2m!
E ((Ik,n)m)

≤
∑
m

am

km/2nm/2m!
(E ((Ik)m))1/2(E ((In)m))1/2

≤
(∑ am

m!
E
(Ik
k

)m)1/2(∑ am

m!
E
(In
n

)m)1/2

≤
(
E eaIk/k

)1/2(
E eaIn/n

)1/2
.

By Lemma 2.2 this can be bounded independently of k and n if a is taken small, and our result
follows.

We are now ready to prove the upper bound for the LIL for Bn − EBn. Write Ξ for√
det Γ κ(2, 2)−4. Recall that for any integrable random variable Z we let Z denote Z − EZ.

Let ε > 0 and let q > 1 be chosen later. Our first goal is to get an upper bound on

P( max
n/2≤k≤n

Bk > (1 + ε)Ξ−1n log log n).

Let m0 = 2N , where N will be chosen later to depend only on ε and n. Let A0 be the integers
of the form n− km0 that are contained in {n/4, . . . , n}. For each i let Ai be the set of integers
of the form n − km02−i that are contained in {n/4, . . . , n}. Given an integer k, let kj be the
largest element of Aj that is less than or equal to k. For any k ∈ {n/2, . . . , n}, we can write

Bk = Bk0 + (Bk1 −Bk0) + · · ·+ (BkN −BkN−1
). (7.9)

If Bk ≥ (1 + ε)Ξ−1n log log n for some n/2 ≤ k ≤ n, then either
(a) Bk0 ≥ (1 + ε

2)Ξ−1n log log n for some k0 ∈ A0; or else
(b) for some i ≥ 1 and some pair of consecutive elements ki, k′i ∈ Ai, we have

Bk′i
−Bki ≥ ε

40i2
Ξ−1n log log n. (7.10)

For each k0, using Theorem 1.1 and the fact that k0 ≥ n/4, the probability in (a) is
bounded by

exp(−(1 + ε
4) log log k0) ≤ c1(log n)−(1+ ε

4
). (7.11)

There are at most n/m0 elements of A0, so the probability in (a) is bounded by

n

m0

c1

(log n)1+
ε
4

. (7.12)

Now let us examine the probability in (b). Fix i for the moment. Any two consecutive
elements of Ai are 2−im0 apart. Recalling the notation (2.16) we can write

Bk −Bj = B([j + 1, k]2<) +B([1, j]× [j + 1, k]), (7.13)
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So

P(Bk −Bj ≥ ε
40i2

Ξ−1n log log n) ≤ P(B([j + 1, k]2<) ≥ ε
80i2

Ξ−1n log log n)

+P
(
B([1, j]× [j + 1, k]) ≥ ε

80i2
Ξ−1n log log n

)
. (7.14)

We bound the first term on the right by Lemma 2.3, and get the bound

exp
(
− cε

80i2
n log log n

2−im0

)
≤ exp

(
− cε

80i2
2i(n/m0) log log n

)
(7.15)

if j and k are consecutive elements of Ai. Note that B([1, j] × [j + 1, k]) is equal in law to
Ij−1,k−j . Using Lemma 7.1, we bound the second term on the right hand side of (7.14) by

c1 exp
(
− c2

ε

80i2
n log log n√
2−im0

√
j

)
≤ c1 exp

(
− c2

ε

80i2
2i/2(n/m0)1/2 log log n

)
. (7.16)

The number of pairs of consecutive elements of Ai is less than 2i+1(n/m0). So if we add (7.15)
and (7.16) and multiply by the number of pairs, the probability of (b) occurring for a fixed i is
bounded by

c3
n

m0
2i exp

(
− c42i/2(n/m0)1/2 log log n/(80i2)

)
. (7.17)

If we now sum over i ≥ 1, we bound the probability in (b) by

c5
n

m0
exp

(
− c6(n/m0)1/2 log log n

)
. (7.18)

We now choose m0 to be the largest power of 2 so that c6(n/m0)1/2 > 2; recall n is big.

Let us use this value of m0 and combine (7.12) and (7.18). Let n` = q` and

C` = { max
n`−1≤k≤n`

Bk ≥ (1 + ε)Ξ−1n` log log n`}. (7.19)

By our estimates, P(C`) is summable, so for ` large, by Borel-Cantelli we have

max
n`−1≤k≤n`

Bk ≤ (1 + ε)Ξ−1n` log log n`. (7.20)

By taking q sufficiently close to 1, this implies that for k large we haveBk ≤ (1+2ε)Ξ−1k log log k.
Since ε is arbitrary, we have our upper bound.

The lower bound for the first LIL is easier. Let δ > 0 be small and let n` = [e`
1+δ

]. Let

D` = {B([n`−1 + 1, n`]2<) ≥ (1− ε)Ξ−1n` log log n`}. (7.21)

Using Theorem 1.1, and the fact that n`/(n` − n`−1) is of order 1, we see that
∑

` P(D`) = ∞
if δ < ε/(1− ε). The D` are independent, so by Borel-Cantelli

B([n`−1 + 1, n`]2<) ≥ (1− ε)Ξ−1n` log log n` (7.22)
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infinitely often with probability one. Note that as in (7.13) we can write

Bn` = B([n`−1 + 1, n`]2<) +Bn`−1
+B([1, n`−1]× [n`−1 + 1, n`]). (7.23)

By the upper bound,

lim sup
`→∞

Bn`−1

n`−1 log log n`−1
≤ Ξ−1

almost surely, which implies

lim sup
`→∞

Bn`−1

n` log log n`
= 0. (7.24)

Since B([1, n`−1]× [n`−1 + 1, n`]) ≥ 0 and by (2.5)

EB([1, n`−1]× [n`−1 + 1, n`]) ≤ c1
√
n`−1

√
n` − n`−1 = o(n` log log n`), (7.25)

using (7.22)-(7.25) yields the lower bound.

7.2 LIL for E Bn −Bn

Let ∆ = 2π
√

det Γ. Let us write Jn = EBn −Bn.

First we do the upper bound. Let m0, Ai, and kj be as in the previous subsection. We
write, for n/2 ≤ k ≤ n,

Jk = Jk0 + (Jk1 − Jk0) + · · ·+ (JkN − JkN−1
). (7.26)

If maxn/2≤k≤n Jk ≥ (1 + ε)∆−1n log log log n, then either
(a) Jk0 ≥ (1 + ε

2)∆−1n log log log n for some k0 ∈ A0, or else
(b) for some i ≥ 1 and ki, k′i consecutive elements of Ai we have

Jk′i − Jki ≥
ε

40i2
∆−1n log log log n. (7.27)

There are at most n/m0 elements of A0. Using Theorem 1.2, the probability of (a) is
bounded by

c1
n

m0
e−(1+ ε

4
) log logn. (7.28)

To estimate the probability in (b), suppose j and k are consecutive elements of Ai. There
are at most 2i+1(n/m0) such pairs. We have

Jk − Jj = −B([j + 1, k]2<)−B([1, j]× [j + 1, k]) (7.29)
≤ −B([j + 1, k]2<) + EB([1, j]× [j + 1, k])

≤ −B([j + 1, k]2<) + c2
√
j
√
k − j,

as in the previous subsection. Provided n is large enough, c2
√
j
√
k − j = c2

√
j
√

2−im0

will be less than ε
80i2

∆−1n log log log n for all i. So in order for Jk − Jj to be larger than
ε

40i2
∆−1n log log log n, we must have −B([j + 1, k]2<) larger than ε

80i2
∆−1n log log log n. We use
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Theorem 1.2 to bound this. Then multiplying by the number of pairs and summing over i, the
probability is (b) is bounded by

∞∑
i=1

2i+1 n

m0
e
− ε

80i2
n

2−im0
log logn ≤ c3

n

m0
e−c4(n/m0) log logn. (7.30)

We choose m0 to be the largest possible power of 2 such that c4(n/m0) > 2.

Combining (7.28) and (7.30), we see that if we set q > 1 close to 1, n` = [q`], and

E` = { max
n`/2≤k≤n`

Jk ≥ (1 + ε)∆−1n` log log log n`}, (7.31)

then
∑

` P(E`) is finite. So by Borel-Cantelli, the event E` happens for a last time, almost surely.
Exactly as in the previous subsection, taking q close enough to 1 and using the fact that ε is
arbitrary leads to the upper bound.

The proof of the lower bound is fairly similar to the previous subsection. Let n` = [e`
1+δ

].
Theorem 1.2 and Borel-Cantelli tell us that F` will happen infinitely often, where

F` = {−B([n`−1 + 1, n`]2<) ≥ (1− ε)∆−1n` log log log n`}. (7.32)

We have
Jn` ≥ −B([n`−1 + 1, n`]2<) + Jn`−1

−A(1, n`−1;n`−1, n`). (7.33)

By the upper bound,

Jn`−1
= O(n`−1 log log log n`−1) = o(n` log log log n`). (7.34)

By Lemma 7.1,

P(B([1, n`−1]× [n`−1 + 1, n`]) ≥ εn` log log log n`) ≤ c1 exp
(
− c2

εn` log log log n`√
n`−1

√
n` − n`−1

)
. (7.35)

This is summable in `, so

lim sup
`→∞

B([1, n`−1]× [n`−1 + 1, n`])
n` log log log n`

≤ ε (7.36)

almost surely. This is true for every ε, so the limsup is 0. Combining this with (7.34) and
substituting in (7.33) completes the proof.

Acknowledgment. We thank Peter Mörters for pointing out an error in the proof of Lemma
2.2 in a previous version.
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local d’intersection. Comm. Math. Phys., 104 (1986), 471–507. MR840748

14. J.-F. Le Gall, Wiener sausage and self intersection local times. J. Funct. Anal. 88 (1990)
299–341. MR1038444

15. U. Mansmann, The free energy of the Dirac polaron, an explicit solution. Stochastics and
Stochastic Reports 34 (1991) 93–125. MR1104424

16. J. Rosen, Exponential asymptotics and law of the iterated logarithm for intersection local
times of random walks, Ann. Probab. 18 (1990) 959–977.

17. F. Spitzer, Principles of Random Walk, Van Nostrand, Princeton, New Jersey (1964).

18. S. R. S. Varadhan. Appendix to Euclidean quantum field theory by K. Symanzyk. In R. Jost,
editor, Local Quantum Theory. Academic Press, Reading, MA, 1969.

19. M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates. Comm.
Math. Phys. 87 (1982/83) 567–576. MR691044

1030

http://www.ams.org/mathscinet-getitem?mr=2135310
http://www.ams.org/mathscinet-getitem?mr=2165582
http://www.ams.org/mathscinet-getitem?mr=2120241
http://www.ams.org/mathscinet-getitem?mr=1434118
http://www.ams.org/mathscinet-getitem?mr=1358079
http://www.ams.org/mathscinet-getitem?mr=2094445
http://www.ams.org/mathscinet-getitem?mr=2031226
http://www.ams.org/mathscinet-getitem?mr=2165257
http://www.ams.org/mathscinet-getitem?mr=1634904
http://www.ams.org/mathscinet-getitem?mr=840748
http://www.ams.org/mathscinet-getitem?mr=1038444
http://www.ams.org/mathscinet-getitem?mr=1104424
http://www.ams.org/mathscinet-getitem?mr=691044

	 Introduction
	 Preliminary Estimates
	 Proof of Theorem 1.1
	Intersections of Random Walks
	Theorem 1.2: Upper bound for EBn-Bn
	Theorem 1.2: Lower bound for EBn-Bn
	 Laws of the iterated logarithm
	Proof of the LIL for Bn-EBn
	 LIL for EBn-Bn

	References

