AN ALMOST SURE INVARIANCE PRINCIPLE FOR THE RANGE OF PLANAR RANDOM WALKS

By Richard F. Bass ${ }^{1}$ and Jay Rosen ${ }^{2}$
University of Connecticut and City University of New York

For a symmetric random walk in Z^{2} with $2+\delta$ moments, we represent $|\mathcal{R}(n)|$, the cardinality of the range, in terms of an expansion involving the renormalized intersection local times of a Brownian motion. We show that for each $k \geq 1$

$$
(\log n)^{k}\left[\frac{1}{n}|\mathcal{R}(n)|+\sum_{j=1}^{k}(-1)^{j}\left(\frac{1}{2 \pi} \log n+c_{X}\right)^{-j} \gamma_{j, n}\right] \rightarrow 0 \quad \text { a.s., }
$$

where W_{t} is a Brownian motion, $W_{t}^{(n)}=W_{n t} / \sqrt{n}, \gamma_{j, n}$ is the renormalized intersection local time at time 1 for $W^{(n)}$ and c_{X} is a constant depending on the distribution of the random walk.

1. Introduction. Let $S_{n}=X_{1}+\cdots+X_{n}$ be a random walk in Z^{2}, where X_{1}, X_{2}, \ldots are symmetric i.i.d. vectors in Z^{2}. We assume that the X_{i} have $2+\delta$ moments for some $\delta>0$ and covariance matrix equal to the identity. We assume further that the random walk S_{n} is strongly aperiodic in the sense of Spitzer ([23], page 42). The range $\mathcal{R}(n)$ of the random walk S_{n} is the set of sites visited by the walk up to step n :

$$
\begin{equation*}
\mathcal{R}(n)=\left\{S_{0}, \ldots, S_{n-1}\right\} . \tag{1.1}
\end{equation*}
$$

As usual, $|\mathscr{R}(n)|$ denotes the cardinality of the range up to step n.
Dvoretzky and Erdös [6] show that for nearest-neighbor symmetric random walks

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \log n \frac{|\mathcal{R}(n)|}{n}=2 \pi \quad \text { a.s. } \tag{1.2}
\end{equation*}
$$

An error in [6] was corrected by Jain and Pruitt [11]. Le Gall [12] has obtained a central limit theorem for the second-order fluctuations of $|\mathcal{R}(n)|$:

$$
\begin{equation*}
(\log n)^{2}\left(\frac{|\mathcal{R}(n)|-E(|\mathscr{R}(n)|)}{n}\right) \xrightarrow{d}-(2 \pi)^{2} \gamma_{2}(1) \tag{1.3}
\end{equation*}
$$

[^0]where \xrightarrow{d} denotes convergence in law and $\gamma_{2}(t)$ is the second-order renormalized self-intersection local time for planar Brownian motion. See also [15].

In this paper we prove an a.s. asymptotic expansion for $|\mathscr{R}(n)|$ to any order of accuracy. In order to state our result we first introduce some notation. If $\left\{W_{t} ; t \geq 0\right\}$ is a planar Brownian motion, we define the j th-order renormalized intersection local time for $\left\{W_{t} ; t \geq 0\right\}$ as follows. $\gamma_{1}(t)=t, \alpha_{1, \varepsilon}(t)=t$ and for $k \geq 2$

$$
\begin{align*}
\alpha_{k, \varepsilon}(t) & =\int_{0 \leq t_{1} \leq \cdots \leq t_{k}<t} \prod_{i=2}^{k} p_{\varepsilon}\left(W_{t_{i}}-W_{t_{i-1}}\right) d t_{1} \cdots d t_{k}, \tag{1.4}\\
\gamma_{k}(t) & =\lim _{\varepsilon \rightarrow 0} \sum_{l=1}^{k}\binom{k-1}{l-1}\left(-u_{\varepsilon}\right)^{k-l} \alpha_{l, \varepsilon}(t), \tag{1.5}
\end{align*}
$$

where $p_{t}(x)$ is the density for W_{t} and

$$
u_{\varepsilon}=\int_{0}^{\infty} e^{-t} p_{t+\varepsilon}(0) d t
$$

Renormalized self-intersection local time was originally studied by Varadhan [24] for its role in quantum field theory. In [21] we show that $\gamma_{k}(t)$ can be characterized as the continuous process of zero quadratic variation in the decomposition of a natural Dirichlet process. For further work on renormalized self-intersection local times see [3, 8, 14, 18, 20].

To motivate our result define the Wiener sausage of radius ε as

$$
\begin{equation*}
\mathcal{W}_{\varepsilon}(0, t)=\left\{x \in R^{2}\left|\inf _{0 \leq s \leq t}\right| x-W_{s} \mid \leq \varepsilon\right\} . \tag{1.6}
\end{equation*}
$$

Letting $m\left(\mathcal{W}_{\varepsilon}(0, t)\right)$ denote the area of the Wiener sausage of radius ε, Le Gall [13] shows that for each $k \geq 1$

$$
(\log n)^{k}\left[m\left(\mathcal{W}_{n^{-1 / 2}}(0,1)\right)+\sum_{j=1}^{k}(-1)^{j}\left(\frac{1}{2 \pi} \log n+c\right)^{-j} \gamma_{j}(1)\right] \rightarrow 0 \quad \text { a.s. }
$$

as $n \rightarrow \infty$ where c is a finite constant. Using the heuristic which associates $\left\{S_{[n t]} / \sqrt{n} ; 0 \leq t \leq 1\right\} \subseteq n^{-1 / 2} Z^{2} \subseteq R^{2}$ with the Brownian motion $\left\{W_{t} ; 0 \leq t \leq 1\right\}$, one would expect (note that space is scaled by $n^{-1 / 2}$) that $\frac{1}{n}|\mathcal{R}(n)|$ will be "close" to $m\left(\mathcal{W}_{n^{-1 / 2}}(0,1)\right)$.

Our main result is the following theorem.

THEOREM 1. Let $S_{n}=X_{1}+\cdots+X_{n}$ be a symmetric, strongly aperiodic random walk in Z^{2} with covariance matrix equal to the identity and with $2+\delta$
moments for some $\delta>0$. On a suitable probability space we can construct $\left\{S_{n} ; n \geq 1\right\}$ and a planar Brownian motion $\left\{W_{t} ; t \geq 0\right\}$ such that for each $k \geq 1$

$$
\begin{align*}
(\log n)^{k}[& \frac{1}{n}|\mathcal{R}(n)| \tag{1.7}\\
& \left.\quad+\sum_{j=1}^{k}(-1)^{j}\left(\frac{1}{2 \pi} \log n+c_{X}\right)^{-j} \gamma_{j}\left(1, W^{(n)}\right)\right] \rightarrow 0 \quad \text { a.s. }
\end{align*}
$$

where the random variables $\gamma_{1}\left(1, W^{(n)}\right), \gamma_{2}\left(1, W^{(n)}\right), \ldots$ are the renormalized self-intersection local times (1.5) with $t=1$ for the Brownian motion $\left\{W_{t}^{(n)}=\right.$ $\left.W_{n t} / \sqrt{n} ; t \geq 0\right\}$,

$$
\begin{equation*}
c_{X}=\frac{1}{2 \pi} \log \left(\pi^{2} / 2\right)+\frac{1}{(2 \pi)^{2}} \int_{[-\pi, \pi]^{2}} \frac{\phi(p)-1+|p|^{2} / 2}{(1-\phi(p))|p|^{2} / 2} d p \tag{1.8}
\end{equation*}
$$

is a finite constant and $\phi(p)=E\left(e^{i p \cdot X_{1}}\right)$ denotes the characteristic function of X_{1}.

Note that the presence of the constant c_{X} shows that the heuristic mentioned before the statement of Theorem 1 does not completely capture the fine structure of $|\mathcal{R}(n)|$. (This can already be observed on the level of (1.3); see [15], (6.r).)

The case of two dimensions is the critical one. For dimensions 3 and higher there are almost sure invariance principles by Hamana [10] (for dimensions 4 and higher) and Bass and Kumagai [4] (for dimension 3) that say that the range, appropriately normalized, is close to a Brownian motion.

We begin our proof in Section 2 where we introduce renormalized intersection local times $\Gamma_{k, \lambda}(n)$ for our random walk. Let ζ be an independent exponential random variable of mean 1 , and set $\zeta_{\lambda}=n$ when $(n-1) \lambda<\zeta \leq \lambda n$. Letting $\left|\mathcal{R}\left(\zeta_{\lambda}\right)\right|$ denote the cardinality of the range of our random walk killed at step ζ_{λ}, we derive an L^{2} asymptotic expansion for $\left|\mathcal{R}\left(\zeta_{\lambda}\right)\right|$ in terms of the $\Gamma_{k, \lambda}\left(\zeta_{\lambda}\right)$ as $\lambda \rightarrow 0$. In Sections 3-5, on a suitable probability space, we construct $\left\{S_{n} ; n \geq 1\right\}$ and a planar Brownian motion $\left\{W_{t} ; t \geq 0\right\}$ and show that in the above L^{2} asymptotic expansion for $\left|\mathcal{R}\left(\zeta_{\lambda}\right)\right|$ we can replace $\lambda \Gamma_{k, \lambda}\left(\zeta_{\lambda}\right)$ by $\gamma_{k}\left(\zeta, W^{\left(\lambda^{-1}\right)}\right)$, the renormalized intersection local times for the planar Brownian motion $\left\{W_{t}^{\left(\lambda^{-1}\right)}=\right.$ $\left.W_{\lambda^{-1}}{ }_{t} / \sqrt{\lambda^{-1}} ; t \geq 0\right\}$. After some preliminaries on renormalized intersection local times for Brownian motion in Section 6, we show in Section 7 how our L^{2} asymptotic expansion for $\left|\mathcal{R}\left(\zeta_{\lambda}\right)\right|$ leads to an a.s. asymptotic expansion. The proof of Theorem 1 is completed in Section 8 by showing how to replace the random time ζ_{λ} by fixed time. The Appendix derives some estimates used in this paper. Our methods obviously owe a great deal to Le Gall [13].
2. Range and random walk intersection local times. We first define the nonrenormalized random walk intersection local times for $k \geq 2$ by

$$
\begin{align*}
I_{k}(n) & =\sum_{0 \leq i_{1} \leq \cdots \leq i_{k}<n} \delta\left(S_{i_{1}}, S_{i_{2}}\right) \cdots \delta\left(S_{i_{k-1}}, S_{i_{k}}\right) \tag{2.1}\\
& =\sum_{x \in Z^{2}} \sum_{0 \leq i_{1} \leq \cdots \leq i_{k}<n} \prod_{j=1}^{k} \delta\left(S_{i_{j}}, x\right)
\end{align*}
$$

where

$$
\delta(i, j)= \begin{cases}1, & \text { if } i=j \\ 0, & \text { otherwise }\end{cases}
$$

is the usual Kronecker delta function. We set $I_{1}(n)=n$ so that also $I_{1}(n)=$ $\sum_{x \in Z^{2}} \sum_{0 \leq i<n} \delta\left(S_{i}, x\right)$. [One might also take as a definition of the intersection local time the quantity $\sum_{0<i_{1}<\cdots<i_{k}<n} \delta\left(S_{i_{1}}, S_{i_{2}}\right) \cdots \delta\left(S_{i_{k-1}}, S_{i_{k}}\right)$. The definition in (2.1) is more convenient for our purposes, and we see by (2.6) that either definition leads to the same value for $\Gamma_{k, \lambda}(n)$.]

Let $q_{n}(x)$ be the transition function for S_{n} and let

$$
\begin{equation*}
G_{\lambda}(x)=\sum_{j=0}^{\infty} e^{-j \lambda} q_{j}(x) \tag{2.2}
\end{equation*}
$$

We will show in Lemma A. 1 below that

$$
\begin{equation*}
g_{\lambda}:=G_{\lambda}(0)=\frac{1}{2 \pi} \log (1 / \lambda)+c_{X}+O\left(\lambda^{\delta} \log (1 / \lambda)\right) \quad \text { as } \lambda \rightarrow 0 \tag{2.3}
\end{equation*}
$$

where c_{X} is defined in (1.8). We show in (A.18) that for any $q>1$

$$
\begin{equation*}
\sum_{x \in Z^{2}}\left(G_{\lambda}(x)\right)^{q}=O\left(\lambda^{-1}\right) \quad \text { as } \lambda \rightarrow 0 \tag{2.4}
\end{equation*}
$$

Note also that

$$
\begin{equation*}
\sum_{x \in Z^{2}} G_{\lambda}(x)=\sum_{j=0}^{\infty} e^{-j \lambda}=\frac{1}{1-e^{-\lambda}} \tag{2.5}
\end{equation*}
$$

We now define the renormalized random walk intersection local times by setting $\Gamma_{1, \lambda}(n)=I_{1}(n)=n$ and for $k \geq 2$

$$
\Gamma_{k, \lambda}(n)=\sum_{0 \leq i_{1} \leq \cdots \leq i_{k}<n}\left\{\delta\left(S_{i_{1}}, S_{i_{2}}\right)-g_{\lambda} \delta\left(i_{1}, i_{2}\right)\right\}
$$

$$
\begin{equation*}
\cdots\left\{\delta\left(S_{i_{k-1}}, S_{i_{k}}\right)-g_{\lambda} \delta\left(i_{k-1}, i_{k}\right)\right\} \tag{2.6}
\end{equation*}
$$

$$
=\sum_{j=1}^{k}\binom{k-1}{j-1}(-1)^{k-j} g_{\lambda}^{k-j} I_{j}(n)
$$

Let ζ be an independent exponential random variable of mean 1 , and set $\zeta_{\lambda}=n$ when $(n-1) \lambda<\zeta \leq \lambda n . \zeta_{\lambda}$ is then a geometric random variable with $P\left(\zeta_{\lambda}>n\right)=e^{-\lambda n}$. Note that $\zeta_{1 / j}=n$ if $(n-1) / j<\zeta \leq n / j$. By $\mathcal{R}\left(\zeta_{\lambda}\right)$ we mean the range of our random walk killed at step ζ_{λ}.

In this section we prove the following lemma.

Lemma 1. For each $k \geq 1$

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0} \lambda g_{\lambda}^{k}\left(\left|\mathcal{R}\left(\zeta_{\lambda}\right)\right|-\sum_{j=1}^{k}(-1)^{j-1} g_{\lambda}^{-j} \Gamma_{j, \lambda}\left(\zeta_{\lambda}\right)\right)=0 \quad \text { in } L^{2} \tag{2.7}
\end{equation*}
$$

Proof. Define

$$
T_{x}=\min \left\{n \geq 0: S_{n}=x\right\}
$$

the first hitting time to x. We will use the fact that

$$
\begin{equation*}
P\left(T_{x}<\zeta_{\lambda}\right)=\frac{G_{\lambda}(x)}{G_{\lambda}(0)} \tag{2.8}
\end{equation*}
$$

which follows from the strong Markov property:

$$
\begin{align*}
G_{\lambda}(x) & =\sum_{j=0}^{\infty} e^{-j \lambda} P\left(S_{j}=x\right) \\
& =\sum_{j=0}^{\infty} \sum_{n=0}^{j} e^{-j \lambda} P\left(S_{j}=x, T_{x}=n\right) \\
& =\sum_{n=0}^{\infty} \sum_{j=n}^{\infty} e^{-n \lambda} P\left(T_{x}=n\right) e^{-(j-n) \lambda} P\left(S_{j}=0\right) \tag{2.9}\\
& =P\left(T_{x}<\zeta_{\lambda}\right) G_{\lambda}(0)
\end{align*}
$$

To prove our lemma we square the expression inside the parentheses in (2.7) and then take expectations. We first show that

$$
\begin{align*}
& E\left(\left|\mathcal{R}\left(\zeta_{\lambda}\right)\right|^{2}\right) \tag{2.10}\\
& \quad=2 \sum_{j=2}^{2 k}(-1)^{j} g_{\lambda}^{-j} \sum_{x, y \in Z^{2}} G_{\lambda}(x)\left(G_{\lambda}(x-y)\right)^{j-1}+O\left(\lambda^{-2} g_{\lambda}^{-(2 k+1)}\right)
\end{align*}
$$

To this end we first note that

$$
\begin{equation*}
\left|\mathcal{R}\left(\zeta_{\lambda}\right)\right|=\sum_{x \in Z^{2}} \mathbb{1}_{\left\{T_{x}<\zeta_{\lambda}\right\}} \tag{2.11}
\end{equation*}
$$

so that

$$
\begin{align*}
E\left(\left|\mathcal{R}\left(\zeta_{\lambda}\right)\right|^{2}\right) & =\sum_{x, y \in Z^{2}} P\left(T_{x}, T_{y}<\zeta_{\lambda}\right) \\
& =\sum_{x \in Z^{2}} P\left(T_{x}<\zeta_{\lambda}\right)+2 \sum_{x \neq y \in Z^{2}} P\left(T_{x}<T_{y}<\zeta_{\lambda}\right) . \tag{2.12}
\end{align*}
$$

Using (2.8) we have that

$$
\begin{equation*}
\sum_{x \in Z^{2}} P\left(T_{x}<\zeta_{\lambda}\right)=\sum_{x \in Z^{2}} \frac{G_{\lambda}(x)}{g_{\lambda}}=\frac{1}{\left(1-e^{-\lambda}\right) g_{\lambda}}=O\left(\lambda^{-1} g_{\lambda}^{-1}\right) \tag{2.13}
\end{equation*}
$$

To evaluate $\sum_{x \neq y \in Z^{2}} P\left(T_{x}<T_{y}<\zeta_{\lambda}\right)$ we first introduce some notation. For any $u \neq v \in Z^{2}$ define inductively

$$
\begin{align*}
A_{u, v}^{1} & =T_{u} \\
A_{u, v}^{2} & =A_{u, v}^{1}+T_{v} \circ \theta_{A_{u, v}^{1}}, \\
A_{u, v}^{3} & =A_{u, v}^{2}+T_{u} \circ \theta_{A_{u, v}^{2}} \tag{2.14}\\
A_{u, v}^{2 k} & =A_{u, v}^{2 k-1}+T_{v} \circ \theta_{A_{u, v}^{2 k-1}}, \\
A_{u, v}^{2 k+1} & =A_{u, v}^{2 k}+T_{u} \circ \theta_{A_{u, v}^{2 k}}
\end{align*}
$$

We observe that for any $x \neq y$

$$
\begin{align*}
& P\left(T_{x}<T_{y}<\zeta_{\lambda}\right) \\
& \quad=P\left(A_{x, y}^{1}<A_{x, y}^{2}<\zeta_{\lambda}\right)-P\left(T_{y}<A_{x, y}^{1}<A_{x, y}^{2}<\zeta_{\lambda}\right) \tag{2.15}\\
& \quad=P\left(A_{x, y}^{2}<\zeta_{\lambda}\right)-P\left(T_{y}<A_{x, y}^{1}<A_{x, y}^{2}<\zeta_{\lambda}\right)
\end{align*}
$$

and

$$
\begin{align*}
& P\left(T_{y}<A_{x, y}^{1}<A_{x, y}^{2}<\zeta_{\lambda}\right) \\
& \quad=P\left(A_{y, x}^{1}<A_{y, x}^{2}<A_{y, x}^{3}<\zeta_{\lambda}\right)-P\left(T_{x}<A_{y, x}^{1}<A_{y, x}^{2}<A_{y, x}^{3}<\zeta_{\lambda}\right) \tag{2.16}\\
& \quad=P\left(A_{y, x}^{3}<\zeta_{\lambda}\right)-P\left(T_{x}<A_{y, x}^{1} ; A_{y, x}^{3}<\zeta_{\lambda}\right)
\end{align*}
$$

Proceeding inductively we find that

$$
\begin{align*}
P\left(T_{x}<T_{y}<\zeta_{\lambda}\right)= & \sum_{j=1}^{k} P\left(A_{x, y}^{2 j}<\zeta_{\lambda}\right)-\sum_{j=1}^{k} P\left(A_{y, x}^{2 j+1}<\zeta_{\lambda}\right) \\
& +P\left(T_{x}<A_{y, x}^{1} ; A_{y, x}^{2 k+1}<\zeta_{\lambda}\right) \tag{2.17}
\end{align*}
$$

Using (2.8) and the strong Markov property we see that

$$
\begin{align*}
P\left(T_{x}<T_{y}<\zeta_{\lambda}\right)= & \sum_{j=1}^{k} g_{\lambda}^{-2 j} G_{\lambda}(x)\left(G_{\lambda}(y-x)\right)^{2 j-1} \\
& -\sum_{j=1}^{k} g_{\lambda}^{-(2 j+1)} G_{\lambda}(y)\left(G_{\lambda}(x-y)\right)^{2 j} \tag{2.18}\\
& +P\left(T_{x}<A_{y, x}^{1} ; A_{y, x}^{2 k+1}<\zeta_{\lambda}\right)
\end{align*}
$$

and that

$$
\begin{align*}
& P\left(T_{x}<A_{y, x}^{1} ; A_{y, x}^{2 k+1}<\zeta_{\lambda}\right) \\
& \quad \leq P\left(A_{x, y}^{2 k+2}<\zeta_{\lambda}\right)=g_{\lambda}^{-(2 k+2)} G_{\lambda}(x)\left(G_{\lambda}(y-x)\right)^{2 k+1} \tag{2.19}
\end{align*}
$$

Equation (2.10) then follows using (2.3) and (2.4).
We next observe that

$$
\begin{align*}
& E\left(I_{n}\left(\zeta_{\lambda}\right) I_{m}\left(\zeta_{\lambda}\right)\right) \tag{2.20}\\
& \quad=\sum_{x, y \in Z^{2}} E\left(\sum_{0 \leq i_{1} \leq \cdots \leq i_{n}<\zeta_{\lambda}} \prod_{j=1}^{n} \delta\left(S_{i_{j}}, x\right) \sum_{0 \leq l_{1} \leq \cdots \leq l_{m}<\zeta_{\lambda}} \prod_{k=1}^{m} \delta\left(S_{l_{k}}, y\right)\right) .
\end{align*}
$$

We can bound the contribution from $x=y$ by

$$
\begin{align*}
& (n+m)!\sum_{x \in Z^{2}} E\left(\sum_{0 \leq i_{1} \leq \cdots \leq i_{n+m}<\zeta_{\lambda}} \prod_{j=1}^{n+m} \delta\left(S_{i_{j}}, x\right)\right) \tag{2.21}\\
& \quad=(n+m)!\sum_{x \in Z^{2}} \sum_{0 \leq i_{1} \leq \cdots \leq i_{n+m}<\infty} E\left(\prod_{j=1}^{n+m} \delta\left(S_{i_{j}}, x\right)\right) e^{-\lambda i_{n+m}} \\
& \quad=(n+m)!\sum_{x \in Z^{2}} G_{\lambda}(x) G_{\lambda}^{n+m-1}(0) .
\end{align*}
$$

By (2.3) and (2.5) the contribution to (2.20) from $x=y$ is $O\left(\lambda^{-1} g_{\lambda}^{n+m}\right)$, and by (2.6) such terms make a contribution to $E\left(\Gamma_{n, \lambda}\left(\zeta_{\lambda}\right) \Gamma_{m, \lambda}\left(\zeta_{\lambda}\right)\right)$ which is $O\left(\lambda^{-1} g_{\lambda}^{n+m}\right)$.

On the other hand

$$
\begin{gather*}
\sum_{x \neq y \in Z^{2}} E\left(\sum_{0 \leq i_{1} \leq \cdots \leq i_{n}<\zeta_{\lambda}} \prod_{j=1}^{n} \delta\left(S_{i_{j}}, x\right) \sum_{0 \leq l_{1} \leq \cdots \leq l_{m}<\zeta_{\lambda}} \prod_{k=1}^{m} \delta\left(S_{l_{k}}, y\right)\right) \\
=\sum_{x \neq y \in Z^{2}} \sum_{\pi} E\left(\sum_{0 \leq i_{1} \leq \cdots \leq i_{n+m}<\zeta_{\lambda}} \prod_{j=1}^{n+m} \delta\left(S_{i_{j}}, \pi(j)\right)\right), \tag{2.23}
\end{gather*}
$$

where the inner sum runs over all maps $\pi:\{1,2, \ldots, n+m\} \mapsto\{x, y\}$ such that $\left|\pi^{-1}(x)\right|=m,\left|\pi^{-1}(y)\right|=n$. Thus

$$
\begin{align*}
& \sum_{x \neq y \in Z^{2}} E\left(\sum_{0 \leq i_{1} \leq \cdots \leq i_{n}<\zeta_{\lambda}} \prod_{j=1}^{n} \delta\left(S_{i_{j}}, x\right) \sum_{0 \leq l_{1} \leq \cdots \leq l_{m}<\zeta \lambda} \prod_{k=1}^{m} \delta\left(S_{l_{k}}, y\right)\right) \\
& =\sum_{x \neq y \in Z^{2}} \sum_{\pi} \sum_{0 \leq i_{1} \leq \cdots \leq i_{n+m}<\infty} E\left(\prod_{j=1}^{n+m} \delta\left(S_{i_{j}}, \pi(j)\right)\right) e^{-\lambda i_{n+m}} \tag{2.24}\\
& =\sum_{x \neq y \in Z^{2}} \sum_{j} \prod_{j=1}^{n+m} G_{\lambda}(\pi(j)-\pi(j-1)),
\end{align*}
$$

where $\pi(0)=0$. When we look at the definition (2.6) of $\Gamma_{k, \lambda}(n)$ we see that the effect of replacing $I_{n}\left(\zeta_{\lambda}\right) I_{m}\left(\zeta_{\lambda}\right)$ in (2.22) by $\Gamma_{n, \lambda}\left(\zeta_{\lambda}\right) \Gamma_{m, \lambda}\left(\zeta_{\lambda}\right)$ is to eliminate all maps π in which $\pi(j)=\pi(j-1)$ for some j. For example, if $\pi(1)=x$ and $\pi(2)=x$, the contributions from the two terms in $\left\{\delta\left(S_{i_{1}}, S_{i_{2}}\right)-g_{\lambda} \delta\left(i_{1}, i_{2}\right)\right\}$ will cancel, but if $\pi(1)=x$ and $\pi(2)=y$, then there will be no contribution from $g_{\lambda} \delta\left(i_{1}, i_{2}\right)$.

Thus, up to an error which is $O\left(\lambda^{-1} g_{\lambda}^{n+m}\right)$ (which comes from $x=y$), we have

$$
\begin{align*}
& E\left(\Gamma_{n, \lambda}\left(\zeta_{\lambda}\right) \Gamma_{m, \lambda}\left(\zeta_{\lambda}\right)\right) \\
& \quad= \begin{cases}2 \sum_{x, y \in Z^{2}} G_{\lambda}(x)\left(G_{\lambda}(y-x)\right)^{2 n-1}, & \text { if } m=n, \\
\sum_{x, y \in Z^{2}} G_{\lambda}(x)\left(G_{\lambda}(y-x)\right)^{2 n-1 \pm 1}, & \text { if } m=n \pm 1, \\
0, & \text { otherwise. }\end{cases} \tag{2.25}
\end{align*}
$$

Consequently up to errors which are $O\left(\lambda^{-1} g_{\lambda}^{2 k}\right)$

$$
\begin{align*}
& E\left(\left\{\sum_{j=1}^{k}(-1)^{j-1} g_{\lambda}^{-j} \Gamma_{j, \lambda}\left(\zeta_{\lambda}\right)\right\}^{2}\right) \\
&= \sum_{n, m=1}^{k}(-1)^{n+m} g_{\lambda}^{-(n+m)} E\left(\Gamma_{n, \lambda}\left(\zeta_{\lambda}\right) \Gamma_{m, \lambda}\left(\zeta_{\lambda}\right)\right) \\
&= 2 \sum_{n=1}^{k} g_{\lambda}^{-2 n} \sum_{x, y \in Z^{2}} G_{\lambda}(x)\left(G_{\lambda}(y-x)\right)^{2 n-1} \tag{2.26}\\
& \quad-2 \sum_{n=2}^{k} g_{\lambda}^{-(2 n-1)} \sum_{x, y \in Z^{2}} G_{\lambda}(x)\left(G_{\lambda}(y-x)\right)^{2 n-2} \\
&= 2 \sum_{j=2}^{2 k}(-1)^{j} g_{\lambda}^{-j} \sum_{x, y \in Z^{2}} G_{\lambda}(x)\left(G_{\lambda}(x-y)\right)^{j-1}
\end{align*}
$$

To handle the cross-product terms we define the random measure on Z_{+}^{n}

$$
\begin{equation*}
\Lambda_{n, y}(B)=\sum_{\left\{0 \leq i_{1} \leq \cdots \leq i_{n}<\zeta \lambda\right\} \cap B} \prod_{j=1}^{n} \delta\left(S_{i_{j}}, y\right) . \tag{2.27}
\end{equation*}
$$

Using the notation $i_{0}=0, i_{n+1}=\zeta_{\lambda}$ we have

$$
\begin{align*}
E\left(\left|\mathcal{R}\left(\zeta_{\lambda}\right)\right| I_{n}\left(\zeta_{\lambda}\right)\right) & =E \sum_{x, y \in Z^{2}} \sum_{0 \leq i_{1} \leq \cdots \leq i_{n} \leq \zeta_{\lambda}} \mathbb{1}_{\left(T_{x}<\zeta_{\lambda}\right)} \prod_{j=1}^{n} \delta\left(S_{i_{j}}, y\right) \\
& =\sum_{x, y \in Z^{2}} \sum_{j=0}^{n} E\left(\Lambda_{n, y}\left(\left\{i_{j} \leq T_{x}<i_{j+1}\right\}\right)\right) . \tag{2.28}
\end{align*}
$$

As above we have that

$$
\begin{align*}
& \Lambda_{n, y}\left(\left\{i_{j} \leq T_{x}<i_{j+1}\right\}\right) \\
& \quad=\Lambda_{n, y}\left(\left\{i_{j}+T_{x} \circ \theta_{i_{j}}<i_{j+1}\right\}\right) \tag{2.29}\\
& \quad \quad-\sum_{l=0}^{j-1} \Lambda_{n, y}\left(\left\{i_{l} \leq T_{x}<i_{l+1} ; i_{j}+T_{x} \circ \theta_{i_{j}}<i_{j+1}\right\}\right)
\end{align*}
$$

and inductively we find that

$$
\begin{align*}
& \sum_{x \neq y \in Z^{2}} \sum_{j=0}^{n} E\left(\Lambda_{n, y}\left(\left\{i_{j} \leq T_{x}<i_{j+1}\right\}\right)\right) \tag{2.30}\\
& \quad=\sum_{x \neq y \in Z^{2}} \sum_{m=1}^{n+1}(-1)^{m-1} \sum_{|A|=m} E\left(\Lambda_{n, y}\left(\bigcap_{j \in A}\left\{i_{j}+T_{x} \circ \theta_{i_{j}}<i_{j+1}\right\}\right)\right),
\end{align*}
$$

where the inner sum runs over all nonempty $A \subseteq\{0,1, \ldots, n\}$. Using (2.8) and the Markov property we see that

$$
\begin{align*}
& \sum_{x \neq y \in Z^{2}} \sum_{j=0}^{n} E\left(\Lambda_{n, y}\left(\left\{i_{j} \leq T_{x}<i_{j+1}\right\}\right)\right) \tag{2.31}\\
& \quad=\sum_{x \neq y \in Z^{2}} \sum_{m=1}^{n+1}(-1)^{m-1} \sum_{|A|=m} g_{\lambda}^{-m} \prod_{j=1}^{n+m} G_{\lambda}\left(\sigma_{A}(j)-\sigma_{A}(j-1)\right),
\end{align*}
$$

where $\sigma_{A}(0)=0$ and $\sigma_{A}(j)$ is the j th element in the ordered set obtained by taking $n y$'s and inserting, for each $l \in A$, an x between the l th and $(l+1)$ st y. Estimating
the contribution from $x=y$ we find that

$$
\begin{align*}
& E\left(\left|\mathcal{R}\left(\zeta_{\lambda}\right)\right| I_{n}\left(\zeta_{\lambda}\right)\right) \\
& \quad=\sum_{x, y \in Z^{2}} \sum_{m=1}^{n+1}(-1)^{m-1} \sum_{|A|=m} g_{\lambda}^{-m} \prod_{j=1}^{n+m} G_{\lambda}\left(\sigma_{A}(j)-\sigma_{A}(j-1)\right) \tag{2.32}\\
& \quad+O\left(\lambda^{-2} g_{\lambda}^{-(2 k+1)}\right)
\end{align*}
$$

Once again we see that the effect of replacing $I_{n}\left(\zeta_{\lambda}\right)$ in (2.32) by $\Gamma_{n, \lambda}\left(\zeta_{\lambda}\right)$ is to eliminate all sets A such that $\sigma_{A}(j)=\sigma_{A}(j-1)$ for some j. Thus we have

$$
\begin{align*}
& E\left(\left|\mathcal{R}\left(\zeta_{\lambda}\right)\right| \Gamma_{n, \lambda}\left(\zeta_{\lambda}\right)\right) \\
&= 2(-1)^{n-1} \sum_{x, y \in Z^{2}} g_{\lambda}^{-n} G_{\lambda}(x)\left(G_{\lambda}(x-y)\right)^{2 n-1} \\
&+(-1)^{n} \sum_{x, y \in Z^{2}} g_{\lambda}^{-(n-1)} G_{\lambda}(x)\left(G_{\lambda}(x-y)\right)^{2 n-2} \tag{2.33}\\
&+(-1)^{n} \sum_{x, y \in Z^{2}} g_{\lambda}^{-(n+1)} G_{\lambda}(x)\left(G_{\lambda}(x-y)\right)^{2 n} \\
&+O\left(\lambda^{-2} g_{\lambda}^{-(2 k+1)}\right)
\end{align*}
$$

Consequently

$$
\begin{align*}
& E\left(\left|\mathcal{R}\left(\zeta_{\lambda}\right)\right| \sum_{n=1}^{k}(-1)^{n-1} g_{\lambda}^{-n} \Gamma_{n, \lambda}\left(\zeta_{\lambda}\right)\right) \\
& =2 \sum_{n=1}^{k} g_{\lambda}^{-2 n} \sum_{x, y \in Z^{2}} G_{\lambda}(x)\left(G_{\lambda}(y-x)\right)^{2 n-1} \\
& \quad-\sum_{n=2}^{k} g_{\lambda}^{-(2 n-1)} \sum_{x, y \in Z^{2}} G_{\lambda}(x)\left(G_{\lambda}(y-x)\right)^{2 n-2} \\
& \quad-\sum_{n=1}^{k} g_{\lambda}^{-(2 n+1)} \sum_{x, y \in Z^{2}} G_{\lambda}(x)\left(G_{\lambda}(y-x)\right)^{2 n} \tag{2.34}\\
& \quad+O\left(\lambda^{-2} g_{\lambda}^{-(2 k+1)}\right) \\
& =2 \sum_{j=2}^{2 k}(-1)^{j} g_{\lambda}^{-j} \sum_{x, y \in Z^{2}} G_{\lambda}(x)\left(G_{\lambda}(x-y)\right)^{j-1} \\
& \quad+O\left(\lambda^{-2} g_{\lambda}^{-(2 k+1)}\right) .
\end{align*}
$$

Our lemma then follows from (2.10), (2.26) and (2.34).
3. Strong approximation in $\boldsymbol{L}^{\mathbf{2}}$. As usual we let $\|X\|_{p}=\left(E|X|^{p}\right)^{1 / p}$.

Lemma 2. Let X be an R^{2}-valued random vector with mean zero and covariance matrix equal to the identity I. Assume that for some $2<p<4$, $E|X|^{p}<\infty$. Given $n \geq 1$ one can construct on a suitable probability space two sequences of independent random vectors X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{n}, where each $X_{i} \stackrel{d}{=} X$ and the Y_{i} 's are standard normal random vectors such that

$$
\left\|\max _{1 \leq k \leq n}\left|\sum_{i=1}^{k}\left(X_{i}-Y_{i}\right)\right|\right\|_{2}=O\left(n^{2 / p-2 / p^{2}}\right)
$$

Proof. Let $x=n^{2 / p-2 / p^{2}}$. By (3.3) of [9] we can find a constant c_{1} and such X_{i} and Y_{i} so that

$$
P\left\{\max _{1 \leq k \leq n}\left|\sum_{i=1}^{k}\left(X_{i}-Y_{i}\right)\right|>x\right\} \leq c_{1} n x^{-p} E|X|^{p}
$$

Write Z_{n} for $\max _{1 \leq k \leq n}\left|\sum_{i=1}^{k}\left(X_{i}-Y_{i}\right)\right|$. By Doob's inequality and Rosenthal's inequality [22],

$$
\left\|Z_{n}\right\|_{p} \leq c_{2}\left\|\sum_{i=1}^{n}\left(X_{i}-Y_{i}\right)\right\|_{p} \leq c_{3} \sqrt{n} .
$$

So using Hölder's inequality

$$
\begin{aligned}
\left\|Z_{n}\right\|_{2} & \leq x+\left\|Z_{n} \mathbb{1}_{\left(Z_{n}>x\right)}\right\|_{2} \\
& \leq x+\left\|Z_{n}\right\|_{p} P\left(Z_{n} \geq x\right)^{1 / 2-1 / p} \\
& \leq x+c_{4} \sqrt{n}\left(\frac{n}{x^{p}}\right)^{1 / 2-1 / p} \\
& =x+c_{4} n^{1-1 / p} x^{1-p / 2} \\
& =c_{5} n^{2 / p-2 / p^{2}}
\end{aligned}
$$

Using the lemma we can readily construct two i.i.d. sequences $\left\{X_{i}\right\}_{i \geq 1}$ and $\left\{Y_{i}\right\}_{i \geq 1}$, where the X_{i} are equal in law to X and the Y_{i} are standard normal, such that for some constant $C>0$ and any $m \geq 0$,

$$
\left\|\max _{2^{m} \leq k<2^{m+1}}\left|\sum_{i=2^{m}}^{k}\left(X_{i}-Y_{i}\right)\right|\right\|_{2} \leq C\left(2^{m}\right)^{2 / p-2 / p^{2}}
$$

We see then that for any $2^{m} \leq[n t]<2^{m+1}$,

$$
\left\|\sum_{i=1}^{[n t]}\left(X_{i}-Y_{i}\right)\right\|_{2} \leq \sum_{j=0}^{m}\left\|\max _{2^{m} \leq k<2^{m+1}}\left|\sum_{i=2^{m}}^{k}\left(X_{i}-Y_{i}\right)\right|\right\|_{2},
$$

which for some $D>0$ is less than or equal to

$$
\sum_{j=0}^{m} C\left(2^{j}\right)^{2 / p-2 / p^{2}} \leq D(n t)^{2 / p-2 / p^{2}}
$$

Now choose a Brownian motion W such that for $m \geq 1$,

$$
W(m)=\sum_{i=1}^{m} Y_{j} .
$$

Noting that

$$
\|W([m t])-W(m t)\|_{2} \leq\left\|\sup _{0 \leq s \leq 1}|W(s)|\right\|_{2}:=M
$$

we see that for any $t>0$

$$
\begin{align*}
\left\|\frac{S([m t])-W(m t)}{\sqrt{m}}\right\|_{2} & \leq D(m t)^{2 / p-2 / p^{2}} m^{-1 / 2}+M m^{-1 / 2} \tag{3.1}\\
& =O\left(m^{\left(2 / p-2 / p^{2}\right)-(1 / 2)}\left(t^{2 / p-2 / p^{2}}+1\right)\right),
\end{align*}
$$

where

$$
S([m t])=\sum_{i \leq[m t]} X_{i}
$$

4. Spatial Hölder continuity for renormalized intersection local times. If $\left\{W_{t} ; t \geq 0\right\}$ is a planar Brownian motion, set $\bar{\alpha}_{1, \varepsilon}(t)=t$ and for $k \geq 2$ and $x=\left(x_{2}, \ldots, x_{k}\right) \in\left(R^{2}\right)^{k-1}$ let

$$
\begin{equation*}
\bar{\alpha}_{k, \varepsilon}(t, x)=\int_{0 \leq t_{1} \leq \cdots \leq t_{k}<t} \prod_{i=2}^{k} p_{\varepsilon}\left(W_{t_{i}}-W_{t_{i-1}}-x_{i}\right) d t_{1} \cdots d t_{k} \tag{4.1}
\end{equation*}
$$

When $x_{i} \neq 0$ for all i and ζ is an independent exponential random variable with mean 1 , the limit

$$
\begin{equation*}
\bar{\alpha}_{k}(\zeta, x)=\lim _{\varepsilon \rightarrow 0} \bar{\alpha}_{k, \varepsilon}(\zeta, x) \tag{4.2}
\end{equation*}
$$

exists. When $x_{i} \neq 0$ for all i set

$$
\begin{equation*}
\overline{\gamma_{k}}(\zeta, x)=\sum_{A \subseteq\{2, \ldots, k\}}(-1)^{|A|}\left(\prod_{i \in A} u^{1}\left(x_{i}\right)\right) \bar{\alpha}_{k-|A|}\left(\zeta, x_{A^{c}}\right), \tag{4.3}
\end{equation*}
$$

where

$$
\begin{equation*}
u^{1}(y)=\int_{0}^{\infty} e^{-t} p_{t}(y) d t \tag{4.4}
\end{equation*}
$$

$p_{t}(x)$ is the density for W_{t} and $x_{A^{c}}=\left(x_{i_{1}}, \ldots, x_{i_{k-|A|}}\right)$ with $i_{1}<i_{2}<\cdots<i_{k-|A|}$ and $i_{j} \in\{2, \ldots, k\}-A$ for each j, that is, the vector $\left(x_{2}, \ldots, x_{k}\right)$ with all terms that have indices in A deleted. In [20] it is shown that for some $\bar{\delta}>0$ and all m

$$
\begin{equation*}
E\left(\left|\overline{\gamma_{k}}(\zeta, x)-\overline{\gamma_{k}}(\zeta, y)\right|^{m}\right) \leq C|x-y|^{\bar{\delta} m} \tag{4.5}
\end{equation*}
$$

As before, set $I_{1}(n)=n$ and for $k \geq 2$ and $x=\left(x_{2}, \ldots, x_{k}\right) \in\left(Z^{2}\right)^{k-1}$ let

$$
\begin{equation*}
\overline{I_{k}}(n, x)=\sum_{0 \leq i_{1} \leq \cdots \leq i_{k}<n} \delta\left(S_{i_{2}}-S_{i_{1}}-x_{2}\right) \cdots \delta\left(S_{i_{k}}-S_{i_{k-1}}-x_{k}\right) \tag{4.6}
\end{equation*}
$$

and for $x \in \sqrt{\lambda}\left(Z^{2}\right)^{k-1}$ let

$$
\begin{equation*}
\bar{\Gamma}_{k, \lambda}(n, x)=\sum_{A \subseteq\{2, \ldots, k\}}(-1)^{|A|} \prod_{i \in A} G_{\lambda}\left(x_{i} / \sqrt{\lambda}\right) \bar{I}_{k-|A|}\left(n, x_{A^{c}} / \sqrt{\lambda}\right) \tag{4.7}
\end{equation*}
$$

Note that $\Gamma_{k, \lambda}(n)=\bar{\Gamma}_{k, \lambda}(n, 0)$.
Lemma 3. For any $j \geq 1$ we can find some $\rho, \bar{\delta}>0$ such that uniformly in $\lambda>0$

$$
\begin{equation*}
\sup _{|y| \leq \lambda \rho} E\left(\left|\lambda \bar{\Gamma}_{j, \lambda}\left(\zeta_{\lambda}, y\right)-\lambda \Gamma_{j, \lambda}\left(\zeta_{\lambda}\right)\right|^{2}\right) \leq C \lambda^{\bar{\delta}} \tag{4.8}
\end{equation*}
$$

Proof. We begin by considering

$$
\begin{equation*}
E\left(\bar{\Gamma}_{k, \lambda}\left(\zeta_{\lambda}, x^{1}\right) \bar{\Gamma}_{k, \lambda}\left(\zeta_{\lambda}, x^{2}\right)\right) \tag{4.9}
\end{equation*}
$$

for $x^{i} \in\left(Z^{2}\right)^{k-1}$.
If h is a function which depends on the variable x, let

$$
\mathscr{D}_{x} h=h(x)-h(0) .
$$

Let $\&$ be the set of all maps $s:\{1,2, \ldots, 2 k\} \mapsto\{1,2\}$ with $\left|s^{-1}(j)\right|=k, 1 \leq j \leq 2$, and let $B_{s}=\{i \mid s(i)=s(i-1)\}$ and $c(i)=|\{j \leq i \mid s(j)=s(i)\}|$.

Using the Markov property as in Lemma 5 of [20] we can then show that

$$
\begin{aligned}
& E\left(\bar{\Gamma}_{k, \lambda}\left(\zeta_{\lambda}, x^{1}\right) \bar{\Gamma}_{k, \lambda}\left(\zeta_{\lambda}, x^{2}\right)\right) \\
& \quad=\sum_{s \in s}\left(\prod_{i \in B_{s}} G_{\lambda}\left(x_{c(i)}^{s(i)} / \sqrt{\lambda}\right)\right) \sum_{\substack{z_{i} \in Z^{2} \\
i=1,2}}\left(\prod_{i \in B_{s}} \mathcal{D}_{x_{c(i)}^{s(i)} / \sqrt{\lambda}}\right) \\
& \quad \begin{array}{l}
10) \\
\quad \times \prod_{i \in B_{s}^{c}} G_{\lambda}\left(z_{s(i)}+\sum_{j=2}^{c(i)} x_{j}^{s(i)} / \sqrt{\lambda}-\left(z_{s(i-1)}+\sum_{j=2}^{c(i-1)} x_{j}^{s(i-1)} / \sqrt{\lambda}\right)\right) .
\end{array} .
\end{aligned}
$$

Fix $s \in \mathcal{S}$ and note then that the corresponding summand will be 0 unless $x_{c(i)}^{s(i)} \neq 0$ for all $i \in B_{s}$. Note that by definition of B_{s}^{c} we necessarily have that the last line in (4.10) is of the form

$$
\begin{equation*}
G_{\lambda}\left(z_{1}\right) \prod_{i \in B_{s}^{c}, i \neq 1} G_{\lambda}\left(z_{1}-z_{2}+a_{i}\right) \tag{4.11}
\end{equation*}
$$

where the a_{i} are linear combinations of x^{1}, x^{2} but do not involve z_{1}, z_{2}. Then we observe that the effect of applying each $\mathscr{D}_{x_{c(i)}^{s(i)} / \sqrt{\lambda}}$ to the product on the last line of (4.10) is to generate a sum of several terms in each of which we have one factor of the form $\mathscr{D}_{x_{c(i)}^{s(i)} / \sqrt{\lambda}} G_{\lambda}$. Thus schematically we can write the contribution of such a term as

$$
\begin{equation*}
\left(\prod_{i \in B_{s}} G_{\lambda}\left(x_{c(i)}^{s(i)} / \sqrt{\lambda}\right)\right) \sum_{z_{i} \in Z^{2}, i=1,2} G_{\lambda}\left(z_{1}\right) \prod_{i \in B_{s}^{c}, i \neq 1} \Delta_{A_{i}} G_{\lambda}\left(z_{1}-z_{2}+a_{i}\right), \tag{4.12}
\end{equation*}
$$

where each $\Delta_{A_{i}}$ is a product of k_{i} difference operators of the form $\Delta_{x_{l}^{j} / \sqrt{\lambda}}$, and we have $\sum_{i \in B_{s}^{c}} k_{i}=\left|B_{s}\right|$. If $B_{s} \neq \varnothing$ and if there is only one term in the last product on the right-hand side of (4.12), it is easily seen that the sum over z_{2} gives 0 . Thus the product contains at least two terms and then by Lemma A. 2 we can see that for some $C<\infty$ and $v>0$ independent of everything

$$
\begin{equation*}
\left|\sum_{z_{i} \in Z^{2}, i=1,2} G_{\lambda}\left(z_{1}\right) \prod_{i \in B_{s}^{c}, i \neq 1} \Delta_{A_{i}} G_{\lambda}\left(z_{1}-z_{2}+a_{i}\right)\right| \leq C \lambda^{-2} \prod_{i \in B_{s}}\left|x_{c(i)}^{s(i)}\right|^{\nu} . \tag{4.13}
\end{equation*}
$$

With these results, we now turn to the bound (4.9). For ease of exposition we use y^{i} to denote the y in the i th factor; in the end we will set $y^{i}=y$. For ease of exposition we assume that y differs from 0 only in the v th coordinate, and we set $a=y_{v}$. (The general case is then easily handled.)

We again use Lemma 5 of [20] to expand

$$
\begin{equation*}
E\left(\left(\bar{\Gamma}_{k, \lambda}\left(\zeta_{\lambda}, y^{1}\right)-\Gamma_{k, \lambda}\left(\zeta_{\lambda}\right)\right)\left(\bar{\Gamma}_{k, \lambda}\left(\zeta_{\lambda}, y^{2}\right)-\Gamma_{k, \lambda}\left(\zeta_{\lambda}\right)\right)\right) \tag{4.14}
\end{equation*}
$$

as a sum of many terms of the form

$$
\begin{align*}
& \sum_{s \in \mathcal{S}}\left(\prod_{i=1}^{2} \mathscr{D}_{y_{v}^{i} / \sqrt{\lambda}}\right)\left(\prod_{i \in B_{s}} G_{\lambda}\left(x_{c(i)}^{s(i)} / \sqrt{\lambda}\right)\right) \sum_{z_{i} \in Z^{2}, i=1,2}\left(\prod_{i \in B_{s}} \mathscr{D}_{x_{c(i)}^{s(i)} / \sqrt{\lambda}}\right) \\
& \quad \times \prod_{i \in B_{s}^{c}} G_{\lambda}\left(z_{s(i)}+\sum_{j=2}^{c(i)} x_{j}^{s(i)} / \sqrt{\lambda}-\left(z_{s(i-1)}+\sum_{j=2}^{c(i-1)} x_{j}^{s(i-1)} / \sqrt{\lambda}\right)\right), \tag{4.15}
\end{align*}
$$

where now x^{i} is variously y^{i} or 0 . For fixed $s \in \&$ we can expand the corresponding term as a sum of terms of the form

$$
\begin{align*}
& \left\{\left(\prod_{k \in F} \mathscr{D}_{y_{v}^{k} / \sqrt{\lambda}}\right)\left(\prod_{i \in B_{s}} G_{\lambda}\left(x_{c(i)}^{s(i)} / \sqrt{\lambda}\right)\right)\right\} \\
& \times \sum_{z_{i} \in Z^{2}, i=1,2}\left(\prod_{k \in F^{c}} \mathscr{D}_{y_{v}^{k} / \sqrt{\lambda}}\right)\left(\prod_{i \in B_{s}} \mathscr{D}_{x_{c(i)}^{s(i)} / \sqrt{\lambda}}\right) \tag{4.16}\\
& \times \prod_{i \in B_{s}^{c}} G_{\lambda}\left(z_{s(i)}+\sum_{j=2}^{c(i)} x_{j}^{s(i)} / \sqrt{\lambda}-\left(z_{s(i-1)}+\sum_{j=2}^{c(i-1)} x_{j}^{s(i-1)} / \sqrt{\lambda}\right)\right),
\end{align*}
$$

where F runs through the subsets of $\{1,2\}$. Note that the first line will be 0 unless for each $k \in F$ we have that $y_{v}^{k}=x_{c(i)}^{s(i)}$ for some $i \in B_{s}$. In particular

$$
\begin{equation*}
|F| \leq\left|B_{s}\right| . \tag{4.17}
\end{equation*}
$$

Using the fact that

$$
\begin{equation*}
G_{\lambda}(x) \leq c \log (1 / \lambda) \tag{4.18}
\end{equation*}
$$

we can bound the first line of (4.16) by $(c \log (1 / \lambda))^{\left|B_{s}\right|}$. As before [see in particular (4.13)], we can obtain the bound

$$
\begin{align*}
& \mid \quad \sum_{z_{i} \in Z^{2}, i=1,2}\left(\prod_{k \in F^{c}} \mathscr{D}_{y_{v}^{k} / \sqrt{\lambda}}\right)\left(\prod_{i \in B_{s}} \mathscr{D}_{x_{c(i)}^{s(i)} / \sqrt{\lambda}}\right) \\
& \quad \times \prod_{i \in B_{s}^{c}} G_{\lambda}\left(z_{s(i)}+\sum_{j=2}^{c(i)} x_{j}^{s(i)} / \sqrt{\lambda}-\left(z_{s(i-1)}+\sum_{j=2}^{c(i-1)} x_{j}^{s(i-1)} / \sqrt{\lambda}\right)\right) \mid \tag{4.19}\\
& \quad \leq c \lambda^{-2} \prod_{k \in F^{c}}\left|y_{v}^{k}\right|^{v} \prod_{i \in B_{s}}\left|x_{c(i)}^{s(i)}\right|^{v} .
\end{align*}
$$

Our lemma then follows using (4.17) which implies that $\left|F^{c}\right|+\left|B_{s}\right| \geq 2$.
5. Approximating intersection local times. The goal of this section is to prove the following lemma.

Lemma 4. We can find a Brownian motion such that for each $j \geq 1$ there exists $\beta>0$ such that

$$
\begin{equation*}
\left\|\lambda \Gamma_{j, \lambda}\left(\zeta_{\lambda}\right)-\gamma_{j}\left(\zeta, \omega_{\lambda-1}\right)\right\|_{2}=O\left(\lambda^{\beta}\right) \tag{5.1}
\end{equation*}
$$

Proof. Let $f(x)$ be a smooth function on R^{2}, supported in the unit disc and with $\int f(x) d x=1$. We set $f_{\varepsilon}(x)=\frac{1}{\varepsilon^{2}} f(x / \varepsilon)$. On the one hand it is easy to see
that if we set $\tilde{u}^{1}\left(f_{\tau}\right)=\int u^{1}(x) f_{\tau}(x) d x$ and

$$
\begin{aligned}
& \widetilde{\gamma}_{k}\left(\zeta, f_{\tau}\right)=\int \bar{\gamma}_{k}(\zeta, x) \prod_{i=2}^{k} f_{\tau}\left(x_{i}\right) d x_{2} \cdots d x_{k} \\
& \widetilde{\alpha}_{j}\left(\zeta, f_{\tau}\right)=\int \bar{\alpha}_{j}(\zeta, x) \prod_{i=2}^{j} f_{\tau}\left(x_{i}\right) d x_{2} \cdots d x_{k}
\end{aligned}
$$

we will have

$$
\begin{equation*}
\tilde{\gamma}_{k}\left(\zeta, f_{\tau}\right)=\sum_{j=1}^{k}\binom{k-1}{j-1}\left(-\widetilde{u}^{1}\left(f_{\tau}\right)\right)^{k-j} \widetilde{\alpha}_{j}\left(\zeta, f_{\tau}\right) \tag{5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{\alpha}_{j}\left(t, f_{\tau}\right)=\int_{0 \leq t_{1} \leq \cdots \leq t_{j}<t} \prod_{i=2}^{j} f_{\tau}\left(W_{t_{i}}-W_{t_{i-1}}\right) d t_{1} \cdots d t_{j} \tag{5.3}
\end{equation*}
$$

On the other hand it follows from (4.5) and Jensen's inequality that

$$
\begin{equation*}
\left\|\tilde{\gamma}_{k}\left(\zeta, f_{\tau}\right)-\gamma_{k}(\zeta)\right\|_{2} \leq C \tau^{\bar{\delta}} \tag{5.4}
\end{equation*}
$$

If we set $\widetilde{G}_{\lambda}\left(f_{\tau}\right)=\sum_{x \in \sqrt{\lambda} Z^{2}} \lambda G_{\lambda}(x / \sqrt{\lambda}) f_{\tau}(x)$,

$$
\widetilde{\Gamma}_{k, \lambda}\left(\zeta_{\lambda}, f_{\tau}\right)=\sum_{x_{2}, \ldots, x_{k} \in \sqrt{\lambda} Z^{2}} \lambda^{k-1} \bar{\Gamma}_{k, \lambda}\left(\zeta_{\lambda}, x\right) \prod_{i=2}^{k} f_{\tau}\left(x_{i}\right)
$$

and

$$
\widetilde{I}_{j}\left(\zeta_{\lambda}, f_{\tau}\right)=\sum_{x_{2}, \ldots, x_{k} \in \sqrt{\lambda} Z^{2}} \lambda^{k-1} \bar{I}_{j}\left(\zeta_{\lambda}, x / \sqrt{\lambda}\right) \prod_{i=2}^{j} f_{\tau}\left(x_{i}\right)
$$

we similarly have

$$
\begin{equation*}
\widetilde{\Gamma}_{k, \lambda}\left(\zeta_{\lambda}, f_{\tau}\right)=\sum_{j=1}^{k}\binom{k-1}{j-1}\left(-\widetilde{G}_{\lambda}\left(f_{\tau}\right)\right)^{k-j} \tilde{I}_{j}\left(\zeta_{\lambda}, f_{\tau}\right) \tag{5.5}
\end{equation*}
$$

It then follows from (4.8) that with $\tau=\lambda^{\rho}$ for $\rho>0$ small

$$
\begin{equation*}
\left\|\lambda \widetilde{\Gamma}_{k, \lambda}\left(\zeta_{\lambda}, f_{\tau}\right)-\lambda \Gamma_{k, \lambda}\left(\zeta_{\lambda}\right)\right\|_{2} \leq C \tau^{\bar{\delta}} \tag{5.6}
\end{equation*}
$$

To complete the proof of Lemma 4 it only remains to show that with $\tau=\lambda^{\rho}$ for $\rho>0$ small

$$
\begin{equation*}
\left\|\lambda \widetilde{\Gamma}_{k, \lambda}\left(\zeta_{\lambda}, f_{\tau}\right)-\widetilde{\gamma}_{k}\left(\zeta, f_{\tau}, \omega_{\lambda-1}\right)\right\|_{2} \leq c \lambda^{\zeta} \tag{5.7}
\end{equation*}
$$

for some $c<\infty$ and $\zeta>0$. Note that

$$
\begin{align*}
\lambda \tilde{I}_{j}\left(\zeta_{\lambda}, f_{\tau}\right) & =\lambda^{k} \sum_{0 \leq t_{1} \leq \cdots \leq t_{j}<\zeta_{\lambda}} \prod_{i=2}^{j} f_{\tau}\left(\sqrt{\lambda}\left(S_{t_{i}}-S_{t_{i-1}}\right)\right) \\
& =\lambda^{k} \sum_{0 \leq t_{1} \leq \cdots \leq t_{j}<\zeta / \lambda} \prod_{i=2}^{j} f_{\tau}\left(\sqrt{\lambda}\left(S_{t_{i}}-S_{t_{i-1}}\right)\right) \tag{5.8}\\
& =\lambda^{k} \int_{0 \leq t_{1} \leq \cdots \leq t_{j}<\zeta / \lambda} \prod_{i=2}^{j} f_{\tau}\left(\sqrt{\lambda}\left(S_{\left[t_{i}\right]}-S_{\left[t_{i-1}\right]}\right)\right) d t_{1} \cdots d t_{j} \\
& =\int_{0 \leq t_{1} \leq \cdots \leq t_{j}<\zeta} \prod_{i=2}^{j} f_{\tau}\left(\sqrt{\lambda}\left(S_{\left[t_{i} / \lambda\right]}-S_{\left[t_{i-1} / \lambda\right]}\right)\right) d t_{1} \cdots d t_{j}
\end{align*}
$$

By (5.2)-(5.8) it suffices to show that for some $\delta^{\prime}>0$ and all sufficiently small τ, λ

$$
\begin{equation*}
\tilde{u}^{1}\left(f_{\tau}\right)=O(\log (1 /|\tau|)), \quad\left|\widetilde{G}_{\lambda}\left(f_{\tau}\right)-\widetilde{u}^{1}\left(f_{\tau}\right)\right| \leq c \tau^{-3} \lambda^{\delta^{\prime}} \tag{5.9}
\end{equation*}
$$

and

$$
\begin{align*}
\left\|\widetilde{\alpha}_{k}\left(\zeta, f_{\tau}, \omega_{\lambda^{-1}}\right)\right\|_{2} & \leq c \tau^{-2(k-1)} \\
\left\|\lambda \tilde{I}_{k, \lambda}\left(\zeta_{\lambda}, f_{\tau}\right)-\widetilde{\alpha}_{k}\left(\zeta, f_{\tau}, \omega_{\lambda-1}\right)\right\|_{2} & \leq c \tau^{-2 k+1} \lambda^{\delta^{\prime}} \tag{5.10}
\end{align*}
$$

The first part of (5.9) follows from the fact that $u^{1}(x)=O(\log (1 /|x|))$; see [13], (2.b). To prove the second part of (5.9), we note that $\sup _{x}\left|\nabla f_{\tau}(x)\right| \leq c \tau^{-3}$, so

$$
\begin{align*}
& \left|\widetilde{G}_{\lambda}\left(f_{\tau}\right)-\tilde{u}^{1}\left(f_{\tau}\right)\right| \\
& \quad=\left|\int_{0}^{\infty} e^{-t} E\left(f_{\tau}\left(\sqrt{\lambda} S_{[t / \lambda]}\right)-f_{\tau}\left(\sqrt{\lambda} W_{t / \lambda}\right)\right) d t\right| \tag{5.11}\\
& \quad \leq c \tau^{-3} \int_{0}^{\infty} e^{-t}\left\|\sqrt{\lambda}\left(S_{[t / \lambda]}-W_{t / \lambda}\right)\right\|_{1} d t
\end{align*}
$$

The second part of (5.9) then follows from the last inequality in Section 3.
The first part of (5.10) follows from the fact that $\sup _{x}\left|f_{\tau}(x)\right| \leq c \tau^{-2}$, so that

$$
\begin{equation*}
\left\|\widetilde{\alpha}_{k}\left(\zeta, f_{\tau}, \omega_{\lambda-1}\right)\right\|_{2}^{2} \leq c \tau^{-2(k-1)} \int_{0}^{\infty} e^{-t} t^{n} d t \tag{5.12}
\end{equation*}
$$

To prove the second part of (5.10), we use the above bounds on $\sup _{x}\left|\nabla f_{\tau}(x)\right|$ and $\sup _{x}\left|f_{\tau}(x)\right|$ to see that

$$
\begin{align*}
& \left\|\lambda \widetilde{I}_{k, \lambda}\left(\zeta_{\lambda}, f_{\tau}\right)-\widetilde{\alpha}_{k}\left(\zeta, f_{\tau}, \omega_{\lambda-1}\right)\right\|_{2}^{2} \\
& \quad \leq c \tau^{-2 k+1} \tag{5.13}\\
& \quad \times \sum_{j=1}^{k} \int_{0}^{\infty} e^{-t}\left(\int_{0 \leq t_{1} \leq \cdots \leq t_{k}<t}\left\|\sqrt{\lambda}\left(S_{\left[t_{j} / \lambda\right]}-W_{t_{j} / \lambda}\right)\right\|_{2}^{2} d t_{1} \cdots d t_{k}\right) d t
\end{align*}
$$

The second part of (5.10) then follows from the last inequality in Section 3.
6. Renormalized Brownian intersection local times. Recall the definition of $\gamma_{k}(t)$ given in (1.5). Note from [13], (2.b) that for some fixed constant c

$$
\begin{equation*}
u_{\varepsilon}=\int_{0}^{\infty} e^{-t} p_{t+\varepsilon}(0) d t=\frac{1}{2 \pi} \log (1 / \varepsilon)+c+O(\varepsilon) \tag{6.1}
\end{equation*}
$$

In [20] we show that the limit in (1.5) exists a.s. and in all L^{p} spaces, and that $\gamma_{k}(t)$ is continuous in t. The rest of this section is basically contained in [13] but we point out that [20] came after [13] and resulted in some simplification.

For any given function $h:(0, \infty) \rightarrow R$ we set $\widehat{\gamma}_{1}(t, h)=t$ and for $k \geq 2$

$$
\begin{equation*}
\widehat{\gamma}_{k}(t, h)=\lim _{\varepsilon \rightarrow 0} \sum_{l=1}^{k}\binom{k-1}{l-1}\left(-h_{\varepsilon}\right)^{k-l} \alpha_{l, \varepsilon}(t), \tag{6.2}
\end{equation*}
$$

where we write h_{ε} for $h(\varepsilon)$. In particular, $\gamma_{k}(t)=\widehat{\gamma}_{k}(t, u)$. Let \mathscr{H} denote the set of functions h such that $\lim _{\varepsilon \rightarrow 0}\left(h_{\varepsilon}-u_{\varepsilon}\right)$ exists and is finite. In the next lemma we will see that the limit in (6.2) exists for all $h \in \mathscr{H}$.

Lemma 5 (Renormalization lemma). Let $h \in \mathscr{H}$. Then $\widehat{\gamma}_{k}(t, h)$ exists for all $k \geq 1$ and if $\bar{h} \in \mathscr{H}$ with $\lim _{\varepsilon \rightarrow 0}\left(h_{\varepsilon}-\bar{h}_{\varepsilon}\right)=b$, then for any $k \geq 1$

$$
\begin{equation*}
\widehat{\gamma}_{k}(t, h)=\sum_{m=1}^{k}\binom{k-1}{m-1}(-b)^{k-m} \widehat{\gamma}_{m}(t, \bar{h}) . \tag{6.3}
\end{equation*}
$$

Proof. Setting $b_{\varepsilon}=h_{\varepsilon}-\bar{h}_{\varepsilon}$ we have

$$
\begin{align*}
\sum_{l=1}^{k} & \binom{k-1}{l-1}\left(-h_{\varepsilon}\right)^{k-l} \alpha_{l, \varepsilon}(t) \\
& =\sum_{l=1}^{k}\binom{k-1}{l-1}\left(-\bar{h}_{\varepsilon}-b_{\varepsilon}\right)^{k-l} \alpha_{l, \varepsilon}(t) \tag{6.4}\\
& =\sum_{l=1}^{k}\binom{k-1}{l-1} \sum_{j=0}^{k-l}\binom{k-l}{j}\left(-b_{\varepsilon}\right)^{j}\left(-\bar{h}_{\varepsilon}\right)^{(k-j)-l} \alpha_{l, \varepsilon}(t)
\end{align*}
$$

Using

$$
\binom{k-1}{l-1}\binom{k-l}{j}=\binom{k-1}{j}\binom{k-j-1}{l-1}
$$

the last line in (6.4) becomes

$$
\begin{equation*}
\sum_{j=0}^{k-1}\binom{k-1}{j}\left(-b_{\varepsilon}\right)^{j} \sum_{l=1}^{k-j}\binom{k-j-1}{l-1}\left(-\bar{h}_{\varepsilon}\right)^{(k-j)-l} \alpha_{l, \varepsilon}(t) \tag{6.5}
\end{equation*}
$$

Taking $\bar{h}_{\varepsilon}=u_{\varepsilon}$ then shows the existence of $\gamma_{k}(t, h)$. Returning to general $\bar{h} \in \mathscr{H}$ and now taking the $\varepsilon \rightarrow 0$ limit, we obtain

$$
\begin{align*}
\widehat{\gamma}_{k}(t, h) & =\sum_{j=0}^{k-1}\binom{k-1}{j}(-b)^{j} \widehat{\gamma}_{k-j}(t, \bar{h}) \\
& =\sum_{m=1}^{k}\binom{k-1}{m-1}(-b)^{k-m} \widehat{\gamma}_{m}(t, \bar{h}), \tag{6.6}
\end{align*}
$$

where the last line follows from the substitution $m=k-j$.

Let $h \in \mathscr{H}$. We shall sometimes write $\widehat{\gamma}_{k}(t, h, \omega)$ for $\widehat{\gamma}_{k}(t, h)$ to emphasize its dependence on the path ω. We want to discuss how renormalized intersection local time changes with a time rescaling. Let $\omega_{r}(s)=r^{-1 / 2} \omega(r s)$. Then $\widehat{\gamma}_{k}\left(t, h, \omega_{r}\right)$ is the same as $\widehat{\gamma}_{k}(t, h)$ defined in terms of the Brownian motion $W_{t}^{(r)}=W_{r t} / \sqrt{r}$.

Lemma 6 (Rescaling lemma). Let $h \in \mathscr{H}$. Then for any $k \geq 1$

$$
\begin{equation*}
\widehat{\gamma}_{k}\left(t, h, \omega_{r}\right)=r^{-1} \sum_{m=1}^{k}\binom{k-1}{m-1}\left(\frac{1}{2 \pi} \log (1 / r)\right)^{k-m} \widehat{\gamma_{m}}(r t, h, \omega) . \tag{6.7}
\end{equation*}
$$

Proof. After replacing ω by ω_{r} the integral on the right-hand side of (6.2) is replaced by

$$
\begin{align*}
& \int_{0 \leq t_{1} \leq \cdots \leq t_{l}<t} \prod_{i=2}^{l} p_{\varepsilon}\left(\frac{W_{r t_{i}}-W_{r t_{i-1}}}{\sqrt{r}}\right) d t_{1} \cdots d t_{l} \\
&=r^{-l} \int_{0 \leq t_{1} \leq \cdots \leq t_{l}<r t} \prod_{i=2}^{l} p_{\varepsilon}\left(\frac{W_{t_{i}}-W_{t_{i-1}}}{\sqrt{r}}\right) d t_{1} \cdots d t_{l} \tag{6.8}\\
&=r^{-1} \int_{0 \leq t_{1} \leq \cdots \leq t_{l}<r t} \prod_{i=2}^{l} p_{r \varepsilon}\left(W_{t_{i}}-W_{t_{i-1}}\right) d t_{1} \cdots d t_{l} .
\end{align*}
$$

Abbreviating this last integral as $\alpha_{l, r \varepsilon}(r t, \omega)$, we have

$$
\begin{equation*}
\widehat{\gamma}_{k}\left(t, h, \omega_{r}\right)=r^{-1} \lim _{\varepsilon \rightarrow 0} \sum_{l=1}^{k}\binom{k-1}{l-1}\left(-h_{\varepsilon}\right)^{k-l} \alpha_{l, r \varepsilon}(r t, \omega) . \tag{6.9}
\end{equation*}
$$

Since $h \in \mathscr{H}$ it is easily seen that $\lim _{\varepsilon \rightarrow 0}\left(h_{\varepsilon}-h_{r \varepsilon}\right)=-\frac{1}{2 \pi} \log (1 / r)$ and our lemma then follows from Lemma 5.
7. Range and Brownian intersection local times. In this section we prove the following theorem.

THEOREM 2. For each $k \geq 1$

$$
\begin{equation*}
g_{\lambda}^{k}\left(\lambda\left|\mathcal{R}\left(\zeta_{\lambda}\right)\right|-\sum_{j=1}^{k}(-1)^{j-1} g_{\lambda}^{-j} \gamma_{j}\left(\zeta, \omega_{\lambda-1}\right)\right) \rightarrow 0 \quad \text { a.s. } \tag{7.1}
\end{equation*}
$$

as $\lambda \rightarrow 0$.
Proof. Using (5.1) together with Lemma 1 and its proof, we see that for some $M_{k}<\infty$

$$
\begin{equation*}
\left\|g_{\lambda}^{4 k+1}\left(\lambda\left|\mathcal{R}\left(\zeta_{\lambda}\right)\right|-\sum_{j=1}^{4 k}(-1)^{j-1} g_{\lambda}^{-j} \gamma_{j}\left(\zeta, \omega_{\lambda-1}\right)\right)\right\|_{2}^{2} \leq M_{k} \tag{7.2}
\end{equation*}
$$

for all $\lambda>0$ sufficiently small.
We now follow [13]. With $\lambda_{n}=e^{-n^{1 / 2 k}}$ we have that for any $\varepsilon>0$

$$
\begin{aligned}
& \sum_{n=1}^{\infty} P\left\{g_{\lambda_{n}}^{k}\left(\lambda_{n}\left|\mathcal{R}\left(\zeta_{\lambda_{n}}\right)\right|-\sum_{j=1}^{4 k}(-1)^{j-1} g_{\lambda_{n}}^{-j} \gamma_{j}\left(\zeta, \omega_{\lambda_{n}^{-1}}\right)\right) \geq g_{\lambda_{n}}^{-1}\right\} \\
& \quad \leq \sum_{n=1}^{\infty} P\left\{g_{\lambda_{n}}^{4 k+1}\left(\lambda_{n}\left|\mathcal{R}\left(\zeta_{\lambda_{n}}\right)\right|-\sum_{j=1}^{4 k}(-1)^{j-1} g_{\lambda_{n}}^{-j} \gamma_{j}\left(\zeta, \omega_{\lambda_{n}^{-1}}\right)\right) \geq g_{\lambda_{n}}^{3 k}\right\} \\
& \quad \leq M_{k} \sum_{n=1}^{\infty} g_{\lambda_{n}}^{-6 k}<\infty
\end{aligned}
$$

Then by Borel-Cantelli

$$
\begin{equation*}
g_{\lambda_{n}}^{k}\left(\lambda_{n}\left|\mathcal{R}\left(\zeta_{\lambda_{n}}\right)\right|-\sum_{j=1}^{4 k}(-1)^{j-1} g_{\lambda_{n}}^{-j} \gamma_{j}\left(\zeta, \omega_{\lambda_{n}^{-1}}\right)\right) \rightarrow 0 \quad \text { a.s. } \tag{7.4}
\end{equation*}
$$

Since for each $m \geq 1$ we have that $\gamma_{j}\left(\zeta, \omega_{\lambda_{n}^{-1}}\right)$ is bounded in L^{m} uniformly in n, then by Chebyshev's inequality with m sufficiently large $P\left(\gamma_{j}\left(\zeta, \omega_{\lambda_{n}^{-1}}\right)>g_{\lambda_{n}}\right)$ will be summable. So we may drop the terms for $j>k$ and we then have

$$
\begin{equation*}
g_{\lambda_{n}}^{k}\left(\lambda_{n}\left|\mathcal{R}\left(\zeta_{\lambda_{n}}\right)\right|-\sum_{j=1}^{k}(-1)^{j-1} g_{\lambda_{n}}^{-j} \gamma_{j}\left(\zeta, \omega_{\lambda_{n}^{-1}}\right)\right) \rightarrow 0 \quad \text { a.s. } \tag{7.5}
\end{equation*}
$$

Before continuing the proof of Theorem 2 we first prove the following lemma.
Lemma 7. For any $k \geq 1$

$$
\begin{equation*}
\lim _{n \rightarrow 0} \sup _{\lambda_{n+1} \leq \lambda \leq \lambda_{n}}\left|\gamma_{k}\left(\zeta, \omega_{\lambda-1}\right)-\gamma_{k}\left(\zeta, \omega_{\lambda_{n}^{-1}}\right)\right|=0 \quad \text { a.s. } \tag{7.6}
\end{equation*}
$$

Proof. By (6.7) for any $k \geq 1$
(7.7) $\gamma_{k}\left(\zeta, \omega_{\lambda-1}\right)=\frac{\lambda}{\lambda_{n}} \sum_{m=1}^{k}\binom{k-1}{m-1}\left(\frac{1}{2 \pi} \log \left(\frac{\lambda}{\lambda_{n}}\right)\right)^{k-m} \gamma_{m}\left(\frac{\lambda_{n}}{\lambda} \zeta, \omega_{\lambda_{n}^{-1}}\right)$.

Hence for any $p \geq 1$

$$
\begin{aligned}
& \left\|\sup _{\lambda_{n+1} \leq \lambda \leq \lambda_{n}}\left|\gamma_{k}\left(\zeta, \omega_{\lambda^{-1}}\right)-\gamma_{k}\left(\zeta, \omega_{\lambda_{n}^{-1}}\right)\right|\right\|_{p} \\
& \leq
\end{aligned} \quad\left\|\sup _{\lambda_{n+1} \leq \lambda \leq \lambda_{n}}\left|\frac{\lambda}{\lambda_{n}} \gamma_{k}\left(\frac{\lambda_{n}}{\lambda} \zeta, \omega_{\lambda_{n}^{-1}}\right)-\gamma_{k}\left(\zeta, \omega_{\lambda_{n}^{-1}}\right)\right|\right\|_{p} .
$$

It follows from (9.11) of [3] that for any $k \geq 1$ we can find $\beta>0$ such that

$$
\begin{equation*}
\left\|\sup _{|t-s| \leq \delta, s, t \leq 1}\left|\gamma_{k}(s)-\gamma_{k}(t)\right|\right\|_{p} \leq c \delta^{\beta} . \tag{7.9}
\end{equation*}
$$

Actually, this is proved for a renormalized intersection local time $\xi_{k}(t)$ where $\xi_{k}(t)=\lim _{x \rightarrow 0} \xi_{k}(t, x)$ and $\xi_{k}(t, x)$ differs from $\overline{\gamma_{k}}(t, x)$ defined in (4.3) in that $u^{1}(x)$ is replaced by $\pi^{-1} \log (1 /|x|)$. Since $u^{1}(x)-\pi^{-1} \log (1 /|x|)=c+$ $O\left(|x|^{2} \log |x|\right)$, see [13], (2.b), we obtain (7.9). Using (6.7) with $r=t^{-1}$ and (7.9) we find that

$$
\begin{align*}
& \left\|\sup _{\lambda_{n+1} \leq \lambda \leq \lambda_{n}}\left|\gamma_{k}\left(\frac{\lambda_{n}}{\lambda} t\right)-\gamma_{k}(t)\right|\right\|_{p} \\
& \quad \leq c t(\log t)^{k}\left|\frac{\lambda_{n}}{\lambda_{n+1}}-1\right|^{\beta} \leq c t(\log t)^{k} n^{-\beta^{\prime}}, \tag{7.10}
\end{align*}
$$

where we have used

$$
\begin{equation*}
\log \frac{\lambda_{n}}{\lambda_{n+1}}=O\left(n^{-1+1 / 2 k}\right) \tag{7.11}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left\|\sup _{\lambda_{n+1} \leq \lambda \leq \lambda_{n}}\left|\gamma_{k}\left(\frac{\lambda_{n}}{\lambda} \zeta\right)-\gamma_{k}(\zeta)\right|\right\|_{p} \leq c n^{-\beta^{\prime \prime}} \tag{7.12}
\end{equation*}
$$

Using (7.8) and (7.12) now shows that

$$
\begin{equation*}
\left\|\sup _{\lambda_{n+1} \leq \lambda \leq \lambda_{n}}\left|\gamma_{k}\left(\zeta, \omega_{\lambda-1}\right)-\gamma_{k}\left(\zeta, \omega_{\lambda_{n}^{-1}}\right)\right|\right\|_{p} \leq c n^{-\beta^{\prime \prime}} \tag{7.13}
\end{equation*}
$$

and our lemma then follows using Hölder's inequality for sufficiently large p and the Borel-Cantelli lemma.

Continuing the proof of Theorem 2, by our choice of λ_{n}

$$
\begin{equation*}
\lim _{n \rightarrow 0} g_{\lambda_{n+1}}^{k}-g_{\lambda_{n}}^{k}=0 \tag{7.14}
\end{equation*}
$$

Together with (7.6) we have that a.s.

$$
\begin{align*}
\lim _{n \rightarrow 0} \sup _{\lambda_{n+1} \leq \lambda \leq \lambda_{n}} & \mid \sum_{j=1}^{k}(-1)^{j-1} g_{\lambda}^{k-j} \gamma_{j}\left(\zeta, \omega_{\lambda-1}\right) \\
& -\sum_{j=1}^{k}(-1)^{j-1} g_{\lambda_{n}}^{k-j} \gamma_{j}\left(\zeta, \omega_{\lambda_{n}^{-1}}\right) \mid=0 \tag{7.15}
\end{align*}
$$

Using the fact that $\left|\mathcal{R}\left(\zeta_{\lambda}\right)\right|$ and g_{λ} are monotone decreasing we have that

$$
\begin{align*}
& \sup _{\lambda_{n+1} \leq \lambda \leq \lambda_{n}}\left|\lambda g_{\lambda}^{k}\right| \mathcal{R}\left(\zeta_{\lambda}\right)\left|-\lambda_{n} g_{\lambda_{n}}^{k}\right| \mathcal{R}\left(\zeta_{\lambda_{n}}\right)| | \\
& \quad \leq\left|\lambda_{n} g_{\lambda_{n+1}}^{k}\right| \mathcal{R}\left(\zeta_{\lambda_{n+1}}\right)\left|-\lambda_{n+1} g_{\lambda_{n}}^{k}\right| \mathcal{R}\left(\zeta_{\lambda_{n}}\right)| | \\
& \leq \\
& \quad \leq\left|\lambda_{n} g_{\lambda_{n+1}}^{k}\right| \mathcal{R}\left(\zeta_{\lambda_{n+1}}\right)\left|-\lambda_{n+1} g_{\lambda_{n+1}}^{k}\right| \mathcal{R}\left(\zeta_{\lambda_{n+1}}\right)| | \tag{7.16}\\
& \quad+\left|\lambda_{n+1} g_{\lambda_{n+1}}^{k}\right| \mathcal{R}\left(\zeta_{\lambda_{n+1}}\right)\left|-\lambda_{n} g_{\lambda_{n}}^{k}\right| \mathcal{R}\left(\zeta_{\lambda_{n}}\right)| | \\
& \quad+\left|\lambda_{n} g_{\lambda_{n}}^{k}\right| \mathcal{R}\left(\zeta_{\lambda_{n}}\right)\left|-\lambda_{n+1} g_{\lambda_{n}}^{k}\right| \mathcal{R}\left(\zeta_{\lambda_{n}}\right)| | \\
& \leq \\
& \quad 2\left|\lambda_{n}-\lambda_{n+1}\right| g_{\lambda_{n+1}}^{k}\left|\mathcal{R}\left(\zeta_{\lambda_{n+1}}\right)\right| \\
& \quad+\left|\lambda_{n+1} g_{\lambda_{n+1}}^{k}\right| \mathcal{R}\left(\zeta_{\lambda_{n+1}}\right)\left|-\lambda_{n} g_{\lambda_{n}}^{k}\right| \mathcal{R}\left(\zeta_{\lambda_{n}}\right)| | \rightarrow 0 \quad \text { a.s. }
\end{align*}
$$

Here the first term on the right-hand side of (7.16) goes to 0 using the fact that

$$
\left|\lambda_{n}-\lambda_{n+1}\right|=\left|1-e^{n^{1 / 2 k}-(n+1)^{1 / 2 k}}\right| \lambda_{n} \leq n^{-1+1 / 2 k} \lambda_{n} \leq 2 n^{-1+1 / 2 k} \lambda_{n+1},
$$

$g_{\lambda_{n+1}}^{k}=(n+1)^{1 / 2}$, (7.5) and the discussion immediately preceding (7.5). The second term on the right-hand side of (7.16) goes to 0 using (7.15) and (7.5). Combining (7.5), (7.15) and (7.16) we have (7.1).
8. Nonrandom times. In this section we complete the proof of Theorem 1. Recall that $\zeta_{\lambda}=n$ if $n-1<\frac{1}{\lambda} \zeta \leq n$. So $\zeta_{\lambda}=\left\lceil\frac{1}{\lambda} \zeta\right\rceil$ where $\lceil x\rceil$ denotes the smallest integer $m \geq x$. Hence (7.1) can be written as

$$
\begin{equation*}
g_{\lambda}^{k}\left(\lambda|\mathcal{R}(\lceil\zeta / \lambda\rceil)|-\sum_{j=1}^{k}(-1)^{j-1} g_{\lambda}^{-j} \gamma_{j}\left(\zeta, \omega_{\lambda-1}\right)\right) \rightarrow 0 \quad \text { a.s. } \tag{8.1}
\end{equation*}
$$

If (Ω, P) denotes our probability space for $\left\{S_{n} ; n \geq 1\right\}$ and $\left\{W_{t} ; t \geq 0\right\}$, then the almost sure convergence in (8.1) is with respect to the measure $e^{-t} d t \times P$ on $R_{+}^{1} \times \Omega$, where $\zeta(t, \omega)=t$. Hence by Fubini's theorem we have that for almost every $t>0$

$$
\begin{equation*}
g_{\lambda}^{k}\left(\lambda|\mathcal{R}(\lceil t / \lambda\rceil)|-\sum_{j=1}^{k}(-1)^{j-1} g_{\lambda}^{-j} \gamma_{j}\left(t, \omega_{\lambda-1}\right)\right) \rightarrow 0 \quad \text { a.s. } \tag{8.2}
\end{equation*}
$$

Fix a t_{0} for which (8.2) holds and let λ run through the sequence t_{0} / n. Then (2.3) and (8.2) tell us that

$$
\begin{equation*}
(\log n)^{k}\left(\frac{t_{0}}{n}|\mathcal{R}(n)|+\sum_{j=1}^{k}\left(-g_{t_{0} / n}\right)^{-j} \gamma_{j}\left(t_{0}, \omega_{n / t_{0}}\right)\right) \rightarrow 0 \quad \text { a.s. } \tag{8.3}
\end{equation*}
$$

Using (6.7) and writing $b_{r}=\frac{1}{2 \pi} \log (1 / r)$ we have that

$$
\begin{align*}
& (\log n)^{k}\left(\frac{t_{0}}{n}|\mathcal{R}(n)|\right. \tag{8.4}\\
& \left.\quad+t_{0} \sum_{j=1}^{k}\left(-g_{t_{0} / n}\right)^{-j} \sum_{m=1}^{j}\binom{j-1}{m-1} b_{1 / t_{0}}^{j-m} \gamma_{m}\left(1, \omega_{n}\right)\right) \rightarrow 0 \quad \text { a.s. }
\end{align*}
$$

Then

$$
\begin{align*}
& \sum_{j=1}^{k}\left(-g_{t_{0} / n}\right)^{-j} \sum_{m=1}^{j}\binom{j-1}{m-1} b_{1 / t_{0}}^{j-m} \gamma_{m}\left(1, \omega_{n}\right) \tag{8.5}\\
& \quad=\sum_{m=1}^{k}\left(\sum_{j=m}^{k}\binom{j-1}{m-1}\left(\frac{-b_{1 / t_{0}}}{g_{t_{0} / n}}\right)^{j-m}\right)\left(-g_{t_{0} / n}\right)^{-m} \gamma_{m}\left(1, \omega_{n}\right)
\end{align*}
$$

Now,

$$
\begin{equation*}
\sum_{j=m}^{k}\binom{j-1}{m-1} x^{j-m}=\sum_{i=0}^{k-m}\binom{i+m-1}{m-1} x^{i}=\left(\frac{1}{1-x}\right)^{m}+O\left(x^{k-m+1}\right) \tag{8.6}
\end{equation*}
$$

By (7.9) with $\delta=1$ we have that $\sup _{t \leq 1}\left|\gamma_{j}(t, \omega)\right|$ is in L^{p} for each p and each $j \geq 1$. If we set $V_{j, \ell}=\sup _{t \leq 1}\left|\gamma_{j}\left(t, \omega_{2} \ell\right)\right|$, we then have, taking p large enough,
that

$$
\sum_{\ell=1}^{\infty} P\left(V_{j, \ell}>\eta \log \left(2^{\ell}\right)\right) \leq \sum_{\ell=1}^{\infty} \frac{E V_{j, \ell}^{p}}{\left(\eta \log 2^{\ell}\right)^{p}}
$$

is summable for each η. Hence by Borel-Cantelli $V_{j, \ell} / \log \left(2^{\ell}\right) \rightarrow 0$ a.s. for each $j \geq 1$. Since by Lemma 6 we have for $2^{\ell} \leq r<2^{\ell+1}$ that $\gamma_{k}\left(1, \omega_{r}\right)$ is bounded by a linear combination of the $V_{j, \ell}, 1 \leq j \leq k$, with coefficients that are bounded independently of r, we conclude

$$
\gamma_{j}\left(1, \omega_{n}\right) / \log n \rightarrow 0 \quad \text { a.s. }
$$

Thus we can replace (8.5) up to errors which are $O(\log n)^{-k-1}$ by

$$
\begin{equation*}
\sum_{m=1}^{k}\left(\frac{-1}{g_{t_{0} / n}+b_{1 / t_{0}}}\right)^{m} \gamma_{m}\left(1, \omega_{n}\right)=\sum_{m=1}^{k}\left(-g_{1 / n}\right)^{-m} \gamma_{m}\left(1, \omega_{n}\right) \tag{8.7}
\end{equation*}
$$

since by (2.3) we have that $g_{t_{0} / n}+b_{1 / t_{0}}=g_{1 / n}+O\left(n^{-\delta}\right)$.
Thus we obtain

$$
\begin{equation*}
(\log n)^{k}\left(\frac{1}{n}|\mathcal{R}(n)|+\sum_{j=1}^{k}\left(-g_{1 / n}\right)^{-j} \gamma_{j}\left(1, \omega_{n}\right)\right) \rightarrow 0 \quad \text { a.s. } \tag{8.8}
\end{equation*}
$$

This, together with (A.2), gives Theorem 1.

APPENDIX

Estimates for random walks. In this appendix we will obtain some estimates for strongly aperiodic planar random walks $S_{n}=\sum_{i=1}^{n} X_{i}$, where the X_{i} are symmetric, have the identity as covariance matrix and have $2+\delta$ moments for some $\delta>0$.

Let

$$
G_{\lambda}(x):=\sum_{n=0}^{\infty} e^{-\lambda n} q_{n}(x)
$$

If

$$
\phi(p)=E\left(e^{i p \cdot X_{1}}\right)
$$

denotes the characteristic function of X_{1}, we have

$$
\begin{equation*}
G_{\lambda}(x)=\frac{1}{(2 \pi)^{2}} \int_{[-\pi, \pi]^{2}} \frac{e^{i p \cdot x}}{1-e^{-\lambda} \phi(p)} d p \tag{A.1}
\end{equation*}
$$

Lemma A.1. Let S_{n} be as above. Then

$$
\begin{equation*}
G_{\lambda}(0)=\frac{1}{2 \pi} \log (1 / \lambda)+c_{X}+O\left(\lambda^{\delta} \log (1 / \lambda)\right) \tag{A.2}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{X}=\frac{1}{2 \pi} \log \left(\pi^{2} / 2\right)+\frac{1}{(2 \pi)^{2}} \int_{[-\pi, \pi]^{2}} \frac{\phi(p)-1+|p|^{2} / 2}{(1-\phi(p))|p|^{2} / 2} d p \tag{A.3}
\end{equation*}
$$ is a finite constant.

Proof. We have

$$
\begin{equation*}
G_{\lambda}(0)=\frac{1}{(2 \pi)^{2}} \int_{[-\pi, \pi]^{2}} \frac{1}{1-e^{-\lambda} \phi(p)} d p \tag{A.4}
\end{equation*}
$$

We intend to compare this with

$$
\frac{1}{(2 \pi)^{2}} \int_{[-\pi, \pi]^{2}} \frac{1}{\lambda+|p|^{2} / 2} d p
$$

whose asymptotics are easier to compute. Indeed,

$$
\begin{align*}
& \int_{[-\pi, \pi]^{2}} \frac{1}{\lambda+|p|^{2} / 2} d p \tag{A.5}\\
& \quad=\int_{D(0, \pi)} \frac{1}{\lambda+|p|^{2} / 2} d p+\int_{[-\pi, \pi]^{2}-D(0, \pi)} \frac{1}{\lambda+|p|^{2} / 2} d p
\end{align*}
$$

where $D(0, \pi)$ is the disc centered at the origin of radius π. It is clear that

$$
\text { (A.6) } \int_{[-\pi, \pi]^{2}-D(0, \pi)} \frac{1}{\lambda+|p|^{2} / 2} d p=\int_{[-\pi, \pi]^{2}-D(0, \pi)} \frac{1}{|p|^{2} / 2} d p+O(\lambda)
$$

On the other hand, using polar coordinates

$$
\begin{equation*}
\int_{D(0, \pi)} \frac{1}{\lambda+|p|^{2} / 2} d p=2 \pi\left(\log \left(\lambda+\pi^{2} / 2\right)-\log (\lambda)\right) . \tag{A.7}
\end{equation*}
$$

Thus

$$
\begin{align*}
& \frac{1}{(2 \pi)^{2}} \int_{[-\pi, \pi]^{2}} \frac{1}{\lambda+|p|^{2} / 2} d p \tag{A.8}\\
& \quad=\frac{1}{2 \pi} \log (1 / \lambda)+\frac{1}{2 \pi} \log \left(\pi^{2} / 2\right)+O(\lambda)
\end{align*}
$$

We then note that

$$
\begin{align*}
& \int_{[-\pi, \pi]^{2}} \frac{1}{1-e^{-\lambda} \phi(p)} d p-\int_{[-\pi, \pi]^{2}} \frac{1}{\lambda+|p|^{2} / 2} d p \\
& \quad=\int_{[-\pi, \pi]^{2}} \frac{\left(\lambda+|p|^{2} / 2\right)-\left(1-e^{-\lambda} \phi(p)\right)}{\left(1-e^{-\lambda} \phi(p)\right)\left(\lambda+|p|^{2} / 2\right)} d p \tag{A.9}
\end{align*}
$$

$$
\begin{aligned}
= & \int_{[-\pi, \pi]^{2}} \frac{\phi(p)-1+|p|^{2} / 2}{\left(1-e^{-\lambda} \phi(p)\right)\left(\lambda+|p|^{2} / 2\right)} d p \\
& -\lambda \int_{[-\pi, \pi]^{2}} \frac{\phi(p)-1}{\left(1-e^{-\lambda} \phi(p)\right)\left(\lambda+|p|^{2} / 2\right)} d p \\
& +\left(e^{-\lambda}-1+\lambda\right) \int_{[-\pi, \pi]^{2}} \frac{\phi(p)}{\left(1-e^{-\lambda} \phi(p)\right)\left(\lambda+|p|^{2} / 2\right)} d p
\end{aligned}
$$

Since
(A.10)

$$
\left|e^{i p \cdot x}-1-i p \cdot x+(p \cdot x)^{2} / 2\right| \leq c(p \cdot x)^{2+\delta}
$$

for some $c<\infty$ we have by our assumptions that

$$
\begin{equation*}
\left|\phi(p)-1+|p|^{2} / 2\right| \leq c^{\prime}|p|^{2+\delta} . \tag{A.11}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
|\phi(p)-1| \leq c^{\prime \prime}|p|^{2} \tag{A.12}
\end{equation*}
$$

for $p \in[-\pi, \pi]^{2}$ and

$$
\begin{equation*}
1-e^{-\lambda} \phi(p) \geq \bar{c}\left(\lambda+|p|^{2}\right) \tag{A.13}
\end{equation*}
$$

for some $\bar{c}>0$ and sufficiently small λ. Hence

$$
\left(e^{-\lambda}-1+\lambda\right) \int_{[-\pi, \pi]^{2}} \frac{|\phi(p)|}{\left(1-e^{-\lambda} \phi(p)\right)\left(\lambda+|p|^{2} / 2\right)} d p
$$

(A.14)

$$
\begin{aligned}
& \leq c \lambda^{2} \int_{[-\pi, \pi]^{2}} \frac{1}{\left(\lambda+|p|^{2}\right)^{2}} d p \\
& \leq c \lambda \int_{[-\pi / \sqrt{\lambda}, \pi \sqrt{\lambda}]^{2}} \frac{1}{\left(1+|p|^{2}\right)^{2}} d p=O(\lambda)
\end{aligned}
$$

and

$$
\lambda \int_{[-\pi, \pi]^{2}} \frac{|\phi(p)-1|}{\left(1-e^{-\lambda} \phi(p)\right)\left(\lambda+|p|^{2} / 2\right)} d p
$$

(A.15)

$$
\begin{aligned}
& \leq c \lambda \int_{[-\pi, \pi]^{2}} \frac{|p|^{2}}{\left(\lambda+|p|^{2}\right)^{2}} d p \\
& \leq c \lambda \int_{[-\pi / \sqrt{\lambda}, \pi \sqrt{\lambda}]^{2}} \frac{|p|^{2}}{\left(1+|p|^{2}\right)^{2}} d p=O(\lambda \log (1 / \lambda))
\end{aligned}
$$

Setting $f(p)=\phi(p)-1+|p|^{2} / 2$ and using (A.11), we see that

$$
\int_{[-\pi, \pi]^{2}} \frac{|f(p)|}{|(1-\phi(p))||p|^{2} / 2} d p<\infty .
$$

Consider then

$$
\begin{aligned}
& \int_{[-\pi, \pi]^{2}} \frac{f(p)}{\left(1-e^{-\lambda} \phi(p)\right)\left(\lambda+|p|^{2} / 2\right)} d p \\
& -\int_{[-\pi, \pi]^{2}} \frac{f(p)}{(1-\phi(p))|p|^{2} / 2} d p \\
& \quad=\int_{[-\pi, \pi]^{2}} \frac{f(p)}{\left(1-e^{-\lambda} \phi(p)\right)\left(\lambda+|p|^{2} / 2\right)} d p
\end{aligned}
$$

(A.16)

$$
\begin{aligned}
& -\int_{[-\pi, \pi]^{2}} \frac{f(p)}{\left(1-e^{-\lambda} \phi(p)\right)|p|^{2} / 2} d p \\
& +\int_{[-\pi, \pi]^{2}} \frac{f(p)}{\left(1-e^{-\lambda} \phi(p)\right)|p|^{2} / 2} d p \\
& -\int_{[-\pi, \pi]^{2}} \frac{f(p)}{(1-\phi(p))|p|^{2} / 2} d p .
\end{aligned}
$$

We have
(A.17)

$$
\begin{aligned}
& \int_{[-\pi, \pi]^{2}} \frac{f(p)}{\left(1-e^{-\lambda} \phi(p)\right)\left(\lambda+|p|^{2} / 2\right)} d p \\
& -\int_{[-\pi, \pi]^{2}} \frac{f(p)}{\left(1-e^{-\lambda} \phi(p)\right)|p|^{2} / 2} d p \\
& \quad=-\int_{[-\pi, \pi]^{2}} \frac{f(p) \lambda}{\left(1-e^{-\lambda} \phi(p)\right)\left(\lambda+|p|^{2} / 2\right)|p|^{2} / 2} d p \\
& \quad=O\left(\lambda^{\delta} \log (1 / \lambda)\right),
\end{aligned}
$$

and the last line in (A.16) can be bounded similarly. This completes the proof of Lemma A.1.

Lemma A.2. Let S_{n} be as above. For all $m \geq 1$

$$
\begin{equation*}
\left\|G_{\lambda}\right\|_{m}=O\left(\lambda^{-1 / m}\right) \quad \text { as } \lambda \rightarrow 0 \tag{A.18}
\end{equation*}
$$

and
(A.19) $\quad\left\|G_{\lambda}-G_{\lambda^{\prime}}\right\|_{m}=O\left(\left|\lambda-\lambda^{\prime}\right|\left(\sqrt{\lambda \lambda^{\prime}}\right)^{-1 / m}\right) \quad$ as $\lambda \rightarrow 0$.

For all $m \geq 2$ and $z \in Z^{2}$

$$
\begin{equation*}
\left\|\Delta_{z / \sqrt{\lambda}} G_{\lambda}\right\|_{m} \leq c^{\prime}|z|^{2 / m} \lambda^{-1 / m}(\log (1 / \lambda))^{1-1 / m} \tag{A.20}
\end{equation*}
$$

and for any $0<\beta<1$

$$
\begin{equation*}
\left\|\Delta_{z / \sqrt{\lambda}} G_{\lambda}\right\|_{m} \leq c^{\prime}|z|^{\beta / m} \lambda^{-1 / m} \tag{A.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\left(\prod_{i=1}^{k} \Delta_{z_{i} / \sqrt{\lambda}}\right) G_{\lambda}\right\|_{m} \leq c^{\prime}\left(\prod_{i=1}^{k}\left|z_{i}\right|^{\beta / m k}\right) \lambda^{-1 / m} \tag{A.22}
\end{equation*}
$$

Proof. By [23], page 77, we know that $q_{n}(x) \leq c_{1} / n$, where q_{n} is the transition probability for S_{n}. So

$$
\left\|q_{n}\right\|_{m}^{m}=\sum_{x \in Z^{2}} q_{n}(x)^{m} \leq c_{1}^{m-1} n^{-m+1} \sum_{z \in Z^{2}} q_{n}(x)=c_{1}^{m-1} n^{-m+1} .
$$

Then

$$
\left\|G_{\lambda}\right\|_{m} \leq \sum_{n=0}^{\infty} e^{-\lambda n}\left\|q_{n}\right\|_{m}
$$

Substituting the above estimate for $\left\|q_{n}\right\|_{m}$ and breaking the sum into the sum over $n \leq 1 / \lambda$ and the sum over $n>1 / \lambda$, we easily obtain (A.18).

Equation (A.19) follows from (A.18) and the resolvent equation

$$
\begin{equation*}
G_{\lambda}-G_{\lambda^{\prime}}=\left(\lambda^{\prime}-\lambda\right) G_{\lambda} * G_{\lambda^{\prime}} \tag{A.23}
\end{equation*}
$$

By Proposition 2.1 of [2], for each $\beta \in(0,1]$ there exists a constant c_{β} such that

$$
\left|q_{n}(x)-q_{n}(y)\right| \leq c_{\beta} n^{-1}(|x-y| / \sqrt{n})^{\beta}
$$

So for any fixed $w \in Z^{2}$

$$
\begin{aligned}
\left\|q_{n}(\cdot+w)-q_{n}(\cdot)\right\|_{m}^{m} & \leq\left\|q_{n}(\cdot+w)-q_{n}\right\|_{\infty}^{m-1} \sum_{x \in Z^{2}}\left(q_{n}(x+w) q_{n}(x)\right) \\
& \leq 2\left(c_{\beta} n^{-1}(|w| / \sqrt{n})^{\beta}\right)^{m-1}
\end{aligned}
$$

We take m th roots, substitute into

$$
\left\|G_{\lambda}(\cdot+w)-G_{\lambda}(\cdot)\right\|_{m} \leq \sum_{n=0}^{\infty} e^{-\lambda n}\left\|q_{n}(\cdot+w)-q_{n}(\cdot)\right\|_{m}
$$

break the sum into the sum over $n \leq 1 / \lambda$ and the sum over $n>1 / \lambda$, and let $w=z / \sqrt{\lambda}$ to obtain (A.21).

For (A.22) we note that for each j we can write $\left(\prod_{i=1}^{k} \Delta_{z_{i} / \sqrt{\lambda}}\right) G_{\lambda}$ as a sum of 2^{k-1} terms of the form $\Delta_{z_{j} / \sqrt{\lambda}} G_{\lambda}(z+b)$ for some b so that by (A.21)

$$
\begin{equation*}
\left\|\left(\prod_{i=1}^{k} \Delta_{z_{i} / \sqrt{\lambda}}\right) G_{\lambda}\right\|_{m} \leq c^{\prime} 2^{k-1}\left|z_{j}\right|^{\beta / m} \lambda^{-1 / m} \tag{A.24}
\end{equation*}
$$

We have inequality (A.24) for $j=1, \ldots, k$. If we take the product of these k inequalities and then take k th roots, we have (A.22).

Acknowledgments. We would like to thank Uwe Einmahl and David Mason for their help in Section 3 which describes strong approximations in L^{2}.

REFERENCES

[1] Bass, R. and Chen, X. (2004). Self-intersection local time: Critical exponent, large deviations and law of the iterated logarithm. Ann. Probab. 32 3221-3247.
[2] Bass, R. and Khoshnevisan, D. (1993). Strong approximations to Brownian local time. In Seminar on Stochastic Processes 1992 43-65. Birkhäuser, Boston.
[3] Bass, R. and Khoshnevisan, D. (1993). Intersection local times and Tanaka formulas. Ann. Inst. H. Poincaré Probab. Statist. 29 419-451.
[4] Bass, R. F. and Kumagai, T. (2002). Laws of the iterated logarithm for the range of random walks in two and three dimensions. Ann. Probab. 30 1369-1396.
[5] Chen, X. and Rosen, J. (2002). Exponential asymptotics and law of the iterated logarithm for intersection local times of stable processes. Preprint.
[6] Dvoretzky, A. and Erdös, P. (1951). Some problems on random walk in space. Proc. Second Berkeley Symp. Math. Statist. 352-367. Univ. California Press, Berkeley.
[7] Dynkin, E. B. (1988). Self-intersection gauge for random walks and for Brownian motion. Ann. Probab. 16 1-57.
[8] Dynkin, E. B. (1988). Regularized self-intersection local times of planar Brownian motion. Ann. Probab. 16 58-74.
[9] Einmahl, U. (1987). A useful estimate in the multidimensional invariance principle. Probab. Theory Related Fields 76 81-101.
[10] Hamana, Y. (1998). An almost sure invariance principle for the range of random walks. Stochastic Process. Appl. 78. 131-143.
[11] Jain, N. C. and Pruitt, W. E. (1970). The range of recurrent random walk in the plane. Z. Wahrsch. Verw. Gebiete 16 279-292.
[12] Le Gall, J.-F. (1986). Propriétés d'intersection des marches aléatoires, I. Convergence vers le temps local d'intersection. Comm. Math. Phys. 104 471-507.
[13] Le Gall, J.-F. (1990). Wiener sausage and self intersection local times. J. Funct. Anal. 88 299-341.
[14] Le Gall, J.-F. (1992). Some properties of planar Brownian motion. École d'Été de Probabilités de St. Flour XX 1990. Lecture Notes in Math. 1527 112-234. Springer, Berlin.
[15] Le Gall, J.-F. and Rosen, J. (1991). The range of stable random walks. Ann. Probab. 19 650-705.
[16] Marcus, M. and Rosen, J. (1994). Laws of the iterated logarithm for the local times of symmetric Lévy processes and recurrent random walks. Ann. Probab. 22 626-659.
[17] Marcus, M. and Rosen, J. (1994). Laws of the iterated logarithm for the local times of recurrent random walks on Z^{2} and of Lévy processes and random walks in the domain of attraction of Cauchy random variables. Ann. Inst. H. Poincaré 30 467-499.
[18] Marcus, M. and Rosen, J. (1999). Renormalized Self-Intersection Local Times and Wick Power Chaos Processes. Mem. Amer. Math. Soc. 142. Amer. Math. Soc., Providence, RI.
[19] Rosen, J. (1990). Random walks and intersection local time. Ann. Probab. 18 959-977.
[20] Rosen, J. (1996). Joint continuity of renormalized intersection local times. Ann. Inst. H. Poincaré Probab. Statist. 32 671-700.
[21] Rosen, J. (2001). Dirichlet processes and an intrinsic characterization for renormalized intersection local times. Ann. Inst. H. Poincaré 37 403-420.
[22] Rosenthal, H. P. (1970). On the subspaces of $L^{p}(p>2)$ spanned by sequences of independent random variables. Israel J. Math. 8 273-303.
[23] Spitzer, F. (1976). Principles of Random Walk. Springer, New York.
[24] Varadhan, S. R. S. (1969). Appendix to "Euclidian Quantum Field Theory" by K. Symanzyk. In Local Quantum Theory (R. Jost, ed.). Academic Press, New York.

Department of Mathematics
University of Connecticut
Storrs, Connecticut 06269
USA
E-MAIL: bass@math.uconn.edu

Mathematics Department 15215
City University of New York
College of Staten Island
2800 Victory Boulevard
Staten Island, New York 10314
USA
E-MAIL: jrosen3@earthlink.net

[^0]: Received April 2004; revised October 2004.
 ${ }^{1}$ Supported in part by NSF Grant DMS-02-44737.
 ${ }^{2}$ Supported in part by grants from the NSF and from PSC-CUNY.
 Key words and phrases. Range, random walks, invariance principle, intersection local time, Wiener sausage, Brownian motion.

