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AN ALMOST SURE INVARIANCE PRINCIPLE FOR THE RANGE
OF PLANAR RANDOM WALKS

BY RICHARD F. BASS1 AND JAY ROSEN2

University of Connecticut and City University of New York

For a symmetric random walk in Z2 with 2 + δ moments, we repre-
sent |R(n)|, the cardinality of the range, in terms of an expansion involving
the renormalized intersection local times of a Brownian motion. We show that
for each k ≥ 1

(logn)k

[
1

n
|R(n)| +

k∑
j=1

(−1)j
(

1

2π
logn + cX

)−j

γj,n

]
→ 0 a.s.,

where Wt is a Brownian motion, W
(n)
t = Wnt/

√
n, γj,n is the renormalized

intersection local time at time 1 for W(n) and cX is a constant depending on
the distribution of the random walk.

1. Introduction. Let Sn = X1 + · · · + Xn be a random walk in Z2, where
X1,X2, . . . are symmetric i.i.d. vectors in Z2. We assume that the Xi have 2 + δ

moments for some δ > 0 and covariance matrix equal to the identity. We assume
further that the random walk Sn is strongly aperiodic in the sense of Spitzer ([23],
page 42). The range R(n) of the random walk Sn is the set of sites visited by the
walk up to step n:

R(n) = {S0, . . . , Sn−1}.(1.1)

As usual, |R(n)| denotes the cardinality of the range up to step n.
Dvoretzky and Erdös [6] show that for nearest-neighbor symmetric random

walks

lim
n→∞ logn

|R(n)|
n

= 2π a.s.(1.2)

An error in [6] was corrected by Jain and Pruitt [11]. Le Gall [12] has obtained a
central limit theorem for the second-order fluctuations of |R(n)|:

(logn)2
( |R(n)| − E(|R(n)|)

n

)
d→ −(2π)2γ2(1)(1.3)
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where
d→ denotes convergence in law and γ2(t) is the second-order renormalized

self-intersection local time for planar Brownian motion. See also [15].
In this paper we prove an a.s. asymptotic expansion for |R(n)| to any order of

accuracy. In order to state our result we first introduce some notation. If {Wt ; t ≥ 0}
is a planar Brownian motion, we define the j th-order renormalized intersection
local time for {Wt ; t ≥ 0} as follows. γ1(t) = t , α1,ε(t) = t and for k ≥ 2

αk,ε(t) =
∫

0≤t1≤···≤tk<t

k∏
i=2

pε

(
Wti − Wti−1

)
dt1 · · · dtk,(1.4)

γk(t) = lim
ε→0

k∑
l=1

(
k − 1
l − 1

)
(−uε)

k−lαl,ε(t),(1.5)

where pt(x) is the density for Wt and

uε =
∫ ∞

0
e−tpt+ε(0) dt.

Renormalized self-intersection local time was originally studied by Varadhan
[24] for its role in quantum field theory. In [21] we show that γk(t) can
be characterized as the continuous process of zero quadratic variation in the
decomposition of a natural Dirichlet process. For further work on renormalized
self-intersection local times see [3, 8, 14, 18, 20].

To motivate our result define the Wiener sausage of radius ε as

Wε(0, t) =
{
x ∈ R2

∣∣∣ inf
0≤s≤t

|x − Ws | ≤ ε

}
.(1.6)

Letting m(Wε(0, t)) denote the area of the Wiener sausage of radius ε, Le Gall [13]
shows that for each k ≥ 1

(logn)k

[
m

(
Wn−1/2(0,1)

) +
k∑

j=1

(−1)j
(

1

2π
logn + c

)−j

γj (1)

]
→ 0 a.s.

as n → ∞ where c is a finite constant. Using the heuristic which associates
{S[nt]/

√
n;0 ≤ t ≤ 1} ⊆ n−1/2Z2 ⊆ R2 with the Brownian motion {Wt ;0 ≤ t ≤ 1},

one would expect (note that space is scaled by n−1/2) that 1
n
|R(n)| will be “close”

to m(Wn−1/2(0,1)).
Our main result is the following theorem.

THEOREM 1. Let Sn = X1 + · · · + Xn be a symmetric, strongly aperiodic
random walk in Z2 with covariance matrix equal to the identity and with 2 + δ
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moments for some δ > 0. On a suitable probability space we can construct
{Sn;n ≥ 1} and a planar Brownian motion {Wt ; t ≥ 0} such that for each k ≥ 1

(logn)k

[
1

n
|R(n)|

(1.7)

+
k∑

j=1

(−1)j
(

1

2π
logn + cX

)−j

γj

(
1,W(n))] → 0 a.s.

where the random variables γ1(1,W(n)), γ2(1,W(n)), . . . are the renormalized
self-intersection local times (1.5) with t = 1 for the Brownian motion {W(n)

t =
Wnt/

√
n; t ≥ 0},

cX = 1

2π
log(π2/2) + 1

(2π)2

∫
[−π,π ]2

φ(p) − 1 + |p|2/2

(1 − φ(p))|p|2/2
dp(1.8)

is a finite constant and φ(p) = E(eip·X1) denotes the characteristic function of X1.

Note that the presence of the constant cX shows that the heuristic mentioned
before the statement of Theorem 1 does not completely capture the fine structure
of |R(n)|. (This can already be observed on the level of (1.3); see [15], (6.r).)

The case of two dimensions is the critical one. For dimensions 3 and higher
there are almost sure invariance principles by Hamana [10] (for dimensions 4
and higher) and Bass and Kumagai [4] (for dimension 3) that say that the range,
appropriately normalized, is close to a Brownian motion.

We begin our proof in Section 2 where we introduce renormalized intersection
local times �k,λ(n) for our random walk. Let ζ be an independent exponential
random variable of mean 1, and set ζλ = n when (n − 1)λ < ζ ≤ λn. Letting
|R(ζλ)| denote the cardinality of the range of our random walk killed at step ζλ,
we derive an L2 asymptotic expansion for |R(ζλ)| in terms of the �k,λ(ζλ) as
λ → 0. In Sections 3–5, on a suitable probability space, we construct {Sn;n ≥ 1}
and a planar Brownian motion {Wt ; t ≥ 0} and show that in the above L2

asymptotic expansion for |R(ζλ)| we can replace λ�k,λ(ζλ) by γk(ζ,W(λ−1)), the

renormalized intersection local times for the planar Brownian motion {W(λ−1)
t =

Wλ−1t /
√

λ−1; t ≥ 0}. After some preliminaries on renormalized intersection local
times for Brownian motion in Section 6, we show in Section 7 how our L2

asymptotic expansion for |R(ζλ)| leads to an a.s. asymptotic expansion. The proof
of Theorem 1 is completed in Section 8 by showing how to replace the random
time ζλ by fixed time. The Appendix derives some estimates used in this paper.
Our methods obviously owe a great deal to Le Gall [13].
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2. Range and random walk intersection local times. We first define the
nonrenormalized random walk intersection local times for k ≥ 2 by

Ik(n) = ∑
0≤i1≤···≤ik<n

δ
(
Si1, Si2

) · · · δ(
Sik−1, Sik

)
(2.1)

= ∑
x∈Z2

∑
0≤i1≤···≤ik<n

k∏
j=1

δ
(
Sij , x

)
where

δ(i, j) =
{

1, if i = j ,
0, otherwise,

is the usual Kronecker delta function. We set I1(n) = n so that also I1(n) =∑
x∈Z2

∑
0≤i<n δ(Si, x). [One might also take as a definition of the intersection

local time the quantity
∑

0<i1<···<ik<n δ(Si1, Si2) · · · δ(Sik−1, Sik ). The definition
in (2.1) is more convenient for our purposes, and we see by (2.6) that either
definition leads to the same value for �k,λ(n).]

Let qn(x) be the transition function for Sn and let

Gλ(x) =
∞∑

j=0

e−jλqj (x).(2.2)

We will show in Lemma A.1 below that

gλ := Gλ(0) = 1

2π
log(1/λ) + cX + O

(
λδ log(1/λ)

)
as λ → 0,(2.3)

where cX is defined in (1.8). We show in (A.18) that for any q > 1∑
x∈Z2

(Gλ(x))q = O(λ−1) as λ → 0.(2.4)

Note also that ∑
x∈Z2

Gλ(x) =
∞∑

j=0

e−jλ = 1

1 − e−λ
.(2.5)

We now define the renormalized random walk intersection local times by setting
�1,λ(n) = I1(n) = n and for k ≥ 2

�k,λ(n) = ∑
0≤i1≤···≤ik<n

{
δ
(
Si1, Si2

) − gλδ(i1, i2)
}

· · · {δ(
Sik−1, Sik

) − gλδ(ik−1, ik)
}

(2.6)

=
k∑

j=1

(
k − 1
j − 1

)
(−1)k−j g

k−j
λ Ij (n).
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Let ζ be an independent exponential random variable of mean 1, and set
ζλ = n when (n − 1)λ < ζ ≤ λn. ζλ is then a geometric random variable with
P(ζλ > n) = e−λn. Note that ζ1/j = n if (n − 1)/j < ζ ≤ n/j. By R(ζλ) we mean
the range of our random walk killed at step ζλ.

In this section we prove the following lemma.

LEMMA 1. For each k ≥ 1

lim
λ→0

λgk
λ

(
|R(ζλ)| −

k∑
j=1

(−1)j−1g
−j
λ �j,λ(ζλ)

)
= 0 in L2.(2.7)

PROOF. Define

Tx = min{n ≥ 0 :Sn = x},
the first hitting time to x. We will use the fact that

P(Tx < ζλ) = Gλ(x)

Gλ(0)
,(2.8)

which follows from the strong Markov property:

Gλ(x) =
∞∑

j=0

e−jλP (Sj = x)

=
∞∑

j=0

j∑
n=0

e−jλP (Sj = x,Tx = n)

(2.9)

=
∞∑

n=0

∞∑
j=n

e−nλP (Tx = n)e−(j−n)λP (Sj = 0)

= P(Tx < ζλ)Gλ(0).

To prove our lemma we square the expression inside the parentheses in (2.7)
and then take expectations. We first show that

E
(|R(ζλ)|2)

(2.10)

= 2
2k∑

j=2

(−1)jg
−j
λ

∑
x,y∈Z2

Gλ(x)
(
Gλ(x − y)

)j−1 + O
(
λ−2g

−(2k+1)
λ

)
.

To this end we first note that

|R(ζλ)| =
∑

x∈Z2

1{Tx<ζλ}(2.11)
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so that

E
(|R(ζλ)|2) = ∑

x,y∈Z2

P(Tx, Ty < ζλ)

(2.12)
= ∑

x∈Z2

P(Tx < ζλ) + 2
∑

x �=y∈Z2

P(Tx < Ty < ζλ).

Using (2.8) we have that∑
x∈Z2

P(Tx < ζλ) = ∑
x∈Z2

Gλ(x)

gλ

= 1

(1 − e−λ)gλ

= O(λ−1g−1
λ ).(2.13)

To evaluate
∑

x �=y∈Z2 P(Tx < Ty < ζλ) we first introduce some notation. For any
u �= v ∈ Z2 define inductively

A1
u,v = Tu,

A2
u,v = A1

u,v + Tv ◦ θA1
u,v

,

A3
u,v = A2

u,v + Tu ◦ θA2
u,v

,(2.14)

A2k
u,v = A2k−1

u,v + Tv ◦ θ
A2k−1

u,v
,

A2k+1
u,v = A2k

u,v + Tu ◦ θA2k
u,v

.

We observe that for any x �= y

P (Tx < Ty < ζλ)

= P(A1
x,y < A2

x,y < ζλ) − P(Ty < A1
x,y < A2

x,y < ζλ)(2.15)

= P(A2
x,y < ζλ) − P(Ty < A1

x,y < A2
x,y < ζλ)

and

P(Ty < A1
x,y < A2

x,y < ζλ)

= P(A1
y,x < A2

y,x < A3
y,x < ζλ) − P(Tx < A1

y,x < A2
y,x < A3

y,x < ζλ)(2.16)

= P(A3
y,x < ζλ) − P(Tx < A1

y,x;A3
y,x < ζλ).

Proceeding inductively we find that

P(Tx < Ty < ζλ) =
k∑

j=1

P(A2j
x,y < ζλ) −

k∑
j=1

P(A2j+1
y,x < ζλ)

(2.17)
+ P(Tx < A1

y,x;A2k+1
y,x < ζλ).
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Using (2.8) and the strong Markov property we see that

P(Tx < Ty < ζλ) =
k∑

j=1

g
−2j
λ Gλ(x)

(
Gλ(y − x)

)2j−1

−
k∑

j=1

g
−(2j+1)
λ Gλ(y)

(
Gλ(x − y)

)2j(2.18)

+ P(Tx < A1
y,x;A2k+1

y,x < ζλ)

and that

P(Tx < A1
y,x;A2k+1

y,x < ζλ)
(2.19)

≤ P(A2k+2
x,y < ζλ) = g

−(2k+2)
λ Gλ(x)

(
Gλ(y − x)

)2k+1
.

Equation (2.10) then follows using (2.3) and (2.4).
We next observe that

E
(
In(ζλ)Im(ζλ)

)
(2.20)

= ∑
x,y∈Z2

E

( ∑
0≤i1≤···≤in<ζλ

n∏
j=1

δ
(
Sij , x

) ∑
0≤l1≤···≤lm<ζλ

m∏
k=1

δ
(
Slk , y

))
.

We can bound the contribution from x = y by

(n + m)! ∑
x∈Z2

E

( ∑
0≤i1≤···≤in+m<ζλ

n+m∏
j=1

δ
(
Sij , x

))
(2.21)

= (n + m)! ∑
x∈Z2

∑
0≤i1≤···≤in+m<∞

E

(
n+m∏
j=1

δ
(
Sij , x

))
e−λin+m(2.22)

= (n + m)! ∑
x∈Z2

Gλ(x)Gn+m−1
λ (0).

By (2.3) and (2.5) the contribution to (2.20) from x = y is O(λ−1gn+m
λ ),

and by (2.6) such terms make a contribution to E(�n,λ(ζλ)�m,λ(ζλ)) which
is O(λ−1gn+m

λ ).
On the other hand∑

x �=y∈Z2

E

( ∑
0≤i1≤···≤in<ζλ

n∏
j=1

δ
(
Sij , x

) ∑
0≤l1≤···≤lm<ζλ

m∏
k=1

δ
(
Slk , y

))
(2.23)

= ∑
x �=y∈Z2

∑
π

E

( ∑
0≤i1≤···≤in+m<ζλ

n+m∏
j=1

δ
(
Sij , π(j)

))
,
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where the inner sum runs over all maps π : {1,2, . . . , n + m} 
→ {x, y} such that
|π−1(x)| = m, |π−1(y)| = n. Thus∑

x �=y∈Z2

E

( ∑
0≤i1≤···≤in<ζλ

n∏
j=1

δ
(
Sij , x

) ∑
0≤l1≤···≤lm<ζλ

m∏
k=1

δ
(
Slk , y

))

= ∑
x �=y∈Z2

∑
π

∑
0≤i1≤···≤in+m<∞

E

(
n+m∏
j=1

δ
(
Sij , π(j)

))
e−λin+m(2.24)

= ∑
x �=y∈Z2

∑
π

n+m∏
j=1

Gλ

(
π(j) − π(j − 1)

)
,

where π(0) = 0. When we look at the definition (2.6) of �k,λ(n) we see that the
effect of replacing In(ζλ)Im(ζλ) in (2.22) by �n,λ(ζλ)�m,λ(ζλ) is to eliminate
all maps π in which π(j) = π(j − 1) for some j . For example, if π(1) = x

and π(2) = x, the contributions from the two terms in {δ(Si1, Si2) − gλδ(i1, i2)}
will cancel, but if π(1) = x and π(2) = y, then there will be no contribution
from gλδ(i1, i2).

Thus, up to an error which is O(λ−1gn+m
λ ) (which comes from x = y), we have

E
(
�n,λ(ζλ)�m,λ(ζλ)

)
(2.25)

=



2
∑

x,y∈Z2

Gλ(x)
(
Gλ(y − x)

)2n−1
, if m = n,

∑
x,y∈Z2

Gλ(x)
(
Gλ(y − x)

)2n−1±1
, if m = n ± 1,

0, otherwise.

Consequently up to errors which are O(λ−1g2k
λ )

E

({
k∑

j=1

(−1)j−1g
−j
λ �j,λ(ζλ)

}2)

=
k∑

n,m=1

(−1)n+mg
−(n+m)
λ E

(
�n,λ(ζλ)�m,λ(ζλ)

)

= 2
k∑

n=1

g−2n
λ

∑
x,y∈Z2

Gλ(x)
(
Gλ(y − x)

)2n−1(2.26)

− 2
k∑

n=2

g
−(2n−1)
λ

∑
x,y∈Z2

Gλ(x)
(
Gλ(y − x)

)2n−2

= 2
2k∑

j=2

(−1)jg
−j
λ

∑
x,y∈Z2

Gλ(x)
(
Gλ(x − y)

)j−1
.
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To handle the cross-product terms we define the random measure on Zn+

�n,y(B) = ∑
{0≤i1≤···≤in<ζλ}∩B

n∏
j=1

δ
(
Sij , y

)
.(2.27)

Using the notation i0 = 0, in+1 = ζλ we have

E
(|R(ζλ)|In(ζλ)

) = E
∑

x,y∈Z2

∑
0≤i1≤···≤in≤ζλ

1(Tx<ζλ)

n∏
j=1

δ
(
Sij , y

)
(2.28)

= ∑
x,y∈Z2

n∑
j=0

E
(
�n,y({ij ≤ Tx < ij+1})).

As above we have that

�n,y({ij ≤ Tx < ij+1})
= �n,y

({
ij + Tx ◦ θij < ij+1

})
(2.29)

−
j−1∑
l=0

�n,y

({
il ≤ Tx < il+1; ij + Tx ◦ θij < ij+1

})
and inductively we find that

∑
x �=y∈Z2

n∑
j=0

E
(
�n,y({ij ≤ Tx < ij+1}))

(2.30)

= ∑
x �=y∈Z2

n+1∑
m=1

(−1)m−1
∑

|A|=m

E

(
�n,y

( ⋂
j∈A

{
ij + Tx ◦ θij < ij+1

}))
,

where the inner sum runs over all nonempty A ⊆ {0,1, . . . , n}. Using (2.8) and the
Markov property we see that

∑
x �=y∈Z2

n∑
j=0

E
(
�n,y({ij ≤ Tx < ij+1}))

(2.31)

= ∑
x �=y∈Z2

n+1∑
m=1

(−1)m−1
∑

|A|=m

g−m
λ

n+m∏
j=1

Gλ

(
σA(j) − σA(j − 1)

)
,

where σA(0) = 0 and σA(j) is the j th element in the ordered set obtained by taking
n y’s and inserting, for each l ∈ A, an x between the lth and (l +1)st y. Estimating
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the contribution from x = y we find that

E
(|R(ζλ)|In(ζλ)

)
= ∑

x,y∈Z2

n+1∑
m=1

(−1)m−1
∑

|A|=m

g−m
λ

n+m∏
j=1

Gλ

(
σA(j) − σA(j − 1)

)
(2.32)

+ O
(
λ−2g

−(2k+1)
λ

)
.

Once again we see that the effect of replacing In(ζλ) in (2.32) by �n,λ(ζλ) is to
eliminate all sets A such that σA(j) = σA(j − 1) for some j . Thus we have

E
(|R(ζλ)|�n,λ(ζλ)

)
= 2(−1)n−1

∑
x,y∈Z2

g−n
λ Gλ(x)

(
Gλ(x − y)

)2n−1

+ (−1)n
∑

x,y∈Z2

g
−(n−1)
λ Gλ(x)

(
Gλ(x − y)

)2n−2(2.33)

+ (−1)n
∑

x,y∈Z2

g
−(n+1)
λ Gλ(x)

(
Gλ(x − y)

)2n

+ O
(
λ−2g

−(2k+1)
λ

)
.

Consequently

E

(
|R(ζλ)|

k∑
n=1

(−1)n−1g−n
λ �n,λ(ζλ)

)

= 2
k∑

n=1

g−2n
λ

∑
x,y∈Z2

Gλ(x)
(
Gλ(y − x)

)2n−1

−
k∑

n=2

g
−(2n−1)
λ

∑
x,y∈Z2

Gλ(x)
(
Gλ(y − x)

)2n−2

−
k∑

n=1

g
−(2n+1)
λ

∑
x,y∈Z2

Gλ(x)
(
Gλ(y − x)

)2n(2.34)

+ O
(
λ−2g

−(2k+1)
λ

)
= 2

2k∑
j=2

(−1)jg
−j
λ

∑
x,y∈Z2

Gλ(x)
(
Gλ(x − y)

)j−1

+ O
(
λ−2g

−(2k+1)
λ

)
.
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Our lemma then follows from (2.10), (2.26) and (2.34). �

3. Strong approximation in L2. As usual we let ‖X‖p = (E|X|p)1/p .

LEMMA 2. Let X be an R2-valued random vector with mean zero and
covariance matrix equal to the identity I. Assume that for some 2 < p < 4,
E|X|p < ∞. Given n ≥ 1 one can construct on a suitable probability space two
sequences of independent random vectors X1, . . . ,Xn and Y1, . . . , Yn, where each

Xi
d= X and the Yi’s are standard normal random vectors such that∥∥∥∥∥ max

1≤k≤n

∣∣∣∣∣
k∑

i=1

(Xi − Yi)

∣∣∣∣∣
∥∥∥∥∥

2

= O
(
n2/p−2/p2)

.

PROOF. Let x = n2/p−2/p2
. By (3.3) of [9] we can find a constant c1 and such

Xi and Yi so that

P

{
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

(Xi − Yi)

∣∣∣∣∣ > x

}
≤ c1nx−pE|X|p.

Write Zn for max1≤k≤n |∑k
i=1(Xi − Yi)|. By Doob’s inequality and Rosenthal’s

inequality [22],

‖Zn‖p ≤ c2

∥∥∥∥∥
n∑

i=1

(Xi − Yi)

∥∥∥∥∥
p

≤ c3
√

n.

So using Hölder’s inequality

‖Zn‖2 ≤ x + ∥∥Zn1(Zn>x)

∥∥
2

≤ x + ‖Zn‖pP (Zn ≥ x)1/2−1/p

≤ x + c4
√

n

(
n

xp

)1/2−1/p

= x + c4n
1−1/px1−p/2

= c5n
2/p−2/p2

. �

Using the lemma we can readily construct two i.i.d. sequences {Xi}i≥1 and
{Yi}i≥1, where the Xi are equal in law to X and the Yi are standard normal, such
that for some constant C > 0 and any m ≥ 0,∥∥∥∥∥ max

2m≤k<2m+1

∣∣∣∣∣
k∑

i=2m

(Xi − Yi)

∣∣∣∣∣
∥∥∥∥∥

2

≤ C(2m)2/p−2/p2
.
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We see then that for any 2m ≤ [nt] < 2m+1,∥∥∥∥∥
[nt]∑
i=1

(Xi − Yi)

∥∥∥∥∥
2

≤
m∑

j=0

∥∥∥∥∥ max
2m≤k<2m+1

∣∣∣∣∣
k∑

i=2m

(Xi − Yi)

∣∣∣∣∣
∥∥∥∥∥

2

,

which for some D > 0 is less than or equal to
m∑

j=0

C(2j )2/p−2/p2 ≤ D(nt)2/p−2/p2
.

Now choose a Brownian motion W such that for m ≥ 1,

W(m) =
m∑

i=1

Yj .

Noting that

‖W([mt]) − W(mt)‖2 ≤
∥∥∥∥ sup

0≤s≤1
|W(s)|

∥∥∥∥
2
:= M,

we see that for any t > 0∥∥∥∥S([mt]) − W(mt)√
m

∥∥∥∥
2
≤ D(mt)2/p−2/p2

m−1/2 + Mm−1/2

(3.1)
= O

(
m(2/p−2/p2)−(1/2)(t2/p−2/p2 + 1

))
,

where

S([mt]) = ∑
i≤[mt]

Xi.

4. Spatial Hölder continuity for renormalized intersection local times. If
{Wt ; t ≥ 0} is a planar Brownian motion, set α1,ε(t) = t and for k ≥ 2 and
x = (x2, . . . , xk) ∈ (R2)k−1 let

αk,ε(t, x) =
∫

0≤t1≤···≤tk<t

k∏
i=2

pε

(
Wti − Wti−1 − xi

)
dt1 · · · dtk.(4.1)

When xi �= 0 for all i and ζ is an independent exponential random variable with
mean 1, the limit

αk(ζ, x) = lim
ε→0

αk,ε(ζ, x)(4.2)

exists. When xi �= 0 for all i set

γk(ζ, x) = ∑
A⊆{2,...,k}

(−1)|A|
( ∏

i∈A

u1(xi)

)
αk−|A|(ζ, xAc),(4.3)
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where

u1(y) =
∫ ∞

0
e−tpt (y) dt,(4.4)

pt(x) is the density for Wt and xAc = (xi1, . . . , xik−|A|) with i1 < i2 < · · · < ik−|A|
and ij ∈ {2, . . . , k} − A for each j , that is, the vector (x2, . . . , xk) with all terms
that have indices in A deleted. In [20] it is shown that for some δ̄ > 0 and all m

E
(|γk(ζ, x) − γk(ζ, y)|m) ≤ C|x − y|δ̄m.(4.5)

As before, set I1(n) = n and for k ≥ 2 and x = (x2, . . . , xk) ∈ (Z2)k−1 let

Ik(n, x) = ∑
0≤i1≤···≤ik<n

δ
(
Si2 − Si1 − x2

) · · · δ(
Sik − Sik−1 − xk

)
(4.6)

and for x ∈ √
λ(Z2)k−1 let

�k,λ(n, x) = ∑
A⊆{2,...,k}

(−1)|A| ∏
i∈A

Gλ

(
xi/

√
λ

)Ik−|A|
(
n,xAc/

√
λ

)
.(4.7)

Note that �k,λ(n) = �k,λ(n,0).

LEMMA 3. For any j ≥ 1 we can find some ρ, δ̄ > 0 such that uniformly in
λ > 0

sup
|y|≤λρ

E
(|λ�j,λ(ζλ, y) − λ�j,λ(ζλ)|2) ≤ Cλδ̄.(4.8)

PROOF. We begin by considering

E
(�k,λ(ζλ, x

1)�k,λ(ζλ, x
2)

)
(4.9)

for xi ∈ (Z2)k−1.
If h is a function which depends on the variable x, let

Dxh = h(x) − h(0).

Let S be the set of all maps s : {1,2, . . . ,2k} 
→ {1,2} with |s−1(j)| = k,1 ≤ j ≤ 2,
and let Bs = {i|s(i) = s(i − 1)} and c(i) = |{j ≤ i|s(j) = s(i)}|.

Using the Markov property as in Lemma 5 of [20] we can then show that

E
(�k,λ(ζλ, x

1)�k,λ(ζλ, x
2)

)
= ∑

s∈S

( ∏
i∈Bs

Gλ

(
x

s(i)
c(i)/

√
λ

)) ∑
zi∈Z2

i=1,2

( ∏
i∈Bs

D
x

s(i)
c(i)/

√
λ

)
(4.10)

× ∏
i∈Bc

s

Gλ

(
zs(i) +

c(i)∑
j=2

x
s(i)
j /

√
λ −

(
zs(i−1) +

c(i−1)∑
j=2

x
s(i−1)
j /

√
λ

))
.
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Fix s ∈ S and note then that the corresponding summand will be 0 unless
x

s(i)
c(i) �= 0 for all i ∈ Bs . Note that by definition of Bc

s we necessarily have that
the last line in (4.10) is of the form

Gλ(z1)
∏

i∈Bc
s ,i �=1

Gλ(z1 − z2 + ai),(4.11)

where the ai are linear combinations of x1, x2 but do not involve z1, z2. Then we
observe that the effect of applying each D

x
s(i)
c(i)/

√
λ

to the product on the last line

of (4.10) is to generate a sum of several terms in each of which we have one factor
of the form D

x
s(i)
c(i)/

√
λ
Gλ. Thus schematically we can write the contribution of such

a term as( ∏
i∈Bs

Gλ

(
x

s(i)
c(i)/

√
λ

)) ∑
zi∈Z2,i=1,2

Gλ(z1)
∏

i∈Bc
s ,i �=1

�Ai
Gλ(z1 − z2 + ai),(4.12)

where each �Ai
is a product of ki difference operators of the form �

x
j
l /

√
λ
, and we

have
∑

i∈Bc
s
ki = |Bs |. If Bs �= ∅ and if there is only one term in the last product

on the right-hand side of (4.12), it is easily seen that the sum over z2 gives 0. Thus
the product contains at least two terms and then by Lemma A.2 we can see that for
some C < ∞ and ν > 0 independent of everything∣∣∣∣∣ ∑

zi∈Z2,i=1,2

Gλ(z1)
∏

i∈Bc
s ,i �=1

�Ai
Gλ(z1 − z2 + ai)

∣∣∣∣∣ ≤ Cλ−2
∏
i∈Bs

∣∣xs(i)
c(i)

∣∣ν.(4.13)

With these results, we now turn to the bound (4.9). For ease of exposition we
use yi to denote the y in the ith factor; in the end we will set yi = y. For ease of
exposition we assume that y differs from 0 only in the vth coordinate, and we set
a = yv . (The general case is then easily handled.)

We again use Lemma 5 of [20] to expand

E
((�k,λ(ζλ, y

1) − �k,λ(ζλ)
)(�k,λ(ζλ, y

2) − �k,λ(ζλ)
))

(4.14)

as a sum of many terms of the form

∑
s∈S

( 2∏
i=1

Dyi
v/

√
λ

)( ∏
i∈Bs

Gλ

(
x

s(i)
c(i)/

√
λ

)) ∑
zi∈Z2,i=1,2

( ∏
i∈Bs

D
x

s(i)
c(i)/

√
λ

)
(4.15)

× ∏
i∈Bc

s

Gλ

(
zs(i) +

c(i)∑
j=2

x
s(i)
j /

√
λ −

(
zs(i−1) +

c(i−1)∑
j=2

x
s(i−1)
j /

√
λ

))
,
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where now xi is variously yi or 0. For fixed s ∈ S we can expand the corresponding
term as a sum of terms of the form{( ∏

k∈F

Dyk
v /

√
λ

)( ∏
i∈Bs

Gλ

(
x

s(i)
c(i)/

√
λ

))}

× ∑
zi∈Z2,i=1,2

( ∏
k∈Fc

Dyk
v /

√
λ

)( ∏
i∈Bs

D
x

s(i)
c(i)/

√
λ

)
(4.16)

× ∏
i∈Bc

s

Gλ

(
zs(i) +

c(i)∑
j=2

x
s(i)
j /

√
λ −

(
zs(i−1) +

c(i−1)∑
j=2

x
s(i−1)
j /

√
λ

))
,

where F runs through the subsets of {1,2}. Note that the first line will be 0 unless
for each k ∈ F we have that yk

v = x
s(i)
c(i) for some i ∈ Bs . In particular

|F | ≤ |Bs |.(4.17)

Using the fact that

Gλ(x) ≤ c log(1/λ)(4.18)

we can bound the first line of (4.16) by (c log(1/λ))|Bs |. As before [see in
particular (4.13)], we can obtain the bound∣∣∣∣∣ ∑

zi∈Z2,i=1,2

( ∏
k∈Fc

Dyk
v /

√
λ

)( ∏
i∈Bs

D
x

s(i)
c(i)/

√
λ

)

× ∏
i∈Bc

s

Gλ

(
zs(i) +

c(i)∑
j=2

x
s(i)
j /

√
λ −

(
zs(i−1) +

c(i−1)∑
j=2

x
s(i−1)
j /

√
λ

))∣∣∣∣∣(4.19)

≤ cλ−2
∏

k∈Fc

|yk
v |ν ∏

i∈Bs

∣∣xs(i)
c(i)

∣∣ν.
Our lemma then follows using (4.17) which implies that |Fc| + |Bs | ≥ 2. �

5. Approximating intersection local times. The goal of this section is to
prove the following lemma.

LEMMA 4. We can find a Brownian motion such that for each j ≥ 1 there
exists β > 0 such that

‖λ�j,λ(ζλ) − γj (ζ,ωλ−1)‖2 = O(λβ).(5.1)

PROOF. Let f (x) be a smooth function on R2, supported in the unit disc and
with

∫
f (x) dx = 1. We set fε(x) = 1

ε2 f (x/ε). On the one hand it is easy to see



RANGE OF PLANAR RANDOM WALK 1871

that if we set ũ1(fτ ) = ∫
u1(x)fτ (x) dx and

γ̃k(ζ, fτ ) =
∫

γk(ζ, x)

k∏
i=2

fτ (xi) dx2 · · · dxk,

α̃j (ζ, fτ ) =
∫

αj (ζ, x)

j∏
i=2

fτ (xi) dx2 · · · dxk,

we will have

γ̃k(ζ, fτ ) =
k∑

j=1

(
k − 1
j − 1

)(−ũ1(fτ )
)k−j

α̃j (ζ, fτ )(5.2)

and

α̃j (t, fτ ) =
∫

0≤t1≤···≤tj<t

j∏
i=2

fτ

(
Wti − Wti−1

)
dt1 · · · dtj .(5.3)

On the other hand it follows from (4.5) and Jensen’s inequality that

‖γ̃k(ζ, fτ ) − γk(ζ )‖2 ≤ Cτ δ̄.(5.4)

If we set G̃λ(fτ ) = ∑
x∈√

λZ2 λGλ(x/
√

λ )fτ (x),

�̃k,λ(ζλ, fτ ) = ∑
x2,...,xk∈

√
λZ2

λk−1�k,λ(ζλ, x)

k∏
i=2

fτ (xi)

and

Ĩj (ζλ, fτ ) = ∑
x2,...,xk∈

√
λZ2

λk−1Ij

(
ζλ, x/

√
λ

) j∏
i=2

fτ (xi),

we similarly have

�̃k,λ(ζλ, fτ ) =
k∑

j=1

(
k − 1
j − 1

)(−G̃λ(fτ )
)k−j

Ĩj (ζλ, fτ ).(5.5)

It then follows from (4.8) that with τ = λρ for ρ > 0 small

‖λ�̃k,λ(ζλ, fτ ) − λ�k,λ(ζλ)‖2 ≤ Cτ δ̄.(5.6)

To complete the proof of Lemma 4 it only remains to show that with τ = λρ for
ρ > 0 small

‖λ�̃k,λ(ζλ, fτ ) − γ̃k(ζ, fτ ,ωλ−1)‖2 ≤ cλζ(5.7)
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for some c < ∞ and ζ > 0. Note that

λĨj (ζλ, fτ ) = λk
∑

0≤t1≤···≤tj<ζλ

j∏
i=2

fτ

(√
λ
(
Sti − Sti−1

))

= λk
∑

0≤t1≤···≤tj<ζ/λ

j∏
i=2

fτ

(√
λ
(
Sti − Sti−1

))
(5.8)

= λk
∫

0≤t1≤···≤tj<ζ/λ

j∏
i=2

fτ

(√
λ
(
S[ti ] − S[ti−1]

))
dt1 · · · dtj

=
∫

0≤t1≤···≤tj<ζ

j∏
i=2

fτ

(√
λ
(
S[ti/λ] − S[ti−1/λ]

))
dt1 · · · dtj .

By (5.2)–(5.8) it suffices to show that for some δ′ > 0 and all sufficiently small τ, λ

ũ1(fτ ) = O
(
log(1/|τ |)), |G̃λ(fτ ) − ũ1(fτ )| ≤ cτ−3λδ′

,(5.9)

and

‖α̃k(ζ, fτ ,ωλ−1)‖2 ≤ cτ−2(k−1),
(5.10)

‖λĨk,λ(ζλ, fτ ) − α̃k(ζ, fτ ,ωλ−1)‖2 ≤ cτ−2k+1λδ′
.

The first part of (5.9) follows from the fact that u1(x) = O(log(1/|x|)); see [13],
(2.b). To prove the second part of (5.9), we note that supx |∇fτ (x)| ≤ cτ−3, so

|G̃λ(fτ ) − ũ1(fτ )|
=

∣∣∣∣ ∫ ∞
0

e−tE
(
fτ

(√
λS[t/λ]

) − fτ

(√
λWt/λ

))
dt

∣∣∣∣(5.11)

≤ cτ−3
∫ ∞

0
e−t

∥∥√λ
(
S[t/λ] − Wt/λ

)∥∥
1 dt.

The second part of (5.9) then follows from the last inequality in Section 3.
The first part of (5.10) follows from the fact that supx |fτ (x)| ≤ cτ−2, so that

‖α̃k(ζ, fτ ,ωλ−1)‖2
2 ≤ cτ−2(k−1)

∫ ∞
0

e−t tn dt.(5.12)

To prove the second part of (5.10), we use the above bounds on supx |∇fτ (x)|
and supx |fτ (x)| to see that

‖λĨk,λ(ζλ, fτ ) − α̃k(ζ, fτ ,ωλ−1)‖2
2

≤ cτ−2k+1(5.13)

×
k∑

j=1

∫ ∞
0

e−t

(∫
0≤t1≤···≤tk<t

∥∥√λ
(
S[tj /λ] − Wtj/λ

)∥∥2
2 dt1 · · · dtk

)
dt.
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The second part of (5.10) then follows from the last inequality in Section 3. �

6. Renormalized Brownian intersection local times. Recall the definition
of γk(t) given in (1.5). Note from [13], (2.b) that for some fixed constant c

uε =
∫ ∞

0
e−tpt+ε(0) dt = 1

2π
log(1/ε) + c + O(ε).(6.1)

In [20] we show that the limit in (1.5) exists a.s. and in all Lp spaces, and that
γk(t) is continuous in t . The rest of this section is basically contained in [13] but
we point out that [20] came after [13] and resulted in some simplification.

For any given function h : (0,∞) → R we set γ̂1(t, h) = t and for k ≥ 2

γ̂k(t, h) = lim
ε→0

k∑
l=1

(
k − 1
l − 1

)
(−hε)

k−lαl,ε(t),(6.2)

where we write hε for h(ε). In particular, γk(t) = γ̂k(t, u). Let H denote the set of
functions h such that limε→0(hε − uε) exists and is finite. In the next lemma we
will see that the limit in (6.2) exists for all h ∈ H .

LEMMA 5 (Renormalization lemma). Let h ∈ H . Then γ̂k(t, h) exists for all
k ≥ 1 and if h̄ ∈ H with limε→0(hε − h̄ε) = b, then for any k ≥ 1

γ̂k(t, h) =
k∑

m=1

(
k − 1
m − 1

)
(−b)k−mγ̂m(t, h̄).(6.3)

PROOF. Setting bε = hε − h̄ε we have

k∑
l=1

(
k − 1
l − 1

)
(−hε)

k−lαl,ε(t)

=
k∑

l=1

(
k − 1
l − 1

)
(−h̄ε − bε)

k−lαl,ε(t)(6.4)

=
k∑

l=1

(
k − 1
l − 1

) k−l∑
j=0

(
k − l

j

)
(−bε)

j (−h̄ε)
(k−j)−lαl,ε(t).

Using (
k − 1
l − 1

)(
k − l

j

)
=

(
k − 1

j

)(
k − j − 1

l − 1

)
,

the last line in (6.4) becomes

k−1∑
j=0

(
k − 1

j

)
(−bε)

j
k−j∑
l=1

(
k − j − 1

l − 1

)
(−h̄ε)

(k−j)−lαl,ε(t).(6.5)
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Taking h̄ε = uε then shows the existence of γk(t, h). Returning to general h̄ ∈ H
and now taking the ε → 0 limit, we obtain

γ̂k(t, h) =
k−1∑
j=0

(
k − 1

j

)
(−b)j γ̂k−j (t, h̄)

(6.6)

=
k∑

m=1

(
k − 1
m − 1

)
(−b)k−mγ̂m(t, h̄),

where the last line follows from the substitution m = k − j . �

Let h ∈ H . We shall sometimes write γ̂k(t, h,ω) for γ̂k(t, h) to emphasize its
dependence on the path ω. We want to discuss how renormalized intersection local
time changes with a time rescaling. Let ωr(s) = r−1/2ω(rs). Then γ̂k(t, h,ωr) is
the same as γ̂k(t, h) defined in terms of the Brownian motion W

(r)
t = Wrt/

√
r .

LEMMA 6 (Rescaling lemma). Let h ∈ H . Then for any k ≥ 1

γ̂k(t, h,ωr) = r−1
k∑

m=1

(
k − 1
m − 1

)(
1

2π
log(1/r)

)k−m

γ̂m(rt, h,ω).(6.7)

PROOF. After replacing ω by ωr the integral on the right-hand side of (6.2) is
replaced by

∫
0≤t1≤···≤tl<t

l∏
i=2

pε

(
Wrti − Wrti−1√

r

)
dt1 · · · dtl

= r−l
∫

0≤t1≤···≤tl<rt

l∏
i=2

pε

(
Wti − Wti−1√

r

)
dt1 · · · dtl(6.8)

= r−1
∫

0≤t1≤···≤tl<rt

l∏
i=2

prε

(
Wti − Wti−1

)
dt1 · · · dtl.

Abbreviating this last integral as αl,rε(rt,ω), we have

γ̂k(t, h,ωr) = r−1 lim
ε→0

k∑
l=1

(
k − 1
l − 1

)
(−hε)

k−lαl,rε(rt,ω).(6.9)

Since h ∈ H it is easily seen that limε→0(hε − hrε) = − 1
2π

log(1/r) and our
lemma then follows from Lemma 5. �
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7. Range and Brownian intersection local times. In this section we prove
the following theorem.

THEOREM 2. For each k ≥ 1

gk
λ

(
λ|R(ζλ)| −

k∑
j=1

(−1)j−1g
−j
λ γj (ζ,ωλ−1)

)
→ 0 a.s.(7.1)

as λ → 0.

PROOF. Using (5.1) together with Lemma 1 and its proof, we see that for some
Mk < ∞ ∥∥∥∥∥g4k+1

λ

(
λ|R(ζλ)| −

4k∑
j=1

(−1)j−1g
−j
λ γj (ζ,ωλ−1)

)∥∥∥∥∥
2

2

≤ Mk(7.2)

for all λ > 0 sufficiently small.
We now follow [13]. With λn = e−n1/2k

we have that for any ε > 0

∞∑
n=1

P

{
gk

λn

(
λn

∣∣R(
ζλn

)∣∣ − 4k∑
j=1

(−1)j−1g
−j
λn

γj

(
ζ,ω

λ−1
n

)) ≥ g−1
λn

}

≤
∞∑

n=1

P

{
g4k+1

λn

(
λn

∣∣R(
ζλn

)∣∣ − 4k∑
j=1

(−1)j−1g
−j
λn

γj

(
ζ,ω

λ−1
n

)) ≥ g3k
λn

}
(7.3)

≤ Mk

∞∑
n=1

g−6k
λn

< ∞.

Then by Borel–Cantelli

gk
λn

(
λn

∣∣R(
ζλn

)∣∣ − 4k∑
j=1

(−1)j−1g
−j
λn

γj

(
ζ,ω

λ−1
n

)) → 0 a.s.(7.4)

Since for each m ≥ 1 we have that γj (ζ,ω
λ−1

n
) is bounded in Lm uniformly in n,

then by Chebyshev’s inequality with m sufficiently large P(γj (ζ,ω
λ−1

n
) > gλn)

will be summable. So we may drop the terms for j > k and we then have

gk
λn

(
λn

∣∣R(
ζλn

)∣∣ − k∑
j=1

(−1)j−1g
−j
λn

γj

(
ζ,ω

λ−1
n

)) → 0 a.s.(7.5)

Before continuing the proof of Theorem 2 we first prove the following lemma.

LEMMA 7. For any k ≥ 1

lim
n→0

sup
λn+1≤λ≤λn

∣∣γk(ζ,ωλ−1) − γk

(
ζ,ω

λ−1
n

)∣∣ = 0 a.s.(7.6)
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PROOF. By (6.7) for any k ≥ 1

γk(ζ,ωλ−1) = λ

λn

k∑
m=1

(
k − 1
m − 1

)(
1

2π
log

(
λ

λn

))k−m

γm

(
λn

λ
ζ,ω

λ−1
n

)
.(7.7)

Hence for any p ≥ 1∥∥∥∥ sup
λn+1≤λ≤λn

∣∣γk(ζ,ωλ−1) − γk

(
ζ,ω

λ−1
n

)∣∣∥∥∥∥
p

≤
∥∥∥∥ sup

λn+1≤λ≤λn

∣∣∣∣ λ

λn

γk

(
λn

λ
ζ,ω

λ−1
n

)
− γk

(
ζ,ω

λ−1
n

)∣∣∣∣∥∥∥∥
p

+ c

k−1∑
m=1

sup
λn+1≤λ≤λn

(
1

2π
log

(
λ

λn

))k−m∥∥∥∥ sup
λn+1≤λ≤λn

γm

(
λn

λ
ζ,ω

λ−1
n

)∥∥∥∥
p

(7.8)

=
∥∥∥∥ sup

λn+1≤λ≤λn

∣∣∣∣ λ

λn

γk

(
λn

λ
ζ

)
− γk(ζ )

∣∣∣∣∥∥∥∥
p

+ c

k−1∑
m=1

sup
λn+1≤λ≤λn

(
1

2π
log

(
λ

λn

))k−m∥∥∥∥ sup
λn+1≤λ≤λn

γm

(
λn

λ
ζ

)∥∥∥∥
p

.

It follows from (9.11) of [3] that for any k ≥ 1 we can find β > 0 such that∥∥∥∥ sup
|t−s|≤δ,s,t≤1

|γk(s) − γk(t)|
∥∥∥∥
p

≤ cδβ.(7.9)

Actually, this is proved for a renormalized intersection local time ξk(t) where
ξk(t) = limx→0 ξk(t, x) and ξk(t, x) differs from γk(t, x) defined in (4.3) in
that u1(x) is replaced by π−1 log(1/|x|). Since u1(x) − π−1 log(1/|x|) = c +
O(|x|2 log |x|), see [13], (2.b), we obtain (7.9). Using (6.7) with r = t−1 and (7.9)
we find that ∥∥∥∥ sup

λn+1≤λ≤λn

∣∣∣∣γk

(
λn

λ
t

)
− γk(t)

∣∣∣∣∥∥∥∥
p

(7.10)

≤ ct (log t)k
∣∣∣∣ λn

λn+1
− 1

∣∣∣∣β ≤ ct (log t)kn−β ′
,

where we have used

log
λn

λn+1
= O(n−1+1/2k).(7.11)

Hence ∥∥∥∥ sup
λn+1≤λ≤λn

∣∣∣∣γk

(
λn

λ
ζ

)
− γk(ζ )

∣∣∣∣∥∥∥∥
p

≤ cn−β ′′
.(7.12)
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Using (7.8) and (7.12) now shows that∥∥∥∥ sup
λn+1≤λ≤λn

∣∣γk(ζ,ωλ−1) − γk

(
ζ,ω

λ−1
n

)∣∣∥∥∥∥
p

≤ cn−β ′′
(7.13)

and our lemma then follows using Hölder’s inequality for sufficiently large p and
the Borel–Cantelli lemma. �

Continuing the proof of Theorem 2, by our choice of λn

lim
n→0

gk
λn+1

− gk
λn

= 0.(7.14)

Together with (7.6) we have that a.s.

lim
n→0

sup
λn+1≤λ≤λn

∣∣∣∣∣
k∑

j=1

(−1)j−1g
k−j
λ γj (ζ,ωλ−1)

(7.15)

−
k∑

j=1

(−1)j−1g
k−j
λn

γj

(
ζ,ω

λ−1
n

)∣∣∣∣∣ = 0.

Using the fact that |R(ζλ)| and gλ are monotone decreasing we have that

sup
λn+1≤λ≤λn

∣∣λgk
λ|R(ζλ)| − λng

k
λn

∣∣R(
ζλn

)∣∣∣∣
≤ ∣∣λng

k
λn+1

∣∣R(
ζλn+1

)∣∣ − λn+1g
k
λn

∣∣R(
ζλn

)∣∣∣∣
≤ ∣∣λng

k
λn+1

∣∣R(
ζλn+1

)∣∣ − λn+1g
k
λn+1

∣∣R(
ζλn+1

)∣∣∣∣
+ ∣∣λn+1g

k
λn+1

∣∣R(
ζλn+1

)∣∣ − λng
k
λn

∣∣R(
ζλn

)∣∣∣∣(7.16)

+ ∣∣λng
k
λn

∣∣R(
ζλn

)∣∣ − λn+1g
k
λn

∣∣R(
ζλn

)∣∣∣∣
≤ 2

∣∣λn − λn+1|gk
λn+1

∣∣R(
ζλn+1

)∣∣
+ ∣∣λn+1g

k
λn+1

∣∣R(
ζλn+1

)∣∣ − λng
k
λn

∣∣R(
ζλn

)∣∣∣∣ → 0 a.s.

Here the first term on the right-hand side of (7.16) goes to 0 using the fact that

|λn − λn+1| =
∣∣1 − en1/2k−(n+1)1/2k ∣∣λn ≤ n−1+1/2kλn ≤ 2n−1+1/2kλn+1,

gk
λn+1

= (n + 1)1/2, (7.5) and the discussion immediately preceding (7.5). The
second term on the right-hand side of (7.16) goes to 0 using (7.15) and (7.5).
Combining (7.5), (7.15) and (7.16) we have (7.1). �
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8. Nonrandom times. In this section we complete the proof of Theorem 1.
Recall that ζλ = n if n−1 < 1

λ
ζ ≤ n. So ζλ = � 1

λ
ζ� where �x� denotes the smallest

integer m ≥ x. Hence (7.1) can be written as

gk
λ

(
λ|R(�ζ/λ�)| −

k∑
j=1

(−1)j−1g
−j
λ γj (ζ,ωλ−1)

)
→ 0 a.s.(8.1)

If (�,P ) denotes our probability space for {Sn;n ≥ 1} and {Wt ; t ≥ 0}, then
the almost sure convergence in (8.1) is with respect to the measure e−t dt × P on
R1+ × �, where ζ(t,ω) = t . Hence by Fubini’s theorem we have that for almost
every t > 0

gk
λ

(
λ|R(�t/λ�)| −

k∑
j=1

(−1)j−1g
−j
λ γj (t,ωλ−1)

)
→ 0 a.s.(8.2)

Fix a t0 for which (8.2) holds and let λ run through the sequence t0/n. Then
(2.3) and (8.2) tell us that

(logn)k

(
t0

n
|R(n)| +

k∑
j=1

(−gt0/n

)−j
γj

(
t0,ωn/t0

)) → 0 a.s.(8.3)

Using (6.7) and writing br = 1
2π

log(1/r) we have that

(logn)k

(
t0

n
|R(n)|

(8.4)

+ t0

k∑
j=1

(−gt0/n

)−j
j∑

m=1

(
j − 1
m − 1

)
b

j−m
1/t0

γm(1,ωn)

)
→ 0 a.s.

Then

k∑
j=1

(−gt0/n

)−j
j∑

m=1

(
j − 1
m − 1

)
b

j−m
1/t0

γm(1,ωn)

(8.5)

=
k∑

m=1

(
k∑

j=m

(
j − 1
m − 1

)(−b1/t0

gt0/n

)j−m
)(−gt0/n

)−m
γm(1,ωn).

Now,

k∑
j=m

(
j − 1
m − 1

)
xj−m =

k−m∑
i=0

(
i + m − 1

m − 1

)
xi =

(
1

1 − x

)m

+ O(xk−m+1).(8.6)

By (7.9) with δ = 1 we have that supt≤1 |γj (t,ω)| is in Lp for each p and each
j ≥ 1. If we set Vj,� = supt≤1 |γj (t,ω2�)|, we then have, taking p large enough,
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that

∞∑
�=1

P
(
Vj,� > η log(2�)

) ≤
∞∑

�=1

EV
p
j,�

(η log 2�)p

is summable for each η. Hence by Borel–Cantelli Vj,�/ log(2�) → 0 a.s. for each
j ≥ 1. Since by Lemma 6 we have for 2� ≤ r < 2�+1 that γk(1,ωr) is bounded
by a linear combination of the Vj,�, 1 ≤ j ≤ k, with coefficients that are bounded
independently of r , we conclude

γj (1,ωn)/ logn → 0 a.s.

Thus we can replace (8.5) up to errors which are O(logn)−k−1 by

k∑
m=1

( −1

gt0/n + b1/t0

)m

γm(1,ωn) =
k∑

m=1

(−g1/n)
−mγm(1,ωn)(8.7)

since by (2.3) we have that gt0/n + b1/t0 = g1/n + O(n−δ).
Thus we obtain

(logn)k

(
1

n
|R(n)| +

k∑
j=1

(−g1/n)
−j γj (1,ωn)

)
→ 0 a.s.(8.8)

This, together with (A.2), gives Theorem 1.

APPENDIX

Estimates for random walks. In this appendix we will obtain some estimates
for strongly aperiodic planar random walks Sn = ∑n

i=1 Xi , where the Xi are
symmetric, have the identity as covariance matrix and have 2 + δ moments for
some δ > 0.

Let

Gλ(x):=
∞∑

n=0

e−λnqn(x).

If

φ(p) = E(eip·X1)

denotes the characteristic function of X1, we have

Gλ(x) = 1

(2π)2

∫
[−π,π ]2

eip·x

1 − e−λφ(p)
dp.(A.1)
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LEMMA A.1. Let Sn be as above. Then

Gλ(0) = 1

2π
log(1/λ) + cX + O

(
λδ log(1/λ)

)
,(A.2)

where

cX = 1

2π
log(π2/2) + 1

(2π)2

∫
[−π,π ]2

φ(p) − 1 + |p|2/2

(1 − φ(p))|p|2/2
dp(A.3)

is a finite constant.

PROOF. We have

Gλ(0) = 1

(2π)2

∫
[−π,π ]2

1

1 − e−λφ(p)
dp.(A.4)

We intend to compare this with

1

(2π)2

∫
[−π,π ]2

1

λ + |p|2/2
dp

whose asymptotics are easier to compute. Indeed,∫
[−π,π ]2

1

λ + |p|2/2
dp

(A.5)

=
∫
D(0,π)

1

λ + |p|2/2
dp +

∫
[−π,π ]2−D(0,π)

1

λ + |p|2/2
dp,

where D(0, π) is the disc centered at the origin of radius π . It is clear that∫
[−π,π ]2−D(0,π)

1

λ + |p|2/2
dp =

∫
[−π,π ]2−D(0,π)

1

|p|2/2
dp + O(λ).(A.6)

On the other hand, using polar coordinates∫
D(0,π)

1

λ + |p|2/2
dp = 2π

(
log(λ + π2/2) − log(λ)

)
.(A.7)

Thus
1

(2π)2

∫
[−π,π ]2

1

λ + |p|2/2
dp

(A.8)

= 1

2π
log(1/λ) + 1

2π
log(π2/2) + O(λ).

We then note that∫
[−π,π ]2

1

1 − e−λφ(p)
dp −

∫
[−π,π ]2

1

λ + |p|2/2
dp

=
∫
[−π,π ]2

(λ + |p|2/2) − (1 − e−λφ(p))

(1 − e−λφ(p))(λ + |p|2/2)
dp(A.9)



RANGE OF PLANAR RANDOM WALK 1881

=
∫
[−π,π ]2

φ(p) − 1 + |p|2/2

(1 − e−λφ(p))(λ + |p|2/2)
dp

− λ

∫
[−π,π ]2

φ(p) − 1

(1 − e−λφ(p))(λ + |p|2/2)
dp

+ (e−λ − 1 + λ)

∫
[−π,π ]2

φ(p)

(1 − e−λφ(p))(λ + |p|2/2)
dp.

Since

|eip·x − 1 − ip · x + (p · x)2/2| ≤ c(p · x)2+δ(A.10)

for some c < ∞ we have by our assumptions that

|φ(p) − 1 + |p|2/2| ≤ c′|p|2+δ.(A.11)

This implies that

|φ(p) − 1| ≤ c′′|p|2(A.12)

for p ∈ [−π,π]2 and

1 − e−λφ(p) ≥ c̄(λ + |p|2)(A.13)

for some c̄ > 0 and sufficiently small λ. Hence

(e−λ − 1 + λ)

∫
[−π,π ]2

|φ(p)|
(1 − e−λφ(p))(λ + |p|2/2)

dp

≤ cλ2
∫
[−π,π ]2

1

(λ + |p|2)2 dp(A.14)

≤ cλ

∫
[−π/

√
λ,π

√
λ ]2

1

(1 + |p|2)2 dp = O(λ)

and

λ

∫
[−π,π ]2

|φ(p) − 1|
(1 − e−λφ(p))(λ + |p|2/2)

dp

≤ cλ

∫
[−π,π ]2

|p|2
(λ + |p|2)2 dp(A.15)

≤ cλ

∫
[−π/

√
λ,π

√
λ ]2

|p|2
(1 + |p|2)2 dp = O

(
λ log(1/λ)

)
.

Setting f (p) = φ(p) − 1 + |p|2/2 and using (A.11), we see that∫
[−π,π ]2

|f (p)|
|(1 − φ(p))||p|2/2

dp < ∞.
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Consider then ∫
[−π,π ]2

f (p)

(1 − e−λφ(p))(λ + |p|2/2)
dp

−
∫
[−π,π ]2

f (p)

(1 − φ(p))|p|2/2
dp

=
∫
[−π,π ]2

f (p)

(1 − e−λφ(p))(λ + |p|2/2)
dp

(A.16)

−
∫
[−π,π ]2

f (p)

(1 − e−λφ(p))|p|2/2
dp

+
∫
[−π,π ]2

f (p)

(1 − e−λφ(p))|p|2/2
dp

−
∫
[−π,π ]2

f (p)

(1 − φ(p))|p|2/2
dp.

We have ∫
[−π,π ]2

f (p)

(1 − e−λφ(p))(λ + |p|2/2)
dp

−
∫
[−π,π ]2

f (p)

(1 − e−λφ(p))|p|2/2
dp

(A.17)

= −
∫
[−π,π ]2

f (p)λ

(1 − e−λφ(p))(λ + |p|2/2)|p|2/2
dp

= O
(
λδ log(1/λ)

)
,

and the last line in (A.16) can be bounded similarly. This completes the proof of
Lemma A.1. �

LEMMA A.2. Let Sn be as above. For all m ≥ 1

‖Gλ‖m = O(λ−1/m) as λ → 0(A.18)

and

‖Gλ − Gλ′‖m = O
(|λ − λ′|(√λλ′ )−1/m)

as λ → 0.(A.19)

For all m ≥ 2 and z ∈ Z2

‖�z/
√

λGλ‖m ≤ c′|z|2/mλ−1/m(
log(1/λ)

)1−1/m(A.20)

and for any 0 < β < 1

‖�z/
√

λGλ‖m ≤ c′|z|β/mλ−1/m(A.21)
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and ∥∥∥∥∥
(

k∏
i=1

�zi/
√

λ

)
Gλ

∥∥∥∥∥
m

≤ c′
(

k∏
i=1

|zi |β/mk

)
λ−1/m.(A.22)

PROOF. By [23], page 77, we know that qn(x) ≤ c1/n, where qn is the
transition probability for Sn. So

‖qn‖m
m = ∑

x∈Z2

qn(x)m ≤ cm−1
1 n−m+1

∑
z∈Z2

qn(x) = cm−1
1 n−m+1.

Then

‖Gλ‖m ≤
∞∑

n=0

e−λn‖qn‖m.

Substituting the above estimate for ‖qn‖m and breaking the sum into the sum over
n ≤ 1/λ and the sum over n > 1/λ, we easily obtain (A.18).

Equation (A.19) follows from (A.18) and the resolvent equation

Gλ − Gλ′ = (λ′ − λ)Gλ ∗ Gλ′ .(A.23)

By Proposition 2.1 of [2], for each β ∈ (0,1] there exists a constant cβ such that

|qn(x) − qn(y)| ≤ cβn−1(|x − y|/√n
)β

.

So for any fixed w ∈ Z2

‖qn(· + w) − qn(·)‖m
m ≤ ‖qn(· + w) − qn‖m−1∞

∑
x∈Z2

(
qn(x + w)qn(x)

)
≤ 2

(
cβn−1(|w|/√n

)β)m−1
.

We take mth roots, substitute into

‖Gλ(· + w) − Gλ(·)‖m ≤
∞∑

n=0

e−λn‖qn(· + w) − qn(·)‖m,

break the sum into the sum over n ≤ 1/λ and the sum over n > 1/λ, and let
w = z/

√
λ to obtain (A.21).

For (A.22) we note that for each j we can write (
∏k

i=1 �zi/
√

λ)Gλ as a sum of

2k−1 terms of the form �zj/
√

λGλ(z + b) for some b so that by (A.21)∥∥∥∥∥
(

k∏
i=1

�zi/
√

λ

)
Gλ

∥∥∥∥∥
m

≤ c′2k−1|zj |β/mλ−1/m.(A.24)

We have inequality (A.24) for j = 1, . . . , k. If we take the product of these k

inequalities and then take kth roots, we have (A.22). �
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