
Annals of Mathematics, 160 (2004), 433–464

Cover times for Brownian motion
and random walks in two dimensions

By Amir Dembo, Yuval Peres, Jay Rosen, and Ofer Zeitouni*

Abstract

Let T (x, ε) denote the first hitting time of the disc of radius ε centered
at x for Brownian motion on the two dimensional torus T2. We prove that
supx∈T2 T (x, ε)/| log ε|2 → 2/π as ε → 0. The same applies to Brownian mo-
tion on any smooth, compact connected, two-dimensional, Riemannian mani-
fold with unit area and no boundary. As a consequence, we prove a conjecture,
due to Aldous (1989), that the number of steps it takes a simple random walk
to cover all points of the lattice torus Z2

n is asymptotic to 4n2(log n)2/π. De-
termining these asymptotics is an essential step toward analyzing the fractal
structure of the set of uncovered sites before coverage is complete; so far, this
structure was only studied nonrigorously in the physics literature. We also es-
tablish a conjecture, due to Kesten and Révész, that describes the asymptotics
for the number of steps needed by simple random walk in Z2 to cover the disc
of radius n.

1. Introduction

In this paper, we introduce a unified method for analyzing cover times
for random walks and Brownian motion in two dimensions, and resolve several
open problems in this area.

1.1. Covering the discrete torus. The time it takes a random walk to cover
a finite graph is a parameter that has been studied intensively by probabilists,
combinatorialists and computer scientists, due to its intrinsic appeal and its
applications to designing universal traversal sequences [5], [10], [11], testing
graph connectivity [5], [19], and protocol testing [24]; see [2] for an introduction
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to cover times. Aldous and Fill [4, Chap. 7] consider the cover time for random
walk on the discrete d-dimensional torus Zd

n = Zd/nZd, and write:

‘‘Perhaps surprisingly, the case d = 2 turns out to be the hardest
of all explicit graphs for the purpose of estimating cover times.”

The problem of determining the expected cover time Tn for Z2
n was posed

informally by Wilf [29] who called it “the white screen problem” and wrote

“Any mathematician will want to know how long, on the average,
it takes until each pixel is visited.”

(see also [4, p. 1]).
In 1989, Aldous [1] conjectured that Tn/(n log n)2 → 4/π. He noted that

the upper bound Tn/(n log n)2 ≤ 4/π + o(1) was easy, and pointed out the dif-
ficulty of obtaining a corresponding lower bound. A lower bound of the correct
order of magnitude was obtained by Zuckerman [30], and in 1991, Aldous [3]
showed that Tn/E(Tn) → 1 in probability. The best lower bound prior to the
present work is due to Lawler [21], who showed that lim inf E(Tn)/(n log n)2 ≥
2/π.

Our main result in the discrete setting, is the proof of Aldous’s conjecture:

Theorem 1.1. If Tn denotes the time it takes for the simple random walk
in Z2

n to cover Z2
n completely, then

lim
n→∞

Tn

(n log n)2
=

4
π

in probability.(1.1)

The main interest in this result is not the value of the constant, but rather
that establishing a limit theorem, with matching upper and lower bounds,
forces one to develop insight into the delicate process of coverage, and to un-
derstand the fractal structure, and spatial correlations, of the configuration of
uncovered sites in Z2

n before coverage is complete.
The fractal structure of the uncovered set in Z2

n has attracted the interest
of physicists, (see [25], [12] and the references therein), who used simulations
and nonrigorous heuristic arguments to study it. One cannot begin the rigorous
study of this fractal structure without knowing precise asymptotics for the
cover time; an estimate of cover time up to a bounded factor will not do. See
[14] for quantitative results on the uncovered set, based on the ideas of the
present paper.

Our proof of Theorem 1.1 is based on strong approximation of random
walks by Brownian paths, which reduces that theorem to a question about
Brownian motion on the 2-torus.
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1.2. Brownian motion on surfaces. For x in the two-dimensional torus
T2, denote by DT2(x, ε) the disk of radius ε centered at x, and consider the
hitting time

T (x, ε) = inf{t > 0 |Xt ∈ DT2(x, ε)}.
Then

Cε = sup
x∈T2

T (x, ε)

is the ε-covering time of the torus T2, i.e. the amount of time needed for the
Brownian motion Xt to come within ε of each point in T2. Equivalently, Cε is
the amount of time needed for the Wiener sausage of radius ε to completely
cover T2. We can now state the continuous analog of Theorem 1.1, which is
the key to its proof.

Theorem 1.2. For Brownian motion in T2, almost surely (a.s.),

lim
ε→0

Cε

(log ε)2
=

2
π

.(1.2)

Matthews [23] studied the ε-cover time for Brownian motion on a d di-
mensional sphere (embedded in Rd+1) and on a d-dimensional projective space
(that can be viewed as the quotient of the sphere by reflection). He calls these
questions the “one-cap problem” and “two-cap problem”, respectively. Part
of the motivation for this study is a technique for viewing multidimensional
data developed by Asimov [7]. Matthews obtained sharp asymptotics for all
dimensions d ≥ 3, but for the more delicate two dimensional case, his upper
and lower bounds had a ratio of 4 between them; he conjectured the upper
bound was sharp. We can now resolve this conjecture; rather than handling
each surface separately, we establish the following extension of Theorem 1.2.
See Section 8 for definitions and references concerning Brownian motion on
manifolds.

Theorem 1.3. Let M be a smooth, compact, connected, two-dimensional,
Riemannian manifold without boundary. Denote by Cε the ε-covering time of
M , i.e., the amount of time needed for the Brownian motion to come within
(Riemannian) distance ε of each point in M . Then

lim
ε→0

Cε

(log ε)2
=

2
π

A a.s.,(1.3)

where A denotes the Riemannian area of M .

(When M is a sphere, this indeed corresponds to the upper bound in [23],
once a computational error in [23] is corrected; the hitting time in (4.3) there
is twice what it should be. This error led to doubling the upper and the lower
bounds for cover time in [23, Theorem 5.7].)
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1.3. Covering a large disk by random walk in Z2. Over ten years ago,
Kesten (as quoted by Aldous [1] and Lawler [21]) and Révész [26] independently
considered a problem about simple random walks in Z2: How long does it take
for the walk to completely cover the disc of radius n? Denote this time by Tn.
Kesten and Révész proved that

e−b/t ≤ lim inf
n→∞

P(log Tn ≤ t(log n)2) ≤ lim sup
n→∞

P(log Tn ≤ t(log n)2) ≤ e−a/t

(1.4)

for certain 0 < a < b < ∞. Révész [26] conjectured that the limit exists and
has the form e−λ/t for some (unspecified) λ. Lawler [21] obtained (1.4) with
the constants a = 2, b = 4 and quoted a conjecture of Kesten that the limit
equals e−4/t. We can now prove this:

Theorem 1.4. If Tn denotes the time it takes for the simple random walk
in Z2 to completely cover the disc of radius n, then

lim
n→∞

P(log Tn ≤ t(log n)2) = e−4/t.(1.5)

1.4. A birds-eye view. The basic approach of this paper, as in [13], is
to control ε-hitting times using excursions between concentric circles. The
number of excursions between two fixed concentric circles before ε-coverage is
so large, that the ε-hitting times will necessarily be concentrated near their
conditional means given the excursion counts (see Lemma 3.2).

The key idea in the proof of the lower bound in Theorem 1.2, is to control
excursions on many scales simultaneously, leading to a ‘multi-scale refinement’
of the classical second moment method. This is inspired by techniques from
probability on trees, in particular the analysis of first-passage percolation by
Lyons and Pemantle [22]. The approximate tree structure that we (implicitly)
use arises by consideration of circles of varying radii around different centers;
for fixed centers x, y, and “most” radii r (on a logarithmic scale) the discs
DT2(x, r) and DT2(y, r) are either well-separated (if r � d(x, y)) or almost
coincide (if r � d(x, y)). This tree structure was also the key to our work in
[13], but the dependence problems encountered in the present work are more
severe. While in [13] the number of macroscopic excursions was bounded, here
it is large; In the language of trees, one can say that while in [13] we studied
the maximal number of visits to a leaf until visiting the root, here we study the
number of visits to the root until every leaf has been visited. For the analogies
between trees and Brownian excursions to be valid, the effect of the initial
and terminal points of individual excursions must be controlled. To prevent
conditioning on the endpoints of the numerous macroscopic excursions to affect
the estimates, the ratios between radii of even the largest pair of concentric
circles where excursions are counted, must grow to infinity as ε decreases to
zero.
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Section 2 provides simple lemmas which will be useful in exploiting the
link between excursions and ε-hitting times. These lemmas are then used
to obtain the upper bound in Theorem 1.2. In Section 3 we explain how to
obtain the analogous lower bound, leaving some technical details to lemmas
which are proven in Sections 6 and 7. In Section 4 we prove the lattice torus
covering time conjecture, Theorem 1.1, and in Section 5 we prove the Kesten-
Révész conjecture, Theorem 1.4. In Section 8 we consider Brownian motion
on manifolds and prove Theorem 1.3. Complements and open problems are
collected in the final section.

2. Hitting time estimates and upper bounds

We start with some definitions. Let {Wt}t≥0 denote planar Brownian
motion started at the origin. We use T2 to denote the two dimensional torus,
which we identify with the set (−1/2, 1/2]2. The distance between x, y ∈ T2,
in the natural metric, is denoted d(x, y). Let Xt = Wt mod Z2 denote the
Brownian motion on T2, where a mod Z2 = [a+(1/2, 1/2)] mod Z2−(1/2, 1/2).
Throughout, D(x, r) and DT2(x, r) denote the open discs of radius r centered
at x, in R2 and in T2, respectively.

Fixing x ∈ T2 let τξ = inf{t ≥ 0 : Xt ∈ ∂DT2(x, ξ)} for ξ > 0. Also let
τ̃ξ = inf{t ≥ 0 : Bt ∈ ∂D(0, ξ)}, for a standard Brownian motion Bt on R2.
For any x ∈ T2, the natural bijection i = ix : DT2(x, 1/2) �→ D(0, 1/2) with
ix(x) = 0 is an isometry, and for any z ∈ DT2(x, 1/2) and Brownian motion Xt

on T2 with X0 = z, we can find a Brownian motion Bt starting at ix(z) such
that τ1/2 = τ̃1/2 and {ix(Xt), t ≤ τ1/2} = {Bt, t ≤ τ̃1/2}. We shall hereafter use
i to denote ix, whenever the precise value of x is understood from the context,
or does not matter.

We start with some uniform estimates on the hitting times Ey(τr).

Lemma 2.1. For some c < ∞ and all r > 0 small enough,

‖τr‖ := sup
y

Ey(τr) ≤ c| log r| .(2.1)

Further, there exists η(R) → 0 as R → 0, such that for all 0 < 2r ≤ R, x ∈ T2,

(1 − η)
π

log
(

R

r

)
≤ inf

y∈∂DT2 (x,R)
Ey(τr)(2.2)

≤ sup
y∈∂DT2 (x,R)

Ey(τr) ≤
(1 + η)

π
log

(
R

r

)
.

Proof of Lemma 2.1. Let ∆ denote the Laplacian, which on T2 is just the
Euclidean Laplacian with periodic boundary conditions. It is well known that
for any x ∈ T2 there exists a Green’s function Gx(y), defined for y ∈ T2 \ {x},
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such that ∆Gx = 1 and F (x, y) = Gx(y) + 1
2π log d(x, y) is continuous on

T2 × T2 (c.f. [8, p. 106] or [16] where this is shown in the more general
context of smooth, compact two-dimensional Riemannian manifolds without
boundary). For completeness, we explicitly construct such Gx(·) at the end of
the proof.

Let e(y) = Ey(τr). We have Poisson’s equation 1
2∆e = −1 on T2\DT2(x, r)

and e = 0 on ∂DT2(x, r). Hence, with x fixed,

∆
(

Gx +
1
2
e

)
= 0 on T2 \ DT2(x, r).(2.3)

Applying the maximum principle for the harmonic function Gx + 1
2e on

T2 \ DT2(x, r), we see that for all y ∈ T2 \ DT2(x, r),

inf
z∈∂DT2 (x,r)

Gx(z) ≤ Gx(y) +
1
2
e(y) ≤ sup

z∈∂DT2 (x,r)
Gx(z).(2.4)

Our lemma follows then, with

η(R) =
2π

log 2
sup
x∈T2

sup
y,z∈DT2 (x,R)

|F (x, z) − F (x, y)|

c = (1/π) + [(1/π) log diam(T2) + 4 sup
x,y∈T2

|F (x, y)|]/ log 4 < ∞ ,

except that we have proved (2.1) so far only for y /∈ DT2(x, r). To com-
plete the proof, fix x′ ∈ T2 with d(x, x′) = 3ρ > 0. For r < ρ, starting at
X0 = y ∈ DT2(x, r), the process Xt hits ∂DT2(x, r) before it hits ∂DT2(x′, r).
Consequently, Ey(τr) ≤ c| log r| also for such y and r, establishing (2.1).

Turning to constructing Gx(y), we use the representation T2 = (−1/2, 1/2]2.
Let φ ∈ C∞(R) be such that φ = 1 in a small neighborhood of 0, and φ = 0
outside a slightly larger neighborhood of 0. With r = |z| for z = (z1, z2), let

h(z) = − 1
2π

φ(r) log r

and note that by Green’s theorem∫
T2

∆h(z) dz = 1.(2.5)

Recall that for any function f which depends only on r = |z|,

∆f = f ′′ +
1
r
f ′,

and therefore, for r > 0

∆h(z) = − 1
2π

(φ′′(r) log r +
2 + log r

r
φ′(r)).
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Because of the support properties of φ(r) we see that H(z) = ∆h(z) − 1 is a
C∞ function on T2, and consequently has an expansion in Fourier series

H(z) =
∞∑

j,k=0

aj,k cos(2πjz1) cos(2πkz2)

with aj,k rapidly decreasing. Note that as a consequence of (2.5) we have
a0,0 = 0. Set

F (z) =
∞∑

j,k=0

(j,k) �=(0,0)

aj,k

4π2(j2 + k2)
cos(2πjz1) cos(2πkz2).

The function F (z) is then a C∞ function on T2 and it satisfies ∆F = −H.
Hence, if we set g(z) = h(z) + F (z) we have ∆g(z) = 1 for |z| > 0 and
g(z) + 1

2π log |z| has a continuous extension to all of T2. The Green’s function
for T2 is then Gx(y) = g((x − y)T2).

Fixing x ∈ T2 and constants 0 < 2r ≤ R < 1/2 let

τ (0) = inf{t ≥ 0 |Xt ∈ ∂DT2(x, R)},(2.6)

σ(1) = inf{t ≥ 0 |Xt+τ (0) ∈ ∂DT2(x, r)}(2.7)

and define inductively for j = 1, 2, . . .

τ (j) = inf{t ≥ σ(j) |Xt+Tj−1 ∈ ∂DT2(x, R)},(2.8)

σ(j+1) = inf{t ≥ 0 |Xt+Tj
∈ ∂DT2(x, r)},(2.9)

where Tj =
∑j

i=0 τ (i) for j = 0, 1, 2, . . . . Thus, τ (j) is the length of the j-th
excursion Ej from ∂DT2(x, R) to itself via ∂DT2(x, r), and σ(j) is the amount
of time it takes to hit ∂DT2(x, r) during the j-th excursion Ej .

The next lemma, which shows that excursion times are concentrated
around their mean, will be used to relate excursions to hitting times.

Lemma 2.2. With the above notation, for any N ≥ N0, δ0 > 0 small
enough, 0 < δ < δ0, 0 < 2r ≤ R < R1(δ), and x, x0 ∈ T2,

Px0

 N∑
j=0

τ (j) ≤ (1 − δ)N
1
π

log(R/r)

 ≤ e−Cδ2N(2.10)

and

Px0

 N∑
j=0

τ (j) ≥ (1 + δ)N
1
π

log(R/r)

 ≤ e−Cδ2N .(2.11)

Moreover, C = C(R, r) > 0 depends only upon δ0 as soon as R > r1−δ0.
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Proof of Lemma 2.2. Applying Kac’s moment formula for the first hitting
time τr of the strong Markov process Xt (see [17, equation (6)]), we see that
for any θ < 1/‖τr‖,

sup
y

Ey(eθτr) ≤ 1
1 − θ‖τr‖

.(2.12)

Consequently, by (2.1) we have that for some λ > 0,

sup
0<r≤r0

sup
x,y

Ey(eλτr/| log r|) < ∞.(2.13)

By the strong Markov property of Xt at τ (0) and at τ (0) +σ(1) we then deduce
that

sup
0<2r≤R<r0

sup
x,y

Ey(eλT1/| log r|) < ∞.(2.14)

Fixing x ∈ T2 and 0 < 2r ≤ R < 1/2 let τ = τ (1) and v = 1
π log(R/r).

Recall that {Xt : t ≤ τR} starting at X0 = z for some z ∈ ∂DT2(x, r), has the
same law as {Bt : t ≤ τ̃R} starting at B0 = i(z) ∈ ∂D(0, r). Consequently,

‖τR‖R := sup
x

sup
z∈DT2 (x,R)

Ez(τR) ≤ E0(τ̃R) =
R2

2
→R→0 0 ,(2.15)

by the radial symmetry of the Brownian motion Bt.
By the strong Markov property of Xt at τ (0) + σ(1) we thus have that

Ey(τr) ≤ Ey(τ) ≤ Ey(τr) + ‖τR‖R for all y ∈ ∂DT2(x, R) .

Consequently, with η = δ/6, let R1(δ) ≤ r0 be small enough so that (2.2) and
(2.15) imply

(1 − η)v≤ inf
x

inf
y∈∂DT2 (x,R)

Ey(τ)(2.16)

≤ sup
x

sup
y∈∂DT2 (x,R)

Ey(τ) ≤ (1 + 2η)v ,

whenever R ≤ R1. It follows from (2.14) and (2.16) that there exists a universal
constant c4 < ∞ such that for ρ = c4| log r|2 and all θ ≥ 0,

sup
x

sup
y∈∂DT2 (x,R)

Ey(e−θτ )(2.17)

≤ 1 − θ inf
x

inf
y∈∂DT2 (x,R)

Ey(τ) +
θ2

2
sup

x
sup

y∈∂DT2 (x,R)
Ey(τ2)

≤ 1 − θ(1 − η)v + ρθ2 ≤ exp(ρθ2 − θ(1 − η)v).
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Since τ (0) ≥ 0, using Chebyshev’s inequality we bound the left-hand side of
(2.10) by

(2.18)

Px0

( N∑
j=1

τ (j) ≤ (1 − 6η)vN
)
≤ eθ(1−3η)vNEx0

(
e−θ

∑N
j=1 τ (j)

)
≤ e−θvNδ/3

[
eθ(1−η)v sup

y∈∂DT2 (x,R)
Ey(e−θτ )

]N
,

where the last inequality follows by the strong Markov property of Xt at {Tj}.
Combining (2.17) and (2.18) for θ = δv/(6ρ), results in (2.10), where C =
v2/36ρ > 0 is bounded below by δ2

0/(36c4π
2) if r1−δ0 < R.

To prove (2.11) we first note that for θ = λ/| log r| > 0 and λ > 0 as in
(2.14), it follows that

Px0

(
τ (0) ≥ δ

3
vN

)
≤ e−θv(δ/3)NEx0(eλτ (0)/| log r|) ≤ c5e

−c6δN ,

where c5 < ∞ is a universal constant and c6 = c6(r, R) > 0 does not depend
upon N , δ or x0 and is bounded below by some c7(δ0) > 0 when r1−δ0 < R.
Thus, the proof of (2.11), in analogy to that of (2.10), comes down to bounding

Px0

( N∑
j=1

τ (j) ≥ (1 + 4η)vN
)
≤ e−θδvN/3

(
e−θ(1+2η)v sup

y∈∂DT2 (x,R)
Ey(eθτ )

)N
.

(2.19)

By (2.14) and (2.16), there exists a universal constant c8 < ∞ such that for
ρ = c8| log r|2 and all 0 < θ < λ/(2| log r|),

sup
x

sup
y∈∂DT2 (x,R)

Ey(eθτ )≤ 1 + θ(1 + 2η)v + sup
x

sup
y∈∂DT2 (x,R)

∞∑
n=2

θn

n!
Ey(τn)

≤ 1 + θ(1 + 2η)v + ρθ2 ≤ exp(θ(1 + 2η)v + ρθ2) ;

the proof of (2.11) now follows as in the proof of (2.10).

Lemma 2.3. For any δ > 0 there exist c < ∞ and ε0 > 0 so that for all
ε ≤ ε0 and y ≥ 0

Px0
(
T (x, ε) ≥ y(log ε)2

)
≤ cε(1−δ)πy(2.20)

for all x, x0 ∈ T2.

Proof of Lemma 2.3. We use the notation of the last lemma and its proof,
with R < R1(δ) and r = R/e chosen for convenience so that log(R/r) = 1. Let
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nε := (1 − δ)πy(log ε)2. Then,

Px0
(
T (x, ε) ≥ y(log ε)2

)
(2.21)

≤ Px0

T (x, ε) ≥
nε∑

j=0

τ (j)

 + Px0

 nε∑
j=0

τ (j) ≥ y(log ε)2

 .

It follows from Lemma 2.2 that

Px0

 nε∑
j=0

τ (j) ≥ y(log ε)2

 ≤ e−C′y(log ε)2(2.22)

for some C ′ = C ′(δ) > 0. On the other hand, the first probability in the
second line of (2.21) is bounded above by the probability of Bt not hitting
i(DT2(x, ε)) = D(0, ε) during nε excursions, each starting at i(∂DT2(x, r)) =
∂D(0, r) and ending at i(∂DT2(x, R)) = ∂D(0, R), so that

Px0

T (x, ε) ≥
nε∑

j=0

τ (j)

 ≤
(

1 − 1
log R

ε

)nε

≤ e−(1−δ)πy| log ε|(2.23)

and (2.20) follows.

We next show that

lim sup
ε→0

sup
x∈T2

T (x, ε)
(log ε)2

≤ 2
π

, a.s.(2.24)

from which the upper bound for (1.2) follows.
Set h(ε) = | log ε|2. Fix δ > 0, and set ε̃n = e−n so that

h(ε̃n+1) = (1 +
1
n

)2h(ε̃n).(2.25)

For ε̃n+1 ≤ ε ≤ ε̃n,

T (x, ε̃n+1)
h(ε̃n+1)

=
h(ε̃n)

h(ε̃n+1)
T (x, ε̃n+1)

h(ε̃n)
≥ (1 +

1
n

)−2T (x, ε)
h(ε)

.(2.26)

Fix x0 ∈ T2 and let {xj : j = 1, . . . , K̄n}, denote a maximal collection of points
in T2, such that inf
 �=j d(x
, xj) ≥ δε̃n. Let a = (2 + δ)/(1 − 10δ) and An be
the set of 1 ≤ j ≤ K̄n, such that

T (xj , (1 − δ)ε̃n) ≥ (1 − 2δ)ah(ε̃n)/π.

It follows by Lemma 2.3 that

Px0(T (x, (1 − δ)ε̃n) ≥ (1 − 2δ)ah(ε̃n)/π) ≤ c ε̃ (1−10δ)a
n ,

for some c = c(δ) < ∞, all sufficiently large n and any x ∈ T2. Thus, for all
sufficiently large n, any j and a > 0,

Px0(j ∈ An) ≤ c ε̃ (1−10δ)a
n .(2.27)
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This implies
∞∑

n=1

Px0(|An| ≥ 1) ≤
∞∑

n=1

Ex0 |An| ≤ c′
∞∑

n=1

ε̃ δ
n < ∞ .

By Borel-Cantelli, it follows that An is empty a.s. for all n > n0(ω) and some
n0(ω) < ∞. By (2.26) we then have for some n1(δ, ω) < ∞ and all n > n1(ω)

sup
ε≤ε̃n1

sup
x∈T2

T (x, ε)
(log ε)2

≤ a

π
,

and (2.24) follows by taking δ ↓ 0.

3. Lower bound for covering times

Fixing δ > 0 and a < 2, we prove in this section that

lim inf
ε→0

Cε

(log ε)2
≥ (1 − δ)

a

π
a.s.(3.1)

In view of (2.24), we then obtain Theorem 1.2.
We start by constructing an almost sure lower bound on Cε for a spe-

cific deterministic sequence εn,1. To this end, fix ε1 ≤ R1(δ) as in Lemma
2.2 and the square S = [ε1, 2ε1]2. Let εk = ε1(k!)−3 and nk = 3ak2 log k.
For fixed n ≥ 3, let εn,k = ρnεn(k!)3 for ρn = n−25 and k = 1, . . . , n. Ob-
serve that εn,1 = ρnεn, εn,n = ρnε1, and εn,k ≤ ρnεn+1−k ≤ εn+1−k for all
1 ≤ k ≤ n. Recall the natural bijection i : DT2(0, 1/2) �→ D(0, 1/2). For
any x ∈ S, let Rx

n denote the time until Xt completes nn excursions from
i−1(∂D(x, εn,n−1)) to i−1(∂D(x, εn,n)). (In the notation of Section 2, if we set
R = εn,n and r = εn,n−1, then Rx

n =
∑nn

j=0 τ (j).) Note that i−1(∂D(x, εn,k)) is
just ∂DT2(i−1(x), εn,k), but the former notation will allow easy generalization
to the case of general manifolds treated in Section 8.

For x ∈ S, 2 ≤ k ≤ n let Nx
n,k denote the number of excursions of Xt

from i−1(∂D(x, εn,k−1)) to i−1(∂D(x, εn,k)) until time Rx
n. Thus, Nx

n,n = nn =
3an2 log n. A point x ∈ S is called n-successful if

Nx
n,2 = 0, nk − k ≤ Nx

n,k ≤ nk + k ∀k = 3, . . . , n − 1 .(3.2)

In particular, if x is n-successful, then T (i−1(x), εn,1) > Rx
n.

For n ≥ 3 we partition S into Mn = ε2
1/(2εn)2 = (1/4)

∏n
l=1 l6 nonoverlap-

ping squares of edge length 2εn = 2ε1/(n!)3, with xn,j , j = 1, . . . , Mn denoting
the centers of these squares. Let Y (n, j), j = 1, . . . , Mn, be the sequence of
random variables defined by

Y (n, j) = 1 if xn,j is n-successful

and Y (n, j) = 0 otherwise. Set q̄n = P(Y (n, j) = 1) = E(Y (n, j)), noting that
this probability is independent of j (and of the value of ρn).
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The next lemma, which is a direct consequence of Lemmas 6.2 and 7.1,
provides bounds on the first and second moments of Y (n, j), that are used
in order to show the existence of at least one n-successful point xn,j for large
enough n.

Lemma 3.1. There exists δn → 0 such that for all n ≥ 1,

q̄n = P (x is n-successful) ≥ εa+δn
n .(3.3)

For some C0 < ∞ and all n, if |xn,i − xn,j | ≥ 2εn,n, then

E(Y (n, i)Y (n, j)) ≤ (1 + C0n
−1 log n)q̄2

n .(3.4)

Further, for any γ > 0 there exists C = C(γ) < ∞ so that for all n and
l = l(i, j) = max{k ≤ n : |xn,i − xn,j | ≥ 2εn,k} ∨ 1,

E(Y (n, i)Y (n, j)) ≤ q̄2
nCn−ln39

(
εn,n

εn,l+1

)a+γ

.(3.5)

Fix γ > 0 such that 2 − a − γ > 0. By (3.3) for all n large enough,

E

Mn∑
j=1

Y (n, j)

 = Mnq̄n ≥ ε−(2−a−γ)
n .(3.6)

In the sequel, we let Cm denote generic finite constants that are independent
of n, l, i and j. Recall that there are at most C1ε

2
n,l+1ε

−2
n points xn,j , j = i,

in D(xn,i, 2εn,l+1). Further, our choice of ρn guarantees that (εn,n/εn)2 ≤
C2Mnn−50. Hence, it follows from (3.5) that for n − 1 ≥ l ≥ 1,

Vl := (Mnq̄n)−2
Mn∑

i�=j=1

l(i,j)=l

E
(
Y (n, i)Y (n, j)

)
(3.7)

≤ C1M
−1
n ε2

n,l+1ε
−2
n Cn−ln39

(
εn,l+1

εn,n

)−a−γ

≤ C1C2n
−3Cn−l

(
εn,l+1

εn,n

)2−a−γ

,

and since (εn,l+1/εn,n) ≤ (εn−l/ε1) for all 1 ≤ l ≤ n − 1, we deduce that
n−1∑
l=1

Vl ≤ C3n
−3

∞∑
j=1

Cjε2−a−γ
j ≤ C4n

−3 .(3.8)

We have, by Chebyshev’s inequality (see [6, Theorem 4.3.1]) and (3.4), that

P(
Mn∑
j=1

Y (n, j) = 0)≤ (Mnq̄n)−2E

{( Mn∑
i=1

Y (n, i)
)2

}
− 1

≤ (Mnq̄n)−1 + C0n
−1 log n +

n−1∑
l=1

Vl .
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Combining this with (3.6) and (3.8), we see that

P(
Mn∑
j=1

Y (n, j) = 0) ≤ C5n
−1 log n .(3.9)

The next lemma relates the notion of n-successful to the εn,1-hitting time.

Lemma 3.2. For each n let Vn be a finite subset of S with cardinality
bounded by eo(n2). There exists m(ω) < ∞ a.s. such that for all n ≥ m and all
x ∈ Vn, if x is n-successful then

T (i−1(x), εn,1) ≥ (log εn,1)2
(a

π
− 2√

log n

)
.(3.10)

Proof of Lemma 3.2. Recall that if x is n-successful then T (i−1(x), εn,1) >∑nn

j=0 τ (j). Hence, using (2.10) with N = nn = 3an2 log n, δn = π/(a
√

log n),
R = εn,n, and r = εn,n−1 so that log(R/r) = 3 log n and R > r0.8, we see that
for some C > 0 that is independent of n,

Px :=Px0

(
T (i−1(x), εn,1) ≤ (

a

π
− 2√

log n
)(log εn,1)2 , x is n-successful

)

≤ Px0

 N∑
j=0

τ (j) ≤ (
a

π
− 1√

log n
)(3n log n)2


≤ Px0

 1
N

N∑
j=0

τ (j) ≤ (1 − δn)
log(R/r)

π

 ≤ e−Cn2
.

Consequently, the sum of Px over all x ∈ Vn and then over all n is finite, and
the Borel-Cantelli lemma then completes the proof of Lemma 3.2.

Taking Vn = {xn,k : k = 1, . . . , Mn}, and the subsequence n(j) =
j(log j)3, it follows from (3.9), (3.10) and the Borel-Cantelli lemma that a.s.

Cεn(j),1 ≥ (log εn(j),1)
2
(a

π
− 2√

log n(j)

)
,(3.11)

for all j large enough. Since ε �→ Cε is monotone nondecreasing, it follows that
for any εn(j+1),1 ≤ ε ≤ εn(j),1

Cε

(log ε)2
≥ Cεn(j+1),1

(log εn(j),1)2
.

Observing that (log εn(j+1),1)/(log εn(j),1) → 1 as j → ∞, we thus see that
(3.1) is an immediate consequence of (3.11).
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Remark. We note for use in Section 5 that essentially the same proof
shows that for any â < 2, almost surely,

sup
x∈n(j)−4S

T (x, εn(j),1) ≥ (log εn(j),1)
2
( â

π
− 2√

log n(j)

)
,(3.12)

for all j large enough. To see this we need only prove (3.9) with the sum now
going over j′ such that xn,j′ ∈ n−4S. This has the effect of replacing Mn by
n−4 times its previous value. Clearly (3.6) still holds, with perhaps a different
γ > 0. Also, we now have only (εn,n/εn)2 ≤ C2Mnn−42, but this is enough to
establish (3.7). The rest of the proof follows as before.

4. Proof of the lattice torus covering time conjecture

To establish Theorem 1.1 it suffices to prove that for any δ > 0

lim
n→∞

P
( Tn

(n log n)2
≥ 4

π
− δ

)
= 1(4.1)

since the complementary upper bound on Tn is contained in [4, Cor. 25, Chap.
7] (see also the references therein). Our approach is to use Theorem 1.2 to-
gether with the strong approximation results of [15] and [20].

Fix γ > 0 and let εn = 2nγ−1. Then by Theorem 1.2 for all n ≥ N0 with
some N0 = N0(γ, δ) < ∞,

P
(
Cεn

>
2(1 − γ − δ)2

π
(log n)2

)
≥ 1 − δ.(4.2)

By Einmahl’s [15, Theorem 1] multidimensional extension of the Komlós-
Major-Tusnády [20] strong approximation theorem, we may, for each n, con-
struct {Sk} and {Wt} on the same probability space so that a.s. for some
n0 = n0(ω) < ∞,

max
k≤4n2(log n)2

|Wk −
√

2Sk| ≤ nγ/6, ∀n ≥ n0.

Hence, dividing by
√

2n we have

max
k≤4n2(log n)2

| Wk√
2n

− Sk

n
| ≤ εn/2, ∀n ≥ n0

or, using Brownian scaling, we have

P
(

max
k≤4n2(log n)2

|Wk/2n2 − Sk

n
| ≥ εn/2

)
≤ δ(4.3)

for all n ≥ N ′
0 with some N ′

0 = N ′
0(γ, δ) < ∞.

Now, by (4.2) we see that with probability at least 1 − δ some disc
DT2(x, εn) ⊆ T2 is completely missed by{

Wk/2n2 mod Z2 ; k ≤ 4(1 − γ − δ)2

π
n2(log n)2

}
;
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hence by (4.3) with probability at least 1 − 2δ we have that{
Sk

n
mod Z2 ; k ≤ 4(1 − γ − δ)2

π
n2(log n)2

}
avoids some disc of radius εn/2 = nγ−1. Thus, the probability that{

Sk mod nZ2 ; k ≤ 4(1 − γ − δ)2

π
n2(log n)2

}
avoids some disc of radius nγ is at least 1 − 2δ, which implies (4.1).

5. Proof of the Kesten-Révész conjecture

Let Dr = D(0, r) ∩ Z2 denote the disc of radius r in Z2 and define its
boundary

∂Dr = {z /∈ Dr

∣∣∣ |z − y| = 1 for some y ∈ Dr}.

Let φn = (log n)2/ log log n and let Nn denote the number of excursions
in Z2 from ∂D2n to ∂Dn(log n)3 after first hitting ∂Dn(log n)3 , that is needed to
cover Dn. By [21, Theorem 1.1], it suffices to show that

lim sup
n→∞

P(log Tn ≤ t(log n)2) ≤ e−4/t,

and by [21, equation (7), p. 196], this is a direct consequence of the next lemma.

Lemma 5.1.

lim inf
n→∞

Nn

φn
≥ 2

3
in probability.(5.1)

Remark. Though not needed for our proof of Theorem 1.4, it is not hard
to modify the proof of Lemma 5.1 so as to show that Nn/φn → 2

3 in probability.
Let K(z, u) denote the Poisson kernel for the annular region

Ar := {z : r < |z| < 1/2} ,

such that for any continuous function g ≥ 0 on ∂Ar, we have

Ez(g(Wθ)) =
∫

∂Ar

g(u)K(z, u)du ,

where θ := inf{t ≥ 0 : Wt ∈ ∂Ar}, and Wt is a planar Brownian motion,
starting at W0 = z ∈ Ar. A preliminary step in proving Lemma 5.1 is the
following estimate about K(z, u) when |z| � r = |u|.

Lemma 5.2. There exists finite c > 2 such that if cr ≤ |z| < 1/(2c), then

sup
{u:|u|=r}

K(z, u) ≤
(
1 +

40r log(2r)
|z| log(2|z|)

)
inf

{u:|u|=r}
K(z, u).(5.2)
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Proof of Lemma 5.2. The series expansion

PA(x, u) = c0(x) +
∞∑

m=1

cm(x)Zm(x,
u

|u|)

is provided in [9, 10.11–10.13, p. 191] for the Poisson kernel PA(·, ·) in the
region A = {x : r0 < |x| < 1}, at its inner boundary |u| = r0, where

cm(x) = |x|−m

{
r0

|x|

}m 1 − |x|2m

1 − (r0)2m
, m ≥ 1,

and the “zonal harmonic” functions

Zm(x, eiφ) = 2|x|m cos(m(Arg(x) − φ))

are as given in [9, 5.9 and 5.18]. Note that for any x ∈ A

|PA(x, u) − c0(x)| ≤
∞∑

m=1

cm(x)|Zm(x,
u

|u|)|(5.3)

≤ 2
∞∑

m=1

(
r0

|x|

)m

=
2r0

|x| − r0
.

The function c0(x) = log(1/|x|)/ log(1/r0) is the harmonic function in A cor-
responding to the boundary condition 1|x|=r0

. By Brownian scaling K(z, u) =
PA(2z, 2u) for r0 = 2r. Hence, it follows from (5.3) and the value of c0(·), that
for all 2r ≤ |z| < 1/2,

sup
{u:|u|=r}

K(z, u) ≤
(

1 +
8f(r)

f(|z|) − 4f(r)

)
inf

{u:|u|=r}
K(z, u) ,

where f(t) := t log(1/(2t)). The proof is completed when we note that f(t) ≥
5f(r) for all cr ≤ t ≤ 1/(2c) provided c is large enough (c = 10 suffices).

With T2 = (−1/2, 1/2]2, our application of Lemma 5.2 is via the following
estimate.

Lemma 5.3. Assume W0 = X0 = β with |β| = R ∈ (r, 1/2), and let τr :=
inf{t ≥ 0 : |Wt| = r}. There exists finite c > 2, such that if cr ≤ R < 1/(2c),
then the law of Wτr

is absolutely continuous with respect to the law of Xτr
,

with Radon-Nikodym derivative hr(β, ·) such that

sup
|β|=R,|α|=r

hr(β, α) ≤ 1 +
40r log(2r)
R log(2R)

.(5.4)

Proof of Lemma 5.3. Recall that the exit time θ from the annular region
Ar is such that θ ≤ τr, with equality if and only if the path exits Ar via its inner
boundary ∂D(0, r). Moreover, with X0 = W0 = z ∈ Ar, the law of the path
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{Xt : 0 ≤ t ≤ θ} is identical to that of the path {Wt : 0 ≤ t ≤ θ}. Let L denote
the number of excursions of ωt between ∂D(0, R) and ∂D(0, 1/2) completed by
time τr. For each k ≥ 0, let µk(β, ·) denote the hitting (probability) measure
of ∂D(0, R) induced by Wt upon completing k such excursions, conditional
upon L ≥ k. Let νk(β, ·) denote the corresponding hitting measure induced
by the process Xt. Note that L has a geometric(p) law, where p < 1 is the
same for both processes Xt and Wt and is independent of the initial condition
z ∈ ∂D(0, R). Consequently, for any Borel set B ⊂ ∂D(0, r),

Pβ(Wτr
∈ B) =

∞∑
k=0

Pβ(Wτr
∈ B, L = k)

=
∞∑

k=0

pk

∫
∂D(0,R)

µk(β, dz)
∫

B
K(z, u)du ≤ 1

1 − p

∫
B

[ sup
|z|=R

K(z, u)]du ,

where K(z, u) is the Poisson kernel for Wt and the region Ar. Similarly,

Pβ(Xτr
∈ B) =

∞∑
k=0

pk

∫
∂D(0,R)

νk(β, dz)
∫

B
K(z, u)du

≥ 1
1 − p

∫
B

[ inf
|z|=R

K(z, u)]du .

Hence, for any B ⊂ ∂D(0, r),

Pβ(Wτr
∈ B) ≤ P β(Xτr

∈ B)
sup|z|=R,|u|=r K(z, u)
inf |z|=R,|u|=r K(z, u)

,

implying that Wτr
is absolutely continuous with respect to Xτr

, and by (5.2)
the Radon-Nikodym derivative hr(β, ·) clearly satisfies (5.4).

Proof of Lemma 5.1. For any K ⊆ T2 let

Cε(K) = sup
x∈K

T (x, ε)

be the ε-covering time of K. Fix a > 0 and b ∈ (0, 1). Set rε = a/| log ε|3.
Taking the isometry i : DT2(0, 1/2) �→ D(0, 1/2) to be the identity, omitting
i−1 throughout the proof, we can find sequences n(j) ↑ ∞ and εn(j),1 ↓ 0 with
(log εn(j+1),1)/(log εn(j),1) → 1 such that for any â < 2, almost surely

Cεn(j),1(D(0, brεn(j+1),1))(
log εn(j),1

)2 ≥
( â

π
− 2√

log n(j)

)
,

for all j large enough. Indeed, this follows from (3.12) after noting that
n(j)−4S ⊆ D(0, brεn(j+1),1). By first interpolating for εn(j+1),1 ≤ ε ≤ εn(j),1

using monotonicity and then letting â ↑ 2 we thus have that almost surely,

lim
ε→0

Cε(D(0, brε))
(log ε)2

=
2
π

.(5.5)
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Fix 1 > γ > 0. For the remainder of this section only we set εn = nγ−1

and rn = rεn
. Using the notation of Section 2, for x = 0, r = rn and any

R ∈ (0, 1/2), let

N ′
n(a, R, b) = max{j : Tj ≤ Cεn

(D(0, brn))}

denote the number of excursions of the Brownian motion Xt in the torus T2

from ∂DT2(0, rn) = ∂D(0, rn) to ∂DT2(0, R) = ∂D(0, R) up to time
Cεn

(D(0, brn)). Fixing δ > 0, let Nn = (2/3)(1 − γ)2(1 − 2δ)φn, noting that

2
π

(1 − δ)(log εn)2 ≥ (1 + δ)
Nn

π
log(R/r) ,

for all n ≥ n0(a, R, δ, γ), implying that,

P(N ′
n(a, R, b) ≤ Nn)≤P

(
Cεn

(D(0, brn)) ≤ 2
π

(1 − δ)(log εn)2
)

+P

 Nn∑
j=0

τ (j) ≥ (1 + δ)
log(R/r)

π
Nn

 .

Hence, by (2.11) and (5.5) it follows that for any R < R1(δ), a > 0 and
b ∈ (0, 1),

lim
n→∞

P
(
N ′

n(a, R, b) ≤ Nn

)
= 0.(5.6)

Our next task is to show that (5.6) applies for the excursion counts Nn(a, R, b)
that correspond to N ′

n(a, R, b), when Xt is replaced by the planar Brownian
motion Wt. To this end, consider the random vectors

Wk := (WTj−1+σ(j) , j = 1, . . . , k)

and Xk := (XTj−1+σ(j) , j = 1, . . . , k). Recall that the j-th excursion of Xt

from ∂DT2(0, r) to ∂DT2(0, R), starting at αj = XTj−1+σ(j) is precisely the
isomorphic image of a planar Brownian motion started at αj , and run until
first hitting ∂D(0, R) (and the same applies in case α0 = X0 = 0). Thus,
by the strong Markov property of both Xt and Wt at the stopping times
T0,T0 + σ(1),T1,T1 + σ(2), . . . we see that for every Borel set B ⊂ (∂D(0, r))k

P0(Wk ∈ B) = E0(
k−1∏
j=0

hr(XTj
, XTj+σ(j+1)); Xk ∈ B) .

Recall that |XTj
| = R and |XTj+σ(j+1) | = r for all j ≥ 0. Consequently,

the law of Wk is absolutely continuous with respect to the law of Xk, with
Radon-Nikodym derivative hk,r such that

‖hk,r‖∞ ≤
(

sup
|β|=R,|α|=r

hr(β, α)

)k

.
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With r = rn → 0, we thus have by (5.4) that for small enough R > 0 and all
n large enough,

‖hNn,rn
‖∞ ≤

(
1 +

40rn log(2rn)
R log(2R)

)Nn

.(5.7)

Since Nnrn| log(2rn)| → 0, we see that ‖hNn,rn
‖∞ → 1 as n → ∞. Since b < 1,

and with the j-th excursion of Xt from ∂DT2(0, r) to ∂DT2(0, R), starting at
some αj = XTj−1+σ(j) being the isomorphic image of a planar Brownian motion
started at αj , and run until first hitting ∂D(0, R), we get by the strong Markov
property of both Xt and Wt that for any k,

E
(
1Nn(a,R,b)≤k |σ(Wk)

)
= E

(
1N ′

n(a,R,b)≤k |σ(Xk)
)

,

implying that

P (Nn(a, R, b) ≤ k) = E
(
hk,rn

(Xk) , N ′
n(a, R, b) ≤ k

)
.(5.8)

It thus follows from (5.6), (5.7) and (5.8) that

P (Nn(a, R, b) ≤ Nn) = E
(
hNn,rn

(XNn
) , N ′

n(a, R, b) ≤ Nn

)
≤‖hNn,rn

‖∞P
(
N ′

n(a, R, b) ≤ Nn

)
→ 0 .(5.9)

Setting R < R0(δ) small enough for (5.9) to apply, with a := 2R(1 − γ)5 and
b := 1/(2(1 − γ)), we next use strong approximation, as in Section 4, to show
how (5.1) follows from this. Indeed, with tn := exp((log n)3), we may and
shall, for each n, construct {Sk} and {Wt} on the same probability space so
that for some n0 = n0(ω) < ∞

max
k≤tn

|Wk −
√

2Sk| ≤ nγ/2, ∀n ≥ n0 a.s.

Hence, multiplying by ρn := brn/(
√

2n) we have

max
k≤tn

|ρnWk − ρn

√
2Sk| ≤ εn/3, ∀n ≥ n0 a.s.

or, using Brownian scaling, we have

P
(

max
k≤tn

|Wkρ2
n
− ρn

√
2Sk| ≤ εn/3

)
≥ 1 − δ(5.10)

for all n ≥ N ′
0 with some N ′

0 = N ′
0(γ, δ) < ∞.

Recall that P(Tn > tn) → 0, see [21, Theorem 1.1], hence by (5.9), we see
that for all n sufficiently large,

P (Nn(a, R, b) > Nn, Tn ≤ tn) ≥ 1 − δ .(5.11)

Now, by (5.11) we have that with probability at least 1−δ some disc D(x, εn) ⊆
D(0, brn) is completely missed by {Wkρ2

n
} during the first Nn excursions

from ∂D(0, rn) to ∂D(0, R). Moreover, by (5.11), also the fact that
{
√

2ρnSk : k ≤ tn} covers
√

2ρnDn, with probability at least 1 − 2δ, we
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also have by (5.10), that the sequence {Wkρ2
n

: k ≤ tn} provides a (2εn/3)-
cover of the set D(0,

√
2ρnn). Our choice of ρn guarantees that the lat-

ter set is exactly D(0, brn). Consequently, in this case we know that the
Nn excursions mentioned above are completed by time ρ−2

n tn. Observe that
b > 1/2 and brn(log n)3 = R(1 − γ), hence (rn + εn/3) <

√
2ρn(2n) and

(R − εn/3) >
√

2ρnn(log n)3, for all n large. Appealing again to (5.10) we
thus further have that {

√
2ρnSk} avoids some disc of radius εn/3 = 1

3nγ−1 in
D(0,

√
2ρnn) during its first Nn excursions from

√
2ρn∂D2n to

√
2ρn∂Dn(log n)3 .

Thus, the probability that {Sk} avoids some lattice point in Dn during its first
Nn = 2

3(1−γ)2(1−2δ)φn excursions from ∂D2n to ∂Dn(log n)3 is at least 1−2δ.
Considering δ → 0, followed by γ → 0, we get (5.1).

6. First moment estimates

We start by analyzing the birth-death Markov chain {Yl} on the state
space {−n,−(n − 1), . . . ,−1}, starting at Y0 = −n, having both −n and
−1 as reflecting boundaries (so that P(Yl = −(n − 1)|Yl−1 = −n) = 1,
P(Yl = −2|Yl−1 = −1) = 1) and the transition probabilities

pk := P(Yl = −(k − 1)|Yl−1 = −k) = 1 − P(Yl = −(k + 1)|Yl = −k)(6.1)

=
log(k + 1)

log k + log(k + 1)
.

for k = 2, . . . , n − 1. Let ζ = 3a > 0 and

S := inf{m :
m∑

j=1

1{−n}(Yj) = ζn2 log n},

denote the number of steps it takes this birth-death Markov chain to complete
ζn2 log n excursions from −(n − 1) to −n. For each −n ≤ k ≤ −2,

Lk =
S∑

l=1

1{Yl−1=k,Yl=k+1} ,

denote the number of transitions of {Yl} from state k to state k + 1 up to
time S. (Thus, L−n = ζn2 log n.) As we show below, fixing x ∈ S, the law of
{Nx

n,k}n
k=2 relevant for the n-successful property, is exactly that of {L−k}n

k=2.
To get a hold on the latter, note that conditional on L−(k+1) = �k+1 ≥ 0 we
have the representation

L−k =

k+1∑
i=1

Zi ,(6.2)
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where the Zi are independent, identically distributed (geometric) random vari-
ables with

P(Zi = j) = (1 − pk)p
j
k . j = 0, 1, 2, . . . .(6.3)

Consequently, {Lk}−2
k=−n is a Markov chain on Z+ with initial condition L−n =

ζn2 log n, and transition probabilities P(L−k = 0|L−(k+1) = 0) = 1,

P
(
L−k = �

∣∣ L−(k+1) = m̃
)

=
(

m̃ − 1 + �

m̃ − 1

)
p


k(1 − pk)
m̃,(6.4)

for m̃ ≥ 1, � ≥ 0 and k = n − 1, . . . , 2.
Let nk = ζk2 log k for k = 3, . . . , n − 1 and define for 2 ≤ i < j ≤ n,

hi,j(�j) :=
∑

�i,... ,�j−1

|
k−nk|≤k

j−1∏
k=i

P
(
L−k = �k

∣∣ L−(k+1) = �k+1

)
,(6.5)

where �n = ζn2 log n and �2 = 0. The next lemma is key to estimating the
growth of hi,n(�n) in n.

Lemma 6.1. For some C = C(ζ) < ∞ and all 3 ≤ k ≤ n−1, |�−nk| ≤ k,
|m̃ − nk+1| ≤ k + 1, m̃ ≥ 1,

C−1 k−(ζ+1)

√
log k

≤ P
(
L−k = �

∣∣ L−(k+1) = m̃
)
≤ C

k−(ζ+1)

√
log k

.(6.6)

Proof of Lemma 6.1. With pk = 1 − pk and m = m̃ − 1 ≥ 0, we see that

1 − pk

pk
P

(
L−k = �

∣∣ L−(k+1) = m̃
)

=
(

m + �

m

)
pm

k (1 − pk)
+1 .(6.7)

The right-hand side of (6.7) is from [13, (7.6)] for which the bounds of (6.6)
are derived in [13, Lemma 7.2]. To complete the proof, note that pk = 1 − pk

is bounded away from 0 and 1 (see (6.1)).

Note that

inf
m̃≤n3+3

P
(
L−2 = 0

∣∣ L−3 = m̃
)
≥ (1 − p2)

n3+3 > 0.

Hence, setting hn,n(�n) = 1, it follows from (6.5) and (6.6) that for some
C1 < ∞,

C−1
1

k−ζ

√
log k

≤ hk,n(�n)
hk+1,n(�n)

≤ C1
k−ζ

√
log k

∀ 2 ≤ k ≤ n − 1 .(6.8)

Applying (6.8) we conclude also that for any γ > 0 there exists C2 = C2(γ) > 0
such that for all 2 ≤ l ≤ n − 1,

hl,n(�n) ≥
n−1∏
k=l

C−1
1

k−ζ

√
log k

≥ Cn−l
2

{
n!
l!

}−ζ−γ

.(6.9)
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Recall that εk = ε1(k!)−3 and εn,k = ρnεn(k!)3 for ρn = n−21 and k =
1, . . . , n. For n ≥ 3 and x ∈ S = [ε1, 2ε1]2, Rx

n denotes the time up to Xt

completes ζn2 log n excursions from i−1(∂D(x, εn,n−1)) to i−1(∂D(x, εn,n)) and
Nx

n,k, k = 2, . . . , n, denote the number of excursions from i−1(∂D(x, εn,k−1))
to i−1(∂D(x, εn,k)) until Rx

n. A point x ∈ S is n-successful if

Nx
n,2 = 0, nk − k ≤ Nx

n,k ≤ nk + k ∀k = 3, . . . , n − 1 .

The next lemma applies (6.8) to estimate the first moment of the n-
successful property.

Lemma 6.2. For all n ≥ 3, x ∈ S and some δn → 0, independent of ρn,

q̄n := P(x is n-successful) = (n!)−ζ−δn .(6.10)

Proof of Lemma 6.2. Observe that

pk =
log(εn,k+1/εn,k)

log(εn,k+1/εn,k−1)
,

is exactly the probability that the planar Brownian motion Bt starting at
any z ∈ ∂D(x, εn,k) will hit ∂D(x, εn,k−1) prior to hitting ∂D(x, εn,k+1), with
(Yl−1, Yl) recording the order of excursions the Brownian path makes between
the sets {∂D(x, εn,k), n ≥ k ≥ 1}. Note that 0 /∈ D(x, ε1) for x ∈ S, the above
mentioned probabilities are independent of the starting points of the excur-
sions, and ∂D(x, εn,k) ⊂ D(x, ε1) ⊂ D(0, 1/2), for all k = 1, . . . , n. Hence,
by the strong Markov property of the Brownian motion Xt on T2 with re-
spect to the starting times of its first nn excursions from i−1(∂D(x, εn,n−1))
to i−1(∂D(x, εn,n)), it follows that in computing q̄n of (6.10) we may and shall
replace Xt by the planar Brownian motion Bt = i(Xt). It follows from radial
symmetry and the strong Markov property of Brownian motion that q̄n is in-
dependent of x ∈ S. By Brownian scaling, q̄n is also independent of the value
of ρn ≤ 1. Moreover, as already mentioned, fixing x ∈ S, the law of {Nx

n,k}n
k=2

is exactly that of {L−k}n
k=2. We thus deduce that

q̄n = P
(
|L−k − nk| ≤ k ; 3 ≤ k ≤ n − 1 ; L−2 = 0

)
= h2,n(�n).(6.11)

Since n−1 log n! → ∞ and for some ηn → 0

n∏
k=2

log(k) = (n!)ηn ,

we see that the estimate (6.10) on q̄n is a direct consequence of the bound
(6.8).
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In Section 7 we control the second moment of the n-successful property.
To do this, we need to consider excursions between disks centered at x ∈ S as
well as those between disks centered at y ∈ S, y = x. The radial symmetry
we used in proving Lemma 6.2 is hence lost. The next lemma shows that,
in terms of the number of excursions, not much is lost when we focus on a
certain σ-algebra Gy

l which contains more information than just the number of
excursions in the previous level. To define Gy

l , let τ0 = 0 and for i = 1, 2, . . .

let

τ2i−1 = inf{t ≥ τ2i−2 : Xt ∈ i−1(∂D(y, εn,l−1))},
τ2i = inf{t ≥ τ2i−1 : Xt ∈ i−1(∂D(y, εn,l))}.

Thus, Ny
n,l = max{i : τ2i ≤ Ry

n}. For each j = 1, 2, . . . , Ny
n,l let

e(j) = {Xτ2j−2+t : 0 ≤ t ≤ τ2j−1 − τ2j−2}

be the j-th excursion from i−1(∂D(y, εn,l)) to i−1(∂D(y, εn,l−1)) (but note that
for j = 1 we do begin at t = 0). Finally, let

e(Ny
n,l+1) = {Xτ2N

y
n,l

+t : t ≥ 0}.

We let Jl := {l − 1, . . . , 2} and take Gy
l to be the σ-algebra generated by the

excursions e(1), . . . , e(Ny
n,l), e(Ny

n,l+1).

Lemma 6.3. For some C0 < ∞, any 3 ≤ l ≤ n, |ml − nl| ≤ l and all
y ∈ S,

P(Ny
n,k = mk; k ∈ Jl |Ny

n,l = ml,Gy
l )(6.12)

≤ (1 + C0l
−1 log l)

l−1∏
k=2

P
(
L−k = mk |L−(k+1) = mk+1

)
.

The key to the proof of Lemma 6.3 is to demonstrate that the number of
Brownian excursions involving concentric disks of radii εn,k, k ∈ Jl prior to
first exiting the disk of radius εn,l is almost independent of the initial and final
points of the overall excursion between the εn,l−1 and εn,l disks. The next
lemma provides uniform estimates sufficient for this task.

Lemma 6.4. Consider a Brownian path B· starting at z ∈ ∂D(y, εn,l−1),
for some 3 ≤ l ≤ n. Let τ̄ = inf{t > 0 : Bt /∈ D(y, εn,l)} and Zk, k ∈ Jl,
denote the number of excursions of the path from ∂D(y, εn,k−1) to ∂D(y, εn,k),
prior to τ̄ . Then, there exists a universal constant c < ∞, such that for all
{mk : k ∈ Jl}, uniformly in v ∈ ∂D(y, εn,l) and y,

Pz(Zk = mk, k ∈ Jl

∣∣ Bτ̄ = v) ≤ (1 + cl−3)Pz(Zk = mk, k ∈ Jl) .(6.13)
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Proof of Lemma 6.4. This is essentially [13, Lemma 7.4]. The only differ-
ence is that here we use the sequence of radii εn,k, for k = l, l − 1, l − 2, . . . , 2,
whereas [13] uses the radii εk, for k = l − 1, l, l + 1, . . . , n. The proof of [13,
Lemma 7.4] involves only the ratio εl/εl−1 = l−3 between the two exterior disks
and the fact that the probability pl of reaching the next disk (of radius εl+1

there), is uniformly bounded away from 1. The ratio of the two exterior disks
here is εn,l−1/εn,l = l−3 which is the same as in [13], whereas pl is replaced
here by pl−1, which is also uniformly bounded away from 1.

Proof of Lemma 6.3. Fixing 3 ≤ l ≤ n and y ∈ S, let Z
(j)
k , k ∈ Jl denote

the number of excursions from i−1(∂D(y, εn,k−1)) to i−1(∂D(y, εn,k)) during
the j-th excursion of the path Xt from i−1(∂D(y, εn,l−1)) to i−1(∂D(y, εn,l)).
If ml = 0 then the probabilities on both sides of (6.12) are zero unless mk = 0
for all k ∈ Jl, in which case they are both one; so the lemma trivially applies
when ml = 0. Considering hereafter ml > 0, since 0 /∈ i−1(D(y, ε1)) we have
that conditioned upon {Ny

n,l = ml},

Ny
n,k =

ml∑
j=1

Z
(j)
k , k ∈ Jl .(6.14)

Conditioned upon Gy
l , the random vectors {Z(j)

k , k ∈ Jl} are independent for
j = 1, 2, . . . , ml. Moreover, as Xt is the isomorphic image of a planar Brownian
motion Bt within D(y, εn,l), we see that {Z(j)

k , k ∈ Jl} then has the conditional
law of {Zk, k ∈ Jl} of Lemma 6.4 for some random zj ∈ ∂D(y, εn,l−1) and
vj ∈ ∂D(y, εn,l), both measurable on Gy

l (as zj corresponds to the final point
of e(j), the j-th excursion from i−1(∂D(y, εn,l)) to i−1(∂D(y, εn,l−1)) and vj

corresponds to the initial point of the (j + 1)-st such excursion e(j+1)). Let
Pl denote the finite set of all partitions {m(j)

k , k ∈ Jl, j = 1, . . . , ml : mk =∑ml

j=1 m
(j)
k , k ∈ Jl}. Then, by the uniform upper bound of (6.13) and radial

symmetry,

P(Ny
n,k = mk, k ∈ Jl

∣∣ Ny
n,l = ml,Gy

l )

=
∑
Pl

ml∏
j=1

Pzj (Zk = m
(j)
k , k ∈ Jl

∣∣ Bτ̄ = vj)

≤
∑
Pl

ml∏
j=1

(1 + cl−3)Pzj (Zk = m
(j)
k , k ∈ Jl)

= (1 + cl−3)mlP
(
Ny

n,k = mk, k ∈ Jl

∣∣ Ny
n,l = ml

)
.

Since ml ≤ c1l
2 log l we thus get the bound (6.12) by the representation used

in the proof of Lemma 6.2.
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7. Second moment estimates

Recall that Nx
n,k for x ∈ S, 2 ≤ k ≤ n, denotes the number of excursions

from i−1(∂D(x, εn,k−1)) to i−1(∂D(x, εn,k)) prior to Rx
n. With nk = ζk2 log k

we shall write N
k∼ nk if |N − nk| ≤ k for 3 ≤ k ≤ n − 1 and N = 0 when

k = 2. Relying upon the first moment estimates of Lemmas 6.2 and 6.3, we
next bound the second moment of the n-successful property.

Lemma 7.1. For any γ > 0 there exists C = C(γ) < ∞ such that for all
x, y ∈ S,

P (x and y are n-successful) ≤ q̄2
n n3+5ζCn−l

(
n!
l!

)ζ+γ

,(7.1)

where l = max{k ≤ n : |x − y| ≥ 2εn,k} ∨ 1 and q̄n := P (x is n-successful).
Furthermore, if |x − y| ≥ 2εn,n then for some C0 < ∞,

P (x and y are n-successful) ≤ (1 + C0n
−1 log n)q̄2

n .(7.2)

Proof of Lemma 7.1. Fixing x, y ∈ S, suppose 2εn,l+1 > |x − y| ≥ 2εn,l

for some n − 1 ≥ l ≥ 3. Since εn,l+2 − εn,l ≥ 2εn,l+1, it is easy to see that
i−1(D(y, εn,l)) ∩ i−1(∂D(x, εn,k)) = ∅ for all k = l + 1. Replacing hereafter
l by l ∧ (n − 3), it is easy to see that for k = l + 1, k = l + 2, the events
{Nx

n,k
k∼ nk} are measurable on the σ-algebra Gy

l defined above Lemma 6.3.
With Jl := {l − 1, . . . , 2} and Il := {2, . . . , l, l + 3, . . . , n − 1}, we note that

{x, y are n-successful} ⊂ {Nx
n,k

k∼ nk, k ∈ Il}
⋂

{Ny
n,k

k∼ nk, k ∈ Jl+1} .

Let M(Il) := {m2, . . . , mn−1 : mk
k∼ nk, k ∈ Il} (note that the range of

ml+1 , ml+2 is unrestricted), and M(Jl) := {m2, . . . , ml−1 : mk
k∼ nk, k ∈ Jl}.

Applying (6.12), we have that for some universal constant C3 < ∞,

(7.3)

P (x and y are n-successful)

≤
∑

M(Jl+1)

E
[
P(Ny

n,k = mk, k ∈ Jl

∣∣ Ny
n,l = ml,Gy

l ) ;Nx
n,k

k∼ nk, k ∈ Il

]
≤ C3P

(
Nx

n,k
k∼ nk, k ∈ Il

) ∑
|ml−nl|≤l

h2,l(ml).

Since, ∑
ml+1, ml+2

l+2∏
k=l

P
(
L−k = mk

∣∣ L−(k+1) = mk+1

)
= P

(
L−l = ml

∣∣ L−(l+3) = ml+3

)
≤ 1,
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taking mn = ζn2 log n, we have by the representation (6.11) of Lemma 6.2,
that

P
(
Nx

n,k
k∼ nk, k ∈ Il

)
=

∑
M(Il)

n−1∏
k=2

P
(
L−k = mk

∣∣ L−(k+1) = mk+1

)
(7.4)

≤hl+3,n(mn)
∑

|ml−nl|≤l

h2,l(ml)

(as mentioned, the sum over M(Il) involves the unrestricted ml+1 and ml+2).
Combining (7.3) and (7.4), we have

P (x and y are n-successful) ≤ C3hl+3,n(mn)
[ ∑
|ml−nl|≤l

h2,l(ml)
]2

.(7.5)

By (6.11) and the bounds of Lemma 6.1 we have the inequalities,

q̄n = h2,n(mn)≥hl,n(mn) inf
|ml−nl|≤l

h2,l(ml)(7.6)

≥hl,n(mn)C−2 sup
|ml−nl|≤l

h2,l(ml)

≥hl,n(mn)C−2(2l + 1)−1
∑

|ml−nl|≤l

h2,l(ml).

Combining (7.5) and (7.6), we see that for some universal constant C4 < ∞,

P (x and y are n-successful) ≤ C4n
2q̄2

n

hl+3,n(mn)
hl,n(mn)2

.

By (6.8), hl+3,n(mn)/hl,n(mn) ≤ C5n
3ζ+1 for some C5 < ∞ and all

l ≤ n − 3. Thus, we get (7.1) via the bound (6.9) on hl,n(mn), with the
extra n2ζ factor coming from the use of l∧ (n−3) throughout the above proof.
It also follows from (6.9) and (6.11) that when 2εn,3 > |x−y|, the trivial bound
P (x and y are n-successful) ≤ q̄n already implies (7.1).

Suppose next that |x − y| ≥ 2εn,n, in which case (7.1) is contained in the
sharper bound (7.2). To prove the latter, note that if |x− y| ≥ 2εn,n, then the
event {x is n-successful } is Gy

n measurable; hence

P (x and y are n-successful )

= E
({

P(y is n-successful
∣∣Gy

n)
}

, x is n-successful
)

= E
({

P(Ny
n,k

k∼ nk, k ∈ Jn

∣∣ Ny
n,n = mn, Gy

n)
}

, x is n-successful
)

,

and (7.2) follows from Lemma 6.3.
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8. The ε-covering time of a compact Riemannian manifold

Let M be a smooth, compact, connected two-dimensional, Riemannian
manifold without boundary. Let {Xt}t≥0 denote Brownian motion on M start-
ing at some nonrandom x0 ∈ M . The process {Xt}t≥0 is a symmetric, strong
Markov process with reference measure given by the Riemannian measure dA

and infinitesimal generator 1/2 the Laplace-Beltrami operator ∆M . We use
d(x, y) to denote the Riemannian distance between x, y ∈ M . With this no-
tion of distance we can take over the definitions used for the plane and the flat
torus: DM (x, r) denotes the open disc in M of radius r centered at x. For x

in M we have the ε-hitting time

T (x, ε) = inf{t > 0 |Xt ∈ DM (x, ε)}.
Then

Cε = sup
x∈M

T (x, ε)

is the ε-covering time of M .

Proof of Theorem 1.3. If g denotes the Riemannian metric for M , let M ′

denote the Riemannian manifold obtained by changing the Riemannian metric
for M to g′ = g/A, so that the area of M ′ is 1. Since ∆M ′ = 1

A∆M , it follows
that X ′

t = Xt/A is the Brownian motion on M ′. With C′
ε′ denoting the ε′-

covering time of M ′, we see that Cε has the same law as AC′
ε/

√
A
. Consequently,

it suffices to prove the theorem only for manifolds of area A = 1, which we
assume hereafter. Then, the statement and proof of Lemma 2.1 applies for any
fixed x ∈ M , upon replacing DT2(x, ·) by DM (x, ·).

Our assumptions about M imply the existence for some ξ > 0 of a smooth
isothermal coordinate system in each disc DM (u, ξ), u ∈ M (cf. for example [28,
p. 386 and Addendum 1]). This implies that with respect to such coordinates,
the Laplace-Beltrami operator ∆M is given on DM (u, ξ) by a(z)(∂2

1 + ∂2
2) for

some smooth, scalar function a : M → (0,∞), with a(z) = au(z) possibly
depending on u. Moreover, for each u ∈ M and δ > 0, upon choosing ξ =
ξ(u, δ) > 0 small enough, we may after translation and dilation, assume that for
the above mentioned coordinate system i : DM (u, ξ) �→ R2, we have i(u) = 0,
D(0, ρ) ⊂ i(DM (u, ξ/2)) for some ρ = ρ(u, δ) with 0 < ρ < ξ and if x, x′ ∈
DM (u, ξ), then

(1 − δ)|i(x) − i(x′)| ≤ d(x, x′) ≤ (1 + δ)|i(x) − i(x′)| .(8.1)

For any open G ⊆ DM (u, ξ), let τG = inf{t ≥ 0 : Xt /∈ G}. It follows that
for any z ∈ DM (u, ξ) we can find a Brownian motion Bt starting at i(z) such
that {i(Xt), t ≤ τG} = {BTt

, t ≤ τG} where Tt =
∫ t
0 a(Xs) ds; see [27, §V.1].

Thus, TτG
= τ̃i(G), where for any set D ⊆ R2 we write

τ̃D = inf{t ≥ 0 : Bt /∈ D}.
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Consequently (
inf
v∈G

a(v)
)

τG ≤
∫ τG

0
a(Xs) ds = τ̃i(G).(8.2)

The upper bound in (1.3) is obtained by adapting the proof provided in
Section 2. To this end, fixing 1/2 > δ > 0, extract a finite open subcover
∪jDM (uj , ξj/4) of the compact manifold M out of ∪u∈MDM (u, ξ(u, δ)/4).
Since a = minj infz∈DM (uj ,ξj) auj

(z) > 0, we have by (8.1), (8.2) and (2.15)
that for any R ≤ minj ξj/4

‖τR‖R := sup
x∈M

sup
z∈DM (x,R)

Ez(τDM (x,R)) ≤
R2

2a(1 − δ)2
→R→0 0.

With its proof otherwise unchanged, Lemma 2.2 applies for M . Moreover,
fixing j, we have that for any x ∈ DM (uj , ξj/4) and 0 < ε < R < ξj/4,

i−1(D(i(x), (1 − δ)ε))⊆DM (x, ε) ,

i−1(D(i(x), (1 − δ)R))⊆DM (x, R) ,

i−1(D(i(x), (1 − δ)−1R/e))⊇DM (x, R/e) .

Consequently, the left-hand side of (2.23) is bounded above by the probability
that Wt does not hit D(i(x), (1 − δ)ε) during nε excursions, each starting at
∂D(i(x), (1−δ)−1R/e) and ending at ∂D(i(x), (1−δ)R). This results in (2.23)
and hence in Lemma 2.3 holding, albeit with 1− δ′ = (1− δ)(1 + 2 log(1− δ))
instead of (1 − δ). Since M is a smooth, compact, two-dimensional mani-
fold, there are at most O(ε−2) points xj ∈ M such that inf
�=j d(x
, xj) ≥ ε.
The upper bound in (1.3) thus follows by the same argument that concludes
Section 2.

The complementary lower bound is next obtained by adapting the proof
provided in Section 3. To this end, fixing 1/2 > δ > 0, let ξ = ξ(δ) > 0 and
ρ = ρ(δ) > 0 be such that D(0, ρ) ⊂ i(DM (x0, ξ/2)) and (8.1) holds for the
isothermal coordinate system i on DM (x0, ξ), with i(x0) = 0. It follows that⋃

x∈S

D(x, ε1) ⊂ D(0, ρ) ⊆ i(DM (x0, ξ/2)) ,

provided ε1 < ρ/5. Choosing 0 < ε1 < ρ/5 small enough so that ε1 < R1(δ)
of Lemma 2.2, we say that x ∈ S is n-successful if (3.2) applies. The prob-
ability pk that a planar Brownian path Bt starting at any z ∈ ∂D(x, εn,k)
hits ∂D(x, εn,k−1) prior to ∂D(x, εn,k+1), is independent of z and this is true
even after an arbitrary random, path dependent, time change. With x0 /∈
i−1(D(x, ε1)), and i−1(∂D(x, εn,k)) ⊂ i−1(D(0, ρ)) for all k = 1, . . . , n, we see
that the identity (6.11) holds, resulting in the conclusion of Lemma 6.2. For
y ∈ S, let Gy

l be the σ-algebra generated by the excursions e(1), . . . , e(Ny
n,l),

e(Ny
n,l+1) as defined in Section 6. Note that Lemma 6.4 applies to the law of
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a planar Brownian excursion B· starting at z ∈ ∂D(y, εn,l−1), conditioned to
first exit D(y, εn,l) at v, even after an arbitrary random, path dependent, time
change (indeed, both sides of (6.13) are clearly independent of such a time
change). Moreover, the upper bound in (6.13) is independent of the initial
point z ∈ ∂D(y, εn,l−1). In case Ny

n,l = ml > 0, since x0 /∈ i−1(D(y, ε1))
we have the representation (6.14), where conditioned upon Gy

l , the random
vectors {Z(j)

k , k ∈ Jl} are independent for j = 1, 2, . . . , ml. Recall the above
mentioned identity between the ‘isomorphic image’ of the path of Xt until first
exiting i−1(D(y, εn,l)) and the law of a time-changed planar Brownian path
until its first exit of D(y, εn,l). This identity implies that each random vector
{Z(j)

k , k ∈ Jl} has the conditional law of {Zk, k ∈ Jl} of Lemma 6.4 for some
random zj ∈ ∂D(y, εn,l−1) and vj ∈ ∂D(y, εn,l), both measurable on Gy

l . With
(6.13) in force, we thus establish that the conclusion (6.12) of Lemma 6.3 ap-
plies here and can follow the proof of Lemma 7.1 to arrive at its conclusion.
Thus establishing all estimates of Sections 6 and 7, we have that Lemma 3.1
holds and consequently the bound of (3.9) applies. It follows from (8.1) that

i−1(∂D(x, εn,n−1))⊂DM (i−1(x), (1 + δ)εn,n−1) ,

i−1(∂D(x, εn,n))
⋂

DM (i−1(x), (1 − δ)εn,n) = ∅ ,

DM (i−1(x), (1 − δ)εn,1)⊆ i−1(D(x, εn,1)) .

Consequently, if x is n-successful, it follows that

T (i−1(x), (1 − δ)εn,1) ≥
N∑

j=0

τ (j) ,

where N = nn = 3an2 log n and τ (j) correspond now to excursions between the
sets ∂DM (i−1(x), (1− δ)εn,n) and ∂DM (i−1(x), (1 + δ)εn,n−1). The statement
and proof of Lemma 3.2 then apply, except that we now use
T (i−1(x), (1 − δ)εn,1) in (3.10). The lower bound in (1.3) follows by the same
argument as in Section 3, now with C(1−δ)εn(j),1

in (3.11).

9. Complements and unsolved problems

1. We have the following direct corollary of Theorem 1.2.

Corollary 9.1. For 0 < γ < 1 let Tn(γ) denote the time it takes until
the largest disk unvisited by the simple random walk in Z2

n has radius nγ. Then,

lim
n→∞

Tn(γ)
(n log n)2

=
4(1 − γ)2

π
in probability.

Equivalently, for 0 < α < 1 the logarithm to base n of the radius of the largest
unvisited disk at time αTn converges in probability to 1 −√

α.
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Proof of Corollary 9.1 . The lower bound on Tn(γ) is derived in Section 4.
By Theorem 1.2 also P(Cεn

< 2(1−γ+δ)2

π (log n)2) ≥ 1−δ for εn = 1
3nγ−1 and all

n large enough. Similarly to Section 4, this yields the upper bound on Tn(γ)
by strong approximation (and tail estimates for the supremum of |Wt−Wk/2n2 |
over t ∈ [k/2n2, (k + 1)/2n2] and k ≤ 4n2(log n)2).

2. Given a planar lattice L, let Lρ = L∩D(0, ρ), a finite connected graph
of Nρ vertices. Denote by Tρ the covering time for a simple random walk on
Lρ. The approach of Section 4 can be adapted so as to show that

lim
ρ→∞

Tρ

Nρ(log Nρ)2
= CL :=

A

2π(det Γ)1/2
in probability,

where

A = lim
ρ→∞

(
πρ2

Nρ

)
is the area of a fundamental cell of L and

Γ = lim
n→∞

1
n

E(SnS′
n) ,

is the two dimensional stationary covariance matrix associated with the simple
random walk on L (note that CL is invariant under affine transformations of
R2 and as such is an intrinsic property of L). Of particular interest are the
triangular (degree d = 3) and the honey-comb (degree d = 6) lattices for which
it is easy to check that Γ = 1

2I and A = d
4 tan(π

d ).

3. Jonasson and Schramm show in [18] the existence of universal constants
Cd > 0 such that for any planar graphs GN of N vertices and maximal degree
dmax(GN ) ≤ d, one has

lim inf
N→∞

T (GN )
N(log N)2

≥ Cd ,

where T (GN ) is the covering time for the simple random walk on GN . We
believe that Cd = d

4π tan(π
d ) for d = 3, 4 and d = 6, corresponding to GN taken

from the triangular, square and honey-comb lattices, of degree d = 3, 4 and 6,
respectively.

4. Recall that Tn denotes the (random) cover time for a simple random
walk in Z2

n. A natural question, suggested to us by David Aldous, is to find
a limit law for an appropriately normalized version of Tn. The analogies with
branching random walk lead us to suspect that perhaps the random variable
T 1/2

n /n, minus its median, will have a nondegenerate limit law.
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[22] R. Lyons and R. Pemantle, Random walks in a random environment and first-passage
percolation on trees, Ann. Probab. 20 (1992), 125–136.

[23] P. Matthews, Covering problems for Brownian motion on spheres, Ann. Probab. 16
(1988), 189–199.

[24] M. Mihail and C. H. Papadimitriou, On the random walk method for protocol testing,
Computer Aided Verification (Stanford, CA), 132–141, Lecture Notes in Comput. Sci .
818, Springer-Verlag, New York, 1994.

[25] A. M. Nemirovsky and M. D. Coutinho-Filho, Lattice covering time in D dimensions:
theory and mean field approximation, in Current Problems in Statistical Mechanics
(Washington, DC, 1991), Phys. A 177 (1991), 233–240.

[26] P. Révész, Random Walk in Random and Non-Random Environments, World Scientific
Publ. Col, Teaneck, NJ (1990).

[27] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer-Verlag,
New York (1991).

[28] M. Spivak, A Comprehensive Introduction to Differential Geometry , Vol. 4, Second
Edition, Publish or Perish Inc., Berkeley, CA (1975).

[29] H. S. Wilf, The editor’s corner: the white screen problem, Amer. Math. Monthly 96
(1989), 704–707.

[30] D. Zuckerman, A technique for lower bounding the cover time, SIAM J. Discrete Math.
5 (1992), 81–87.

(Received July 26, 2001)


