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ABSTRACT. – We show that thenth order renormalized self-intersection local timeγn(µ; t)
for the symmetric stable process inR2, where then-fold multiple points are weighted by an
arbitrary measureµ, can be characterized as the continuous process of zero quadratic variation
in the decomposition of a natural Dirichlet process. This Dirichlet process is the potential of a
random measure associated withγn−1(µ; t).  2001 Éditions scientifiques et médicales Elsevier
SAS

RÉSUMÉ. – Lorsque les points multiples d’archen sont changés par une mesure arbitraireµ, le
temps local d’auto-intersection renormaliséγn(µ, t) du processus symétrique stable deR2 peut-
être caractérisé comme le processus de variation de quadratique nulle de la décomposition d’un
processus de Dirichlet défini naturellement comme le potentiel d’une mesure aléatoire associée
àγn−1(µ, t).  2001 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Renormalized intersection local time can be thought of as an attempt to “measure” the
amount of self-intersections of a stochastic process, say,X(t) ∈Rd . A natural approach
is to set

α2,ε(µ, t)
def=

∫ ∫
{0�t1�t2�t}

fε(Xt1 − x)fε(Xt2 −Xt1)dt1 dt2 dµ(x) (1.1)

wherefε is an approximateδ-function at zero, and take the limit asε→ 0. Intuitively,
this gives a measure of the set of times(t1, t2) such thatXt1 =Xt2 = x,where the “double
points” x ∈ Rd are weighted by the measureµ. However, in general, this limit does
not exist because of the effect of the integral in the neighborhood of the diagonal. The
method used to compensate for this is called renormalization. For simplicity we restrict
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our discussion to symmetric Lévy processes. The renormalized intersection local time
γ2(µ, t) is defined as theε→ 0 limit of

γ2,ε(µ, t)= α2,ε(µ, t)− u1
ε(0)

t∫
0

fε(Xt1 − x)dt1 dµ(x) (1.2)

whenever the limit exists. Hereu1
ε(x)= ∫ fε(x−y)u1(y)dy andu1(x)= ∫∞

0 e−tpt (x)dt
is the 1-potential density. In general,u1

ε(0) ↑ ∞. In the most studied case,µ is taken to
be Lebesgue measure so that the subtraction term in (1.2) is simplyu1

ε(0)t . γ2(µ, t)

is an interesting new functional in its own right, but the fact that it is obtained from a
divergent functional by subtracting off an infinite counterterm leaves the ‘meaning’ of
γ2(µ, t) rather puzzling. This puzzle is only deepened when we find that renormalized
intersection local time, originally studied by Varadhan [16] for its role in quantum field
theory, turns out to be the right tool for the solution of certain “classical” problems such
as the asymptotic expansion of the area of the Wiener and stable sausage in the plane
and fluctuations of the range of stable random walks. (See Le Gall [8,7], Le Gall and
Rosen [10] and Rosen [14]. For further work on renormalized intersection local times see
Dynkin [4], Le Gall [9], Bass and Khoshnevisan [1], Rosen [15] and Marcus and Rosen
[11]). When we turn to the higher order renormalized intersection local timeγn(µ, t)

with its complicated scheme of subtractions, see (1.3), the need to find the ‘intrinsic
meaning’ ofγn(µ, t) becomes pressing.γn(µ, t) is defined as theε→ 0 limit of

γn,ε(µ, t)=
n−1∑
k=0

(−1)k
(
n− 1
k

)(
u1
ε(0)

)k
αn−k,ε(µ, t), (1.3)

where

αn,ε(µ, t)
def=

∫ ∫
{0�t1�···�tn�t}

fε(Xt1 − x)
n∏
j=2

fε(Xtj −Xtj−1)dt1 · · · dtn dµ(x) (1.4)

measures of the set of times(t1, . . . , tn) such thatXt1 = · · · = Xtn = x, with the “n-
multiple points”x ∈ Rd weighted by the measureµ.

The goal of this paper is to provide a natural characterization forγn(µ, t) which we
expect will lead to a deeper understanding of this important functional. The key idea
is thatγn(µ, t) has zero quadratic variation. In the case of second order renormalized
intersection local timeγ2(µ, t) for Brownian motion in the plane, withµ taken to be
Lebesgue measure, this was observed by Bertoin [2].

Recall that a continuous adapted processZt is said to have zero quadratic variation,
if for eachT > 0 and any sequence of partitionsτn = {0 = t0 < t1 < · · · < tn = T } of
[0, T ], with mesh size|τn| = maxi |ti − ti−1| going to 0

lim
n→∞E

( ∑
ti∈τn

(Zti −Zti−1)
2
)

= 0. (1.5)

Föllmer, [6] has coined the term “Dirichlet process” to refer to any process which can
be written as the sum of a martingale and a process of zero quadratic variation. It is
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important to note that such a decomposition is unique. The class of Dirichlet processes
is much wider than the class of semimartingales.

In the following we useYt to denote ourRd valued Lévy processXt killed at an
independent exponential timeλ. In the following theorems the renormalized intersection
local timesγk(µ; t) will be defined for the processYt in place ofXt .

Let us begin with a special case of the Doob–Meyer decomposition for semimartin-
gales. LetLµt denotes the continuous additive functional ofXt with Revuz measureµ.
Using the additivity ofLµt and the Markov property we have

Ex
(
L
µ
λ |Ft

)= L
µ
t∧λ +U1µ(Yt) (1.6)

whereFt = σ (Ys, s � t). Equivalently,U1µ(Yt)=Mt − L
µ
t∧λ whereMt = Ex(L

µ
λ |Ft )

is a martingale. This is the Doob–Meyer decomposition for the potentialU1µ(Yt).
We will show thatγ2(µ, t) arises in a similar decomposition for the potential of a
random measure. This new potential will no longer be a semimartingale but a Dirichlet
process, andγ2(µ, t) will correspond to the process of zero quadratic variation in the
decomposition of this Dirichlet process.

Let πµt be the random additive measure-valued process defined by

πµt (A)= L1A·µ
t =

t∫
0

1A(Ys)dL
µ
s (1.7)

for all A⊆Rd . Note that

U1πµt (Yt)=
t∫

0

u1(Yt − Ys)dLµs . (1.8)

Whenµ is Lebesgue measure, so thatLµs = s, we simply writeγ2(t) andπt for γ2(µ, t)

and πµt . Thus,πt(A) = ∫ t
0 1A(Ys)ds. We have the following analogue of the Doob–

Meyer decomposition.

THEOREM 1. – Let Y be a symmetric stable process of order β > 4/3 in R2, killed
at an independent exponential time λ. Then γ2(t) is continuous a.s. with zero quadratic
variation and

U1πt(Yt)=Mt − γ2(t) (1.9)

where Mt is the martingale Ex(γ2(λ)|Ft ).
In view of Theorem 1 we can characterize the renormalized intersection local time

γ2(t) as the continuous process of zero quadratic variation in the decomposition of
the random potentialU1πt(Yt) = ∫ t

0 u
1(Yt − Ys)ds. (Our approach is different from

Bertoin’s. He uses stochastic calculus, which essentially restricts one to the study of
Brownian motion.)

Theorem 1 is an immediate consequence of the next Theorem for generalµ. We let
D(x, ε)⊆R2 denote the disc of radiusε centered atx.
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THEOREM 2. –Let Y be a symmetric stable process of order 1< β in R2, killed at
an independent exponential time λ. If U1µ(x) is bounded and

sup
x

∫
D(x,1)

1

|x − y|3(2−β)+ζ dµ(y) <∞ (1.10)

for some ζ > 0 with 3(2 − β) + 2ζ > 2, then γ2(µ; t) is continuous a.s. with zero
quadratic variation and

U1πµt (Yt)=Mt − γ2(µ, t) (1.11)

where Mt is the martingale Ex(γ2(µ,λ)|Ft ).
Note in particular that for Brownian motion, condition (1.10) is the condition that

sup
x

∫
D(x,1)

1

|x − y|ζ dµ(y) <∞ (1.12)

for someζ > 1.
For eachA ∈ B(R2), the Borel sets inR2, let us define

πµ,n−1
t (A)= γn−1(1A ·µ, t). (1.13)

If πµ,n−1
t (A) is a (random) measure inA, we useU1π

µ,n−1
t to denote its potential.

The following Theorem leads inductively to an intrinsic characterization of the
higher order renormalized intersection local timesγn(µ, t) which does not use limiting
procedures.

THEOREM 3. – Let Y be a symmetric stable process of order β > 1 in R2, killed at
an independent exponential time λ. If U1µ(x) is bounded and

sup
x

∫
D(x,1)

1

|x − y|(2n−1)(2−β)+ζ dµ(y) <∞ (1.14)

for some ζ > 0 with (2n− 1)(2−β)+ 2ζ > 2, then γn(µ; t) is continuous a.s. with zero
quadratic variation and we can choose a version of {πµ,n−1

t (A); (A, t) ∈ B(R2)× R+}
which is a.s. a measure in A and continuous in t , and such that

U1πµ,n−1
t (Yt )=Mt − γn(µ, t) (1.15)

where Mt is the martingale Ex(γn(µ,λ)|Ft ).
Remarks. – (i) For Brownian motion, condition (1.14) reduces to the condition (1.12)

for someζ > 1.
(ii) As before, whenµ is Lebesgue measure we simply writeγn(t) andπnt for γn(µ, t)

andπµ,nt . The following is an immediate consequence of Theorem 3.
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COROLLARY 1. – Let Y be a symmetric stable process in R2 of order β > 2(2n −
2)/(2n − 1) killed at an independent exponential time λ. Then γn(t) is continuous
a.s. with zero quadratic variation and we can choose a version of {πn−1

t (A); (A, t) ∈
B(R2)×R+} which is a.s. a measure in A and continuous in t , and such that

U1πn−1
t (Yt )=Mt − γn(t) (1.16)

where Mt is the martingale Ex(γn(λ)|Ft ).
Note in particular that for Brownian motion our Theorem holds for alln.
(iii) The necessary and sufficient condition for the existence ofn-multiple points is

that
∫
(u1(y))n dy <∞, see [5]. In [11] we show that

E
({γn(µ; t)}2)=

∫ ∫
u1(x)

(
u1(x − y)

)2n−1
dµ(x)dµ(y). (1.17)

Sinceu1(x) ∼ Cx−(2−β) as |x| → 0, (1.14) is natural. In fact,U1µ(x) bounded and
(1.14) are precisely the conditions required by the techniques of [15] to show that
γn(µ; t) is continuous a.s.

(iv) The representation (1.15) is obtained in [12]. The new element here is thatγn(µ; t)
is continuous a.s. with zero quadratic variation

Of course, Theorem 2 is a special case of Theorem 3. We expect that the situation is
very different for processes inR3. Recall that whenµ is Lebesgue measure, (1.7) has
the particularly simple form:πµt (A)= ∫ t

0 1A(Ys)ds. This is certainly well defined when
Ys is Brownian motion inR3. We expect that in this case the random potentialU1π

µ
t (Yt)

is not a Dirichlet process, in contradistinction to the situation inR2. We are led to this
conjecture by the fact that the renormalized intersection local timeγ2(µ, t) does not exist
for Brownian motion inR3, [13].

For the remainder of this paper we fix a symmetric stable process of orderβ > 1 in
R2 and use the notationν = 2/β − 1.

This paper is organized as follows. In Section 2 we develop a new representation for
E(γ 2

n (µ; t)), which is then used in Sections 3 and 4 to prove Theorem 3. As mentioned,
this implies Theorems 1–2. In the final section we prove some estimates used in the
proof of Theorem 3.

2. A new representation for E(γ 2
n (µ; t))

Recall thatu1
ε(x)=

∫
fε(x−y)u1(y)dy andu1(x)= ∫∞

0 e−tpt (x)dt is the 1-potential
density of the unkilled process. We will useqt (x) for the transition density for our
exponentialy killed process and setqt,ε(x) = ∫

fε(x − y)qt (y)dy. Our starting point
is the following formula which comes from the proof of Lemma 7 of [12]:

E
(
γ 2
n (µ; t))= lim

ε→0

∑
s∈S

∫ ∫ ∫
{∑ tp�t}

∏
p∈Bs

{
qtp,ε(0)− u1

ε(0)δ(tp)
} ∏
p∈Bcs

qtp (x − y)

×∏
p

dtp dµ(x)dµ(y)
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= lim
ε→0

∑
s∈S

∫ ∫ ∫
{0�t1�···�t2n�t}

∏
p∈Bs

{
qtp−tp−1,ε(0)− u1

ε(0)δ(tp − tp−1)
}

× ∏
p∈Bcs

qtp−tp−1(x − y)
∏
p

dtp dµ(x)dµ(y), (2.1)

whereS is the set of mappings

s : {1, . . . ,2n} �→ {1,2}
such that|s−1(i)| = n, i = 1,2,Bs = {p | s(p)= s(p− 1)}.

We intend to rewrite this in a form in which theu1
ε(0)δ(tp − tp−1) terms have been

eliminated. To this end we define several operators onC(0, t] the space of continuous
functions on(0, t]:

I ε↑(h)(r)=
( ∞∫
r

qs,ε(0)ds

)
h(r)=Qε(r)h(r), (2.2)

I ε↓(h)(r)=
r∫

0

qs,ε(0)D−sh(r − s)ds, (2.3)

J ε1 (h)(r)= −I ε↑(h)(r)+ I ε↓(h)(r), (2.4)

and

J ε2 (h)(r)=
r∫

0

qs(x − y)h(r − s)ds. (2.5)

Here,Dx applied to a function of the variablex is defined byDxf = f (x)− f (0), and
althoughJ ε2 (h)(r) doesn’t depend onε, we have included theε in J ε2 (h)(r) for notational
convienience.

We will show how to express each summand on the r.h.s. of (2.1) in terms of the
operatorsJ ε1 , J

ε
2 . This representation will be used to show thatγn(µ; t) has 0 quadratic

variation.
Definers(p)= 1 if p ∈ Bs andrs(p)= 2 if p ∈ Bcs . Then using the notationJ εa J

ε
b for

the iteration of the operatorsJ εa andJ εb have

LEMMA 1. –

E
(
γ 2
n (µ; t))= lim

ε→0

∑
s∈S

∫ ∫ t∫
0

qs1(x)J
ε
rs(2)J

ε
rs(3) · · ·J εrs (2n)(1)(t − s1)ds1 dµ(x)dµ(y).

(2.6)

Proof. – Our approach consists of taking the right hand side of (2.1), integrating dti in
decreasing order ofi, and rewriting the resulting integrals. Fixs ∈ S .

Wheni ∈ Bs we use:
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t∫
ti−1

{
qti−ti−1,ε(0)− u1

ε(0)δ(ti − ti−1)
}
h(t − ti)dti

=
t∫

ti−1

qti−ti−1,ε(0)h(t − ti )dti − u1
ε(0)h(t − ti−1)

=
t−ti−1∫
0

qs,ε(0)h(t − ti−1 − s)ds − u1
ε(0)h(t − ti−1)

=
t−ti−1∫
0

qs,ε(0)h(t − ti−1)ds − u1
ε(0)h(t − ti−1)

+
t−ti−1∫

0

qs,ε(0)D−sh(t − ti−1 − s)ds

=
( t−ti−1∫

0

qs,ε(0)ds − u1
ε(0)

)
h(t − ti−1)+ I ε↓(h)(t − ti−1)

= J ε1 (h)(t − ti−1). (2.7)

While if i ∈ Bcs we use:

t∫
ti−1

qti−ti−1(x − y)h(t − ti )dti =
t−ti−1∫

0

qs(x − y)h(t − ti−1 − s)ds

= J ε2 (h)(t − ti−1). (2.8)

This completes the proof of Lemma 1.✷
To show thatγn(µ; t) has 0 quadratic variation we will need the following modifica-

tion of Lemma 1. For a fixeds ∈ S , let p̄(s)= max{p | s(p) �= s(2n)}.

LEMMA 2. – For any ri−1< ri

E
({γn(µ; ri)− γn(µ; ri−1)}2)
= lim

ε→0

∑
s∈S

∫ ∫ ri∫
ri−1

qs1(x)J
ε
rs (2)J

ε
rs(3) · · ·J εrs(2n)(1)(ri − s1)ds1 dµ(x)dµ(y)

+
p̄(s)∑
j=2

∫ ∫ ri−1∫
0

qs1(x)J
ε
rs (2)J

ε
rs(3) · · · J̄ εrs(j) · · ·

× J εrs(2n)(1)(ri−1 − s1)ds1 dµ(x)dµ(y) (2.9)
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where

J̄ ε1 (h)(s)=
ri∫

ri−1

qt−s,ε(0)h(ri − t)dt

and

J̄ ε2 (h)(s)=
ri∫

ri−1

qt−s(x − y)h(ri − t)dt.

Proof. –
As in (2.1),

E
({γn(µ; ri)− γn(µ; ri−1)}2)
= lim

ε→0

∑
s∈S

∫ ∫ ∫
{0�t1�···�t2n�ri}{ri−1<tp̄(s)�t2n�ri}

∏
p∈Bs

{
qtp−tp−1,ε(0)− u1

ε(0)δ(tp − tp−1)
}

× ∏
p∈Bcs

qtp−tp−1(x − y)∏
p

dtp dµ(x)dµ(y). (2.10)

Here we have used theδ(tp − tp−1) notation to allow us to write the condition arising in
the quadratic variation in the compact formri−1 < tp̄(s) � t2n � ri .

We have

{0� t1 � · · · � t2n � ri; ri−1< tp̄(s) � t2n � ri}
= {0� t1 � · · · � t2n � ri; ri−1< tp̄(s) � ri}

=
p̄(s)⋃
j=1

{0� t1 � · · · � tj−1 � ri−1< tj � · · · � t2n � ri} (2.11)

where the union is disjoint.
Thus, using the proof of Lemma 1∫ ∫ ∫
{0�t1�···�t2n�ri }{ri−1<tp̄(s)�t2n�ri }

∏
p∈Bs

{
qtp−tp−1,ε(0)− u1

ε(0)δ(tp − tp−1)
}

× ∏
p∈Bcs

qtp−tp−1(x − y)
∏
p

dtp dµ(x)dµ(y)

=
p̄(s)∑
j=1

∫ ∫ ∫
{0�t1�···�t2n�ri}{tj−1�ri−1<tj }

∏
p∈Bs

{
qtp−tp−1,ε(0)− u1

ε(0)δ(tp − tp−1)
}

× ∏
p∈Bcs

qtp−tp−1(x − y)
∏
p

dtp dµ(x)dµ(y)

= lim
ε→0

∑
s∈S

∫ ∫ ri∫
ri−1

qs1(x)J
ε
rs (2)J

ε
rs(3) · · ·J εrs(2n)(1)(ri − s1)ds1 dµ(x)dµ(y)
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+
p̄(s)∑
j=2

∫ ∫ ri−1∫
0

qs1(x)J
ε
rs(2)J

ε
rs(3) · · · J̄ εrs (j) · · ·J εrs(2n)(1)(ri−1 − s1)ds1 dµ(x)dµ(y),

(2.12)

where we have used the fact that
ri∫

tj−1

1{tj−1�ri−1<tj }{qtj−tj−1,ε(0)− u1
ε(0)δ(tj − tj−1)}h(ri − tj )d

= 1{tj−1�ri−1}

ri∫
ri−1

qtj−tj−1,ε(0)h(ri − tj )dtj , tj (2.13)

and
ri∫

tj−1

1{tj−1�ri−1<tj }qtj−tj−1(x − y)h(ri − tj )dtj

= 1{tj−1�ri−1}

ri∫
ri−1

qtj−tj−1(x − y)h(ri − tj )dtj . (2.14)

and note that we can remove the factor 1{tj−1�ri−1} in these displays, since it is
automatically taken into account in the subsequent integration. This completes the proof
of Lemma 2. ✷

3. A uniform upper bound

In this section we will show that each term on the right hand side of (2.6) is uniformly
bounded inε > 0. Although not strictly necessary for proving Theorem 3, this will give
us an opportunity to develop, in a simpler setting, the tools and ideas used in our proof
that γn(µ; t) has 0 quadratic variation. To anticipate things a bit, we mention that the
real problem in showing the uniform bound inε > 0 comes fromI↓, due to the non-
integrability ofqs nears = 0. The remedy will be found inD−s . We now develop this
idea in detail.

Let J ε(1,↑) = −I ε↑ andJ ε(1,↓) = I ε↓. We fix s ∈ S , and breaking upJ ε1 asJ ε(1,↑) + J ε(1,↓)
we can write∫ ∫ t∫

0

qs1(x)J
ε
rs (2)J

ε
rs(3) · · ·J εrs(2n)(1)(t − s1)ds1 dµ(x)dµ(y) (3.1)

= ∑
U⊆Bs

∫ ∫ t∫
0

qs1(x)J
ε
rs(2),U

J εrs(3),U · · ·J εrs(2n),U (1)(t − s1)ds1 dµ(x)dµ(y),

wherers(j),U = (1,↓) if j ∈ U , rs(j),U = (1,↑) if j ∈ V def= Bs − U , andrs(j),U = 2 if
j ∈ Bcs . FixingU ⊆ Bs , and settingW = Bcs − {1} we can rewrite each summand in the
right hand side of (3.1):
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∫ ∫ t∫
0

qs1(x)J
ε
rs(2),U

J εrs(3),U · · ·J εrs(2n),U (1)(t − s1)ds1 dµ(x)dµ(y)

= (−1)|V |
∫ ∫ ∫

1[0,t ](s1)qs1(x)
∏
i∈U

1[0,t ]
(∑
l�i
sl

)
qsi ,ε(0)D−si

∏
j∈V

Qε

(
t −∑

l<j

sl

)
δ(sj )

∏
k∈W

1[0,t ]
(∑
l�k
sl

)
qsk (y − x)

2n∏
l=1

dsl dµ(x)dµ(y), (3.2)

where it is to be understood that the operatorD−sm operates only on the factors
1[0,t ](

∑
l�i sl ),Qε(t −∑l<j sl) and 1[0,t ](

∑
l�k sl) corresponding toi, j, k > m. We note

that the many factors 1[0,t ](
∑
l�i sl) are redundant, but keeping them will make the

connection with the following section, where we prove Theorem 3, easier.
We then use the fact thatDxfg = (Dxf )g(x) + f (0)Dxg to rewrite the right hand

side of (3.3) as a sum of many terms, in which eachD−sm is applied to one factor of the
form 1[0,t ](

∑
l�j sl) orQε(t −∑l<j sl) with j >m. We fix one such (generic) term, and

show that it is bounded asε→ 0. Such a term can be written as

∫ ∫ ∫
1[0,t ](s1)qs1(x)

∏
i∈U

({ ∏
m∈Ui

D−sm
}

1[0,t ]
(∑
l�i
sl

))
qsi ,ε(0)

× ∏
j∈V

({ ∏
m∈Uj

D−sm
}
Qε

(
t −∑

l<j

sl

))
δ(sj )

× ∏
k∈W

({ ∏
m∈Uk

D−sm
}

1[0,t ]
(∑
l�k
sl

))
qsk (y − x)

2n∏
l=1

dsl dµ(x)dµ(y) (3.3)

whereU =⋃
r Ur .

For the remainder of this section we restrict our discussion to the case ofβ < 2. The
case of Brownian motion will follow by the same line of reasoning but will be simpler
due to the fact that for Brownian motionu1(x) has a logarithmic (as opposed to a power)
singularity as|x| → 0.

Let ν = 2/β − 1. Our approach is to bound thedsl integration, proceeding in
decreasing order ofl, and showing that eachD−sm allows us to ‘extract’ a factorsν(1+δ)

m ,
which will then allow us to controlqsm nearsi = 0. We must consider in turn the three
cases ofl ∈ V,U,W . We show how to bound each integration seperately and then use
a counting argument to show how to put it all together. As the reader goes through the
following lines, he should observe how eachJ ε1 contributes a factor ofQε(·), either
directly asJ ε1,↑, or indirectly asJ ε1,↓ through the operatorD−s· .

Consider firstj ∈ V , and use the mean value theorem, monotonicity andQ(t) ∼
Ct−ν to bound

∣∣∣∣
{ ∏
m∈Uj

D−sm
}
Qε

(
t −∑

l�j
sl

)∣∣∣∣� CQ1+|Uj |+δ
(
t −∑

l�j
sl

) ∏
m∈Uj

sν(1+δ)
m . (3.4)
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Here and throughout the paperδ > 0 will denote a constant which may change from line
to line but which can be made arbitrarily small. Similarly,C will denote a finite constant
which may change from line to line.

Let

u0(x, ρ)=
{
(u0(x))ρ = c|x|−(2−β)ρ if |x| � 1,
c|x|−(2+β) if |x| � 1.

We note thatC ′u0(x,1)� u1(x)� Cu0(x,1), see Lemma 5.
We now state two lemmas which will allow us to handle respectivelyi ∈U andk ∈W .

The proofs of these lemmas will be given in the final section. The second display in each
lemma will only be used in the following section when we prove Theorem 3.

LEMMA 3. –∫ ∣∣∣∣
{ ∏
m∈Uk

D−sm
}

1[0,t ]
(∑
l�k
sl

)∣∣∣∣qsk (y − x)Qhk+δ
(
t −∑

l�k
sl

)
dsk (3.5)

�Cu0(y − x,1+ |Uk| + hk + δ)
∏
m∈Uk

sν(1+δ)
m .

Furthermore, for any ρ � 0 with (ρ + |Uk| + hk)ν < 1 we have∫ ∣∣∣∣
{ ∏
m∈Uk

D−sm
}

1[ri−1,ri ]
(∑
l�k
sl

)∣∣∣∣qsk (y − x)Qhk+δ
(
t −∑

l�k
sl

)
dsk (3.6)

� C|ri − ri−1|ρνu0(y − x,1+ ρ + |Uk| + hk + δ)
∏
m∈Uk

sν(1+δ)
m .

LEMMA 4. –∫ ∣∣∣∣
{ ∏
m∈Ui

D−sm
}

1[0,t ]
(∑
l�i
sl

)∣∣∣∣sν(1+δ)
i qsi ,ε(0)Q

hi+δ
(
t −∑

l�i
sl

)
dsi (3.7)

�CQ|Ui |+hi+δ
(
t −∑

l<i

sl

) ∏
m∈Ui

sν(1+δ)
m .

Furthermore, for any ρ ′ � 0 with (ρ ′ + |Ū | + h)ν < 1 we have∫ ∣∣∣∣
{∏
m∈Ū

D−sm
}

1[ri−1,ri ]
(∑
l�j
sl

)∣∣∣∣qsj ,ε(0)Qh+δ
(
ri −

∑
l�j
sl

)
dsj (3.8)

�C|ri − ri−1|ρ′νQ1+ρ′+|Ū |+h+δ
(
ri−1 −∑

l<j

sl

) ∏
m∈Ū

sν(1+δ)
m .

We now explain how to put all these steps together to show that the terms on the right
hand side of (2.6) are uniformly bounded inε. Using (3.4), (3.5) and (3.7) it is easy to
check that for eachi ∈ U we pick up a factorsν(1+δ)

i prior to integrating with respect
to dsi , which allows us to control the singular termqsi,ε(0). Integrating with respect
to si, i ∈ U contributes|Ui| factors ofQε, while eachsj , j ∈ V contributes 1+ |Uj |
factors ofQε. If k+ denotes the successor tok in W , (with natural ordering), the number
of suchQε factors arising in this manner fromsr with r betweenk and k+ is hk =
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∑
k<r<k+{|Ur | + 1V (r)}. (If k is the largest element inW , setk+ = 2n+ 1). Integrating

with respect tosk, k ∈W replaces thesehk factors ofQε by u0(y−x,1+|Uk |+hk + δ).
If we usek0 to denote the smallest element inW , then after integrating with respect to
sk0 we are left with

∑
k∈W(1+ |Uk| + hk + δ) ‘powers’ ofu0(y − x), i.e.

u0
(
y − x, |W | + ∑

r�k0

{|Ur | + 1V (r)} + δ
)
. (3.9)

Similarly, integrating with respect tos1 replaces all factors ofQε picked up after
integrating with respect tosk0 with

u0
(
x,1+ ∑

r<k0

{|Ur | + 1V (r)} + δ

)
. (3.10)

Since

|W |+ ∑
r�k0

{|Ur |+1V (r)}+1+∑
r<k0

{|Ur |+1V (r)} = 1+|W |+ |U |+ |V | = 2n, (3.11)

our assumption that supx
∫
u0(x − y,2n − 1 + ζ )dµ(y) <∞ completes the proof that

the terms on the right hand side of (2.6) are uniformly bounded inε.

4. Quadratic variation

We begin by focusing on the case ofβ < 2. The basic idea which will now be exploited
to show thatγn(µ; t) has zero quadratic variation is that since supx

∫
u0(x− y,2n− 1+

ζ )dµ(y) <∞, in some sensedµ(x)dµ(y) can ‘handle’ 2(2n− 1 + ζ )= 4n− 2 + 2ζ
‘powers’ of u0, and since only 2n powers appear in (3.9)–(3.11), there is an excess
capacity to handle an additional 2n − 2 + 2ζ powers. We will see that these can be
‘traded’ for (2n− 2+ 2ζ )ν > 1 powers of|ri − ri−1|. We now provide the details.

Proof of Theorem 3. – As mentioned, we first discuss the case ofβ < 2. Unraveling
the term for a fixedj on the right hand side of (2.9), we obtain expressions similar to
(3.3) with the following differences: each factor of the form 1[0,t ](

∑
l�m sl)withm� j is

replaced by 1[ri−1,ri ](
∑
l�m sl), while each factor of the form 1[0,t ](

∑
l�m sl) with m< j

is replaced by 1[0,ri−1](
∑
l�m sl), and ifrs(j)= 1 then, see (2.13), the operatorDsj is not

present. (Since this operator was essential in controlling the non-integrability ofqsj (0)
nearsj = 0, we will have to provide a different way to deal with this problem, see below.)

A: Consider the first term on the rhs of (2.9). As mentioned, the analogue of (3.3)
has each 1[0,t ] replaced by 1[ri−1,ri ]. We proceed as in the previous section except that we
apply (3.6) when we integrate with respect tosk0 ands1. We obtain the bound

|ri − ri−1|(ρ+ρ′)νu0
(
x,1+ ρ ′ + ∑

r<k0

{|Ur| + 1V (r)} + δ

)

u0
(
y − x,ρ + |W | + ∑

r�k0

{|Ur | + 1V (r)} + δ
)
. (4.1)
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By assumptions we can findζ > 0 with supx
∫
u0(x − y,2n − 1 + ζ )dµ(y) <∞ and

(2n− 1+ 2ζ )(2− β) > 2. Chooseρ ′, ρ so that

1+ ρ ′ + ∑
r<k0

{|Ur| + 1V (r)} + δ = 2n− 1+ ζ (4.2)

and

ρ + |W | + ∑
r�k0

{|Ur | + 1V (r)} + δ = 2n− 1+ ζ. (4.3)

Using (3.11) now shows that

ρ ′ + ρ = 2n− 2+ 2ζ, (4.4)

so that after integrating with respect to dµ(x)dµ(y) we are left with the bound
|ri − ri−1|(2n−2+2ζ )ν. Since our assumption that(2n − 1 + 2ζ )(2 − β) > 2 implies
(2n − 2 + 2ζ )ν > 1. we see that the first term on the rhs of (2.9) contributes zero to
the quadratic variation.

B: Consider one of the later terms on the rhs of (2.9). We treat the case thatrs(j)= 1.
The case ofrs(j)= 2 is similar. Letk∗ = inf{k ∈W |k > j}. Assume first thatk∗ = k0.
As above, we apply we apply (3.6) when we integrate with respect tosk0. Thedsj integral
is our last opportunity to extract powers of|ri − ri−1|. Recall that sinceD−sj is absent,
we never picked up a factorsν+δj . We use (3.8). As in case A, we can use this to show
that our term contributes zero to the quadratic variation.

Assume finally thatk0 < k
∗. We proceed as before except that we apply (3.6) when

we integrate with respect tosk∗ , and (3.8) when we integrate with respect tosj . This
generates a large number ofQ factors that can only be handled by theds1 integration.
We thus temporarily interupt our procedure of integrating with respect tosl in decreasing
order ofl, and integrate now with respect tos1. We use (3.5) in the form∫ ∏

a∈U
a<j

∣∣∣∣
{ ∏
m∈Ua

D−sm
}

1[0,ri−1]
(∑
l�a
sl

)∣∣∣∣ ∏
b∈V
b<j

Q1+|Ub|+δ
(
ri−1 −∑

l�b
sl

)
(4.5)

×Q
1+ρ′+∑

j�r<k∗ {|Ur |+1V (r)}+δ
(
ri−1 −∑

l<j

sl

)
qs1(x)ds1

� u0
(
x,1+ ρ ′ + ∑

r<k∗
{|Ur | + 1V (r)} + δ

)∏
a∈U
a<j

∏
m∈Ua

sν(1+δ)
m .

We then resume our procedure of integrating with respect tosl in decreasing order of
l. The integral with respect tosa for each remaininga ∈ U is finite, while those with
respect tosk for each remainingk ∈ W each provide a factor ofu1(y − x). The case
of k0 < k

∗ is then completed using (4.2) and (4.3), but withk0 replaced byk∗. This
completes the proof thatγn(µ; t) has zero quadratic variation whenβ < 2. The case
of Brownian motion is even easier, using Lemma 6 in place of Lemma 5 to prove the
necessary analogues of Lemmas 3 and 4, see the next section. Condition (1.12) for some
ζ > 1 is only needed to extract a factor|ri − ri−1|ζ ′

for someζ ′ > 1.
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To complete the proof of our Theorem it only remains to show that we can choose
a version of{πµ,n−1

t (A); (A, t) ∈ B(R2) × R+} which is a.s. a measure inA and
continuous int , and such that (1.15) holds. Under the conditions of our Theorem this
follows from the methods of [12]. ✷

5. Proofs of Lemmas 3 and 4

Proof of Lemma 4. – Assume first thatUi �= ∅.∫ ∣∣∣∣
{ ∏
m∈Ui

D−sm
}

1[0,t ]
(∑
l�i
sl

)∣∣∣∣sν(1+δ)
i qsi ,ε(0)Q

hi+δ
(
t −∑

l�i
sl

)
dsi

�
∫ ∣∣∣∣
{ ∏
m∈Ui

D−sm
}

1[0,t ]
(∑
l�i
sl

)∣∣∣∣s−1+νδ
i Qhi+δ

(
t −∑

l�i
sl

)
dsi

�Q|Ui |+hi+3δ
(
t −∑

l<i

sl

)

×
∫ ∣∣∣∣
{ ∏
m∈Ui

D−sm
}

1[0,t ]
(∑
l�i
sl

)∣∣∣∣s−1+(|Ui |+hi+4δ)ν
i Qhi+δ

(
t −∑

l�i
sl

)
dsi, (5.1)

where we have used the presence of|∏m∈Ui D−sm1[0,t ](
∑
l�i sl)| to guarantee that

si � t −∑l<i sl . We use the generalized Hölder’s inequality to bound∫ ∣∣∣∣
{ ∏
m∈Ui

D−sm
}

1[0,t ]
(∑
l�i
sl

)∣∣∣∣s−1+(|Ui |+hi+4δ)ν
i Qhi+δ

(
t −∑

l�i
sl

)
dsi

�
∥∥∥∥
{ ∏
m∈Ui

D−sm
}

1[0,t ]
(∑
l�i
sl

)∥∥∥∥
a

∥∥s−1+(|Ui |+hi+4δ)ν
i

∥∥
b

∥∥∥∥Qhi+δ
(
t −∑

l�i
sl

)∥∥∥∥
c

�C
∏
m∈Ui

s
ν(1+δ)
i , (5.2)

where 1/a = (|Ui| + δ)ν, 1/b = 1 − (|Ui| + hi + 3δ)ν, and 1/c = (hi + 2δ)ν.
Our choice ofc makes‖Qhi+δ(t − ∑

l�i sl )‖c < ∞, while our choice ofb makes

‖s−1+(|Ui |+hi+4δ)ν
i ‖b < ∞. Finally, for eachm ∈ Ui we note that {∏m∈Ui D−sm}

1[0,t ](
∑
l�i sl ) is the characteristic function of a finite union of intervals of length� sm

so that we have‖{∏m∈Ui D−sm}1[0,t ](
∑
l�i sl)‖a � Cs(|Ui |+δ)νm , and the last line of (5.2)

follows by interpolation and adjustment ofδ.
If, on the other hand, we haveUi = ∅, we use the simple identity fora + b > 1

∫
s−a(t − s)−b ds = Ct−(a+b−1)

to bound ∫
s
ν(1+δ)
i qsi ,ε(0)Q

hi+δ
(
t −∑

l�i
sl

)
dsi
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=
∫
s−1+νδ
i Qhi+δ

(
t −∑

l�i
sl

)
dsi �Qhi+δ

(
t −∑

l<i

sl

)
(5.3)

which completes the proof of (3.7).
To prove (3.8) we begin by using the presence of 1[ri−1,ri ](

∑
l�j sl) to guarantee that

sj � ri−1 −∑l<j sl we have that∫ ∣∣∣∣
{∏
m∈Ū

D−sm
}

1[ri−1,ri ]
(∑
l�j
sl

)∣∣∣∣qsj ,ε(0)Qh+δ
(
ri −

∑
l�j
sl

)
dsj

=
∫ ∣∣∣∣
{∏
m∈Ū

D−sm
}

1[ri−1,ri ]
(∑
l�j
sl

)∣∣∣∣s−1−ν
j Qh+δ

(
ri −

∑
l�j
sl

)
dsj

�Qρ+1+|Ū |+h+4δ
(
ri−1 −∑

l<j

sl

)∫ ∣∣∣∣
{∏
m∈Ū

D−sm
}

1[ri−1,ri]
(∑
l�j
sl

)∣∣∣∣
× s

−1+(ρ+|Ū |+h+4δ)ν
j Qh+δ

(
ri −

∑
l�j
sl

)
dsj . (5.4)

We use the generalized Hölder’s inequality as in (5.2), this time with 1/a = (ρ+|Ū |+
δ)ν, 1− 1/b = (ρ + |Ū | + h+ 3δ)ν, 1/c= (h+ 2δ)ν to bound∫ ∣∣∣∣

{∏
m∈Ū

D−sm
}

1[ri−1,ri ]
(∑
l�j
sl

)∣∣∣∣s−1+(ρ+|Ū |+h+4δ)ν
j Qh+δ

(
ri −

∑
l�j
sl

)
dsj

�
∥∥∥∥
{∏
m∈Ū

D−sm
}

1[ri−1,ri ]
(∑
l�j
sl

)∥∥∥∥
a

∥∥s−1+(ρ+|Ū |+h+4δ)ν
j

∥∥
b

∥∥∥∥Qh+δ
(
ri −

∑
l�j
sl

)∥∥∥∥
c

� C|ri − ri−1|ρν
∏
m∈Ū

sν(1+δ)
m , (5.5)

where we have used‖{∏m∈Ū D−sm}1[ri−1,ri ](
∑
l�k sl)‖a � C|ri − ri−1|1/a and interpo-

lated as before, which completes the proof of (3.8).✷
Proof of Lemma 3. – We now use the generalized Hölder’s inequality to bound∫ ∣∣∣∣

{ ∏
m∈Uk

D−sm
}

1[0,t ]
(∑
l�k
sl

)∣∣∣∣qsk (y − x)Qhk+δ
(
t −∑

l�k
sl

)
dsk

�
∥∥∥∥
{ ∏
m∈Uk

D−sm
}

1[0,t ]
(∑
l�k
sl

)∥∥∥∥
a

‖qsk (x − y)‖b
∥∥∥∥Qhk+δ

(
t −∑

l�k
sl

)∥∥∥∥
c

(5.6)

with 1/a = (|Uk| + δ)ν, 1/b= 1− (|Uk| + hk + 3δ)ν, and 1/c= (hk + 2δ)ν.
Our choice ofc makes‖Qhk+δ(t −∑

l�k sl)‖c <∞, while, by Lemma 5 below, our
choice ofb gives the bound‖qsk (x − y)‖b � Cu0(y − x,1 + |Uk| + hk + δ), where we
have readjustedδ for ease of notation. Handling the term‖{∏m∈Uk D−sm}1[0,t ](

∑
l�k sl‖a

as above now completes the proof of (3.5).
The proof of (3.6) is similar, except that we now take 1/a = (ρ + |Uk| + δ)ν,

1/b = 1 − (ρ + |Uk| + hk + 3δ)ν, and 1/c = (hk + 2δ)ν and use the fact that
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‖{∏m∈Uk D−sm}1[ri−1,ri ](
∑
l�k sl)‖a � C|ri − ri−1|1/a. Interpolating as before completes

the proof of (3.6) and hence of Lemma 3.✷
LEMMA 5. – If ρν < 1 and 1/a = 1− ρν then for any T <∞

C ′
T u

0(x,1+ ρ)�
( T∫

0

(
ps(x)

)a
ds

)1/a

�CT u
0(x,1+ ρ) (5.7)

for some 0 < C ′
T � CT < ∞ where ps(x) denotes the transition density for the

symmetric stable process of order 1< β < 2 in R2. In particular, for some C > 0 we
have

Cu0(x,1)� u1(x). (5.8)

Proof. – We note the scaling property

ps(x)= 1

s2/β
p1
(
x/s1/β) (5.9)

and the asymptotics, [3],

p1(x)∼ C

|x|2+β , |x| → ∞. (5.10)

Letting v denote a unit vector inR2, and using (5.9) we have( T∫
0

(
ps(x)

)a
ds

)1/a

=
( T∫

0

(
1

s2/β
p1
(
x/s1/β))a ds

)1/a

=
( T∫

0

1

s2a/β

(
p1
(
x/s1/β))a ds

)1/a

=
(

1

|x|2a−β
T/|x|β∫

0

1

s2a/β

(
p1
(
v/s1/β))a ds dy

)1/a

=Cr(T , x, a,β) 1

|x|2−β/a

=Cr(T , x, a,β) 1

|x|2−β+βρν

=Cr(T , x, a,β) 1

|x|(2−β)(1+ρ) , (5.11)

where

r(T , x, a,β)=
( T/|x|β∫

0

1

s2a/β

(
p1
(
v/s1/β))a ds

)1/a
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�
( ∞∫

0

1

s2a/β

(
p1
(
v/s1/β))a ds

)1/a

<∞

using (5.10), andr(T , x, a,β)� c > 0 uniformly for |x| � 1.
This implies our Lemma for|x| � 1. For|x| � 1, (5.9) and (5.10) imply that

ps(x)�
cT

|x|2+β , s � T (5.12)

and

ps(x)� c′T
|x|2+β , T /2� s � T (5.13)

so that (5.7) for|x| � 1 follows immediately. This completes the proof of Lemma 5.✷
We have the following analogue for Brownian motion.

LEMMA 6. – If a > 1 then for any T <∞
( T∫

0

(
ps(x)

)a
ds

)1/a

�
{
CT |x|−2(1−1/a) if |x| � 1,
CT exp(−x2/4T ) if |x| � 1,

(5.14)

where ps(x)= (2πs)−1 exp(−x2/2s) denotes the transition density for Brownian motion
in R2.

Proof. – This follows from

(2π)−1

( T∫
0

exp(−ax2/2s)

sa
ds

)1/a

= (2π)−1 exp
(−ax2/4T

)( T∫
0

exp(−ax2/4s)

sa
ds

)1/a

� (2π)−1 exp(−ax2/4T )

|x|2(1−1/a)

( ∞∫
0

exp(−a/4s)
sa

ds

)1/a

. ✷
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