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ABSTRACT. — We show that theth order renormalized self-intersection local timgu; t)
for the symmetric stable process R?, where then-fold multiple points are weighted by an
arbitrary measurg, can be characterized as the continuous process of zero quadratic variatior
in the decomposition of a natural Dirichlet process. This Dirichlet process is the potential of a
random measure associated with 1 (u; 1). 0 2001 Editions scientifiques et médicales Elsevier
SAS

RESUME. — Lorsque les points multiples d’archeont changés par une mesure arbitrairée
temps local d’auto-intersection renormalisé, t) du processus symétrique stableRrfepeut-
étre caractérisé comme le processus de variation de quadratique nulle de la décomposition d'l
processus de Dirichlet défini naturellement comme le potentiel d'une mesure aléatoire associe
ay.—1(u, 1). 0 2001 Editions scientifiques et médicales Elsevier SAS

1. Introduction

Renormalized intersection local time can be thought of as an attempt to “measure” the
amount of self-intersections of a stochastic process,X@ay,c R¢. A natural approach
is to set

def

oo (e, 1) = fe(Xyy — x) fe(Xy, — X,p) Ay drp dpa(x) (1.1)

{012t}

where f, is an approximaté-function at zero, and take the limit as— 0. Intuitively,

this gives a measure of the set of tinfes #,) such thatX,, = X,, = x, where the “double
points” x € R¢ are weighted by the measure However, in general, this limit does
not exist because of the effect of the integral in the neighborhood of the diagonal. The
method used to compensate for this is called renormalization. For simplicity we restrict
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our discussion to symmetric Lévy processes. The renormalized intersection local time
y2(u, t) is defined as the — 0O limit of

Vo (it 1) = a2 (11, 1) — uH(0) / £(X,, — x) diy die () (1.2)
0

whenever the limit exists. Hetg (x) = [ f. (x —y)ul(y) dy andu’(x) = [5° € p,(x) dt
is the 1-potential density. In generak(0) 1 co. In the most studied casg, is taken to
be Lebesgue measure so that the subtraction term in (1.2) is sirh@@yr. y2(u, 1)
is an interesting new functional in its own right, but the fact that it is obtained from a
divergent functional by subtracting off an infinite counterterm leaves the ‘meaning’ of
y2(1e, t) rather puzzling. This puzzle is only deepened when we find that renormalized
intersection local time, originally studied by Varadhan [16] for its role in quantum field
theory, turns out to be the right tool for the solution of certain “classical” problems such
as the asymptotic expansion of the area of the Wiener and stable sausage in the pla
and fluctuations of the range of stable random walks. (See Le Gall [8,7], Le Gall and
Rosen [10] and Rosen [14]. For further work on renormalized intersection local times se¢
Dynkin [4], Le Gall [9], Bass and Khoshnevisan [1], Rosen [15] and Marcus and Rosen
[11]). When we turn to the higher order renormalized intersection local fine, ¢)
with its complicated scheme of subtractions, see (1.3), the need to find the ‘intrinsic
meaning’ ofy, (u, t) becomes pressing, (i, t) is defined as the — 0 limit of

n—1 1

Ve, 1) =Y (=D (” . ) (u2(0)) @yr e (1, 1), (1.3)

k=0

where

anc® [ =0 LA =X, pdndy du) (14)
j=2

(0 <<t 1)

measures of the set of timés, ...,7,) such thatX, =--- =X, =x, with the “n-
multiple points”x € RY weighted by the measuye.

The goal of this paper is to provide a natural characterizatior,fqe, ) which we
expect will lead to a deeper understanding of this important functional. The key idea
is thaty, (u, t) has zero quadratic variation. In the case of second order renormalized
intersection local time~(u, t) for Brownian motion in the plane, witp taken to be
Lebesgue measure, this was observed by Bertoin [2].

Recall that a continuous adapted procgsss said to have zero quadratic variation,
if for eachT > 0 and any sequence of partitions={0=ty <t; <--- <t, =T} of
[0, T, with mesh sizért,| = max |t; —t;_1| going to O

lim E( > (z, - Ztil)2> =0. (1.5)
LET,

Follmer, [6] has coined the term “Dirichlet process” to refer to any process which can
be written as the sum of a martingale and a process of zero quadratic variation. It i
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important to note that such a decomposition is unique. The class of Dirichlet processe
is much wider than the class of semimartingales.

In the following we useY, to denote ourR? valued Lévy process, killed at an
independent exponential time In the following theorems the renormalized intersection
local timesy, (u; t) will be defined for the process in place ofX,.

Let us begin with a special case of the Doob—Meyer decomposition for semimartin-
gales. LetL}" denotes the continuous additive functionalXpfwith Revuz measurg.
Using the additivity ofL! and the Markov property we have

E*(LY|F) =L}, + Uty (1.6)

whereF, = o (Y,, s < t). Equivalently, U (Y,) = M, — L" , whereM, = E*(L} | F,)
is a martingale. This is the Doob—Meyer decomposition for the potebtial(Y,).
We will show thaty,(u, t) arises in a similar decomposition for the potential of a
random measure. This new potential will no longer be a semimartingale but a Dirichlet
process, ang»(u, t) will correspond to the process of zero quadratic variation in the
decomposition of this Dirichlet process.

Let z/* be the random additive measure-valued process defined by

t
TH(A) = LM# = / 1,(Y,) dL" (L.7)
0
for all A € R?. Note that
t
Ulnh(v,) :/ul(Y, —Y,)dL". (1.8)
0

Whenpu is Lebesgue measure, so tiiat = s, we simply writey,(¢) andr, for y»(u, t)
and z/*. Thus, 7,(A) = [y 14(Y,)ds. We have the following analogue of the Doob-
Meyer decomposition.

THEOREM 1. — Let Y be a symmetric stable process of order 8 > 4/3 in R?, killed
at an independent exponential time A. Then y,(¢) is continuous a.s. with zero quadratic
variation and

U'm (V) = M, — y(1) (1.9)
where M; isthe martingale E* (y>(1)|F).

In view of Theorem 1 we can characterize the renormalized intersection local time
y»(t) as the continuous process of zero quadratic variation in the decompaosition of
the random potential/*r,(Y;) = [y u'(Y, — Y,)ds. (Our approach is different from
Bertoin’s. He uses stochastic calculus, which essentially restricts one to the study o
Brownian motion.)

Theorem 1 is an immediate consequence of the next Theorem for genefa let
D(x, ¢) C R? denote the disc of radiuscentered at.
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THEOREM 2. —Let Y be a symmetric stable process of order 1 < 8 in R?, killed at
an independent exponential time A. If U (x) is bounded and

X

1
D(x,1)

for some ¢ > 0 with 3(2 — B) + 2¢ > 2, then y»(u; ) is continuous a.s. with zero
quadratic variation and

Utn/ (Y)) = M, — ya(u, 1) (1.11)
where M, isthe martingale E* (y» (i, A)|F;).

Note in particular that for Brownian motion, condition (1.10) is the condition that

sup / L i) < (1.12)
lx — yl¢

X
D(x,1)

for somes > 1.
For eachA € B(R?), the Borel sets irR?, let us define

7l HA) = Va1 (La - s 1), (1.13)
If 7" (A)is a (random) measure i, we uselUr to denote its potential.
The following Theorem leads inductively to an intrinsic characterization of the
higher order renormalized intersection local timgéu, t) which does not use limiting
procedures.

m,n—1
t

THEOREM 3. — Let Y be a symmetric stable process of order g > 1 in R?, killed at
an independent exponential time . If U1 (x) is bounded and

1
sup / v ) <0 (1.14)
D(x,1)

for some ¢ > Owith (2n — 1)(2— B) + 2¢ > 2, then y,, (u; t) iscontinuous a.s. with zero
guadratic variation and we can choose a version of (" "1(A): (A, 1) € B(R?) x R.}
whichisa.s. ameasurein A and continuous in ¢, and such that

Ut/ (Y = My — (s 1) (1.15)

where M; isthe martingale E* (y, (i, A)|F).

Remarks. — (i) For Brownian motion, condition (1.14) reduces to the condition (1.12)
for some¢ > 1.
(if) As before, wheru is Lebesgue measure we simply writgr) andr;" for y, (u, t)

w,n

andr; . The following is an immediate consequence of Theorem 3.
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COROLLARY 1.— Let Y be a symmetric stable process in R? of order g > 2(2n —
2)/(2n — 1) killed at an independent exponential time A. Then y,(¢) is continuous
a.s. with zero quadratic variation and we can choose a version of {n,’“l(A); (A1) €
B(R? x R} whichisa.s. ameasurein A and continuous in ¢, and such that

Uln YY) =M, — y,(t) (1.16)

where M, isthe martingale E*(y,(L)|F;).

Note in particular that for Brownian motion our Theorem holds forall
(iii) The necessary and sufficient condition for the existence-afultiple points is
that [ (u*(y))" dy < oo, see [5]. In [11] we show that

E ((y(: 0)?) / / L) (e — 1)) 2 dpe () d (). (1.17)

Sinceul(x) ~ Cx~? P as|x| — 0, (1.14) is natural. In facty/*x(x) bounded and
(1.14) are precisely the conditions required by the techniques of [15] to show that
y.(u; t) is continuous a.s.

(iv) The representation (1.15) is obtained in [12]. The new element here ig,ipatr)
is continuous a.s. with zero quadratic variation

Of course, Theorem 2 is a special case of Theorem 3. We expect that the situation |
very different for processes iR3. Recall that whenu is Lebesgue measure, (1.7) has
the particularly simple forms/‘(A) = f(j 1,(Yy) ds. This is certainly well defined when
Y, is Brownian motion inR3. We expect that in this case the random poterdfiat/ (Y;)
is not a Dirichlet process, in contradistinction to the situatiofn We are led to this
conjecture by the fact that the renormalized intersection local e, r) does not exist
for Brownian motion inR3, [13].

For the remainder of this paper we fix a symmetric stable process of grdet in
R? and use the notation=2/8 — 1.

This paper is organized as follows. In Section 2 we develop a new representation fo
E(y2(u; 1)), which is then used in Sections 3 and 4 to prove Theorem 3. As mentioned,
this implies Theorems 1-2. In the final section we prove some estimates used in th
proof of Theorem 3.

2. A new representation for E(y (s t))

Recall thatl(x) = [ f.(x — y)u'(y) dy andul(x) = [;° €' p,(x) dt is the 1-potential
density of the unkilled process. We will ugg(x) for the transition density for our
exponentialy killed process and sgt.(x) = [ f.(x — y)g,(y) dy. Our starting point
is the following formula which comes from the proof of Lemma 7 of [12]:

EG2n)=tm>" [ [ [ T a0 —ut@sn} [T 0= »)
s S{Ztl,gt}pEBr PEBS

x [ de, die(x) die(y)
14
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—lim 3 / / / TT (i, 160 — u2(©8(t, —1,-1)}

e—0
SES (0K << 1ap <1} PEBs

x T aty—e,(c = 0 ] dltp diax) dia(y), (2.1)
PEBS p

whereS is the set of mappings
si{l,...,2n} > {1, 2}

suchthats=*()|=n,i =1,2, B, ={p | s(p) =s(p — 1)}.

We intend to rewrite this in a form in which thé(O)(S(tp — t,—1) terms have been
eliminated. To this end we define several operator€ @] the space of continuous
functions on(0, ¢]:

e ¢]

I () = ( / 450 (0) ds>h<r) = 0.(Nh(r), (2.2)
15 () () = / 4s.c(OYD_h(r —5) ds, 2.3)
0
FEr) = =L @) + I (), (2.4)
and
J5(h)(r)= /qs(x — Y)h(r — s)ds. (2.5)

0

Here, D, applied to a function of the variableis defined byD, f = f(x) — f(0), and
althoughJ; (h)(r) doesn’t depend og, we have included thein J; (h)(r) for notational
convienience.

We will show how to express each summand on the r.h.s. of (2.1) in terms of the
operators/;, J5. This representation will be used to show thatu; 1) has 0 quadratic
variation.

Definer,(p) =11if p € B, andr,(p) =2 if p € B{. Then using the notation’ J; for
the iteration of the operatots; andJ; have

LEMMA 1. —

t
E20) =Im > [ [ [ 000009+ i an @ = 52 ds1 (o) du).
’ SES 0

(2.6)

Proof. — Our approach consists of taking the right hand side of (2.1), integrating d
decreasing order af and rewriting the resulting integrals. Fx S.
Wheni € B, we use:
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/ (Gt 10 (0) — kXO)3(t; — 1) (e — 1)

i—

- / G 1o OVt — 1) Aty — W O)R(r — 1;_1)

- / G (O (t — t;_1 — ) ds — u(OVh( — 1;_1)
0
- / Gs.e QR (t — 1;_1) ds — uXO)h(t — 1;_1)
0
+ / 4o e OYD_h(t — i1 — 5)ds
0
=< / qs,5<0>ds—ui<0>>h<r—ti_1>+lf<h><t—r,-_1)
0
= Jf(h)(t —ti_1). (2.7)

While if i € BS we use:

t—ti_1

/qt, oG — W — 1) diy = / 4 (x — Wh(t — g — 5)ds

=J;(h)(t —1;_1). (2.8)
This completes the proof of Lemma 10

To show thaty, (u; t) has 0 quadratic variation we will need the following modifica-
tion of Lemma 1. For afixed € S, let p(s) =maXp | s(p) # s(2n)}.

LEMMA 2.— Foranyr;_1 <r;

E({ya(u; 1) — va(us ri-1)}?)

m > / / / GO 0% o= I iy (D) (s — 52) sy Gpa () A ()

p(s)
+Z/// EON AP AIESEEN AT

rS(Zn)(l)(ri—l — 1) dsg di(x) d(y) (2.9)
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where
Ji(h)(s) = / Gi—s.e(Qh(r; — 1) Ot
and -
J5(h)(s) = / Gi—s(x — y)h(ri — 1) dr.
Proof. — -
Asin (2.1),

E ({yu(i; 1) — v (s 1m0 }?)

=lm >~ [ e @ =256, -1}
S 0<< <o <) PP
{ri— l<tp(s)<t2n<rl}
x 1T 9ip-tp2 e = 0 I drp dpe) de (). (2.10)
p

PEBY

Here we have used ti%&r, —¢,_1) notation to allow us to write the condition arising in
the quadratic variation in the compact form; < 5 <2, < 7.

We have
{Ogtlg“ <t2n<rlﬂrl 1<tp(s) ngrt}
:{0<t1< g o <I"l,l", l<tp(s)<rl}
p(s)
=JI0<n< << <t; <<y <1y (2.11)
j=1

where the union is disjoint.
Thus, using the proof of Lemma 1

/// H {41,-1,1.£(0) — ut(0)8(t, —t,-1)}

(0K <<t <) PEPs
{ri— l<tp(s)<t2n <ril)

< T arp—ry(x = ] dtp dpa(x) dua(y)
P

pEBY

= pz(s:) /// H {‘Itp—t,,fl,s(o) - Mi(O)S(fp —1p,_1)}

=Hogn < <tp <) PEB
{t] 1<ri— l<t}

x ] a1, . (x — y)H dr, dpe(x) de(y)

PEBS

=im>" [/ / Gs (S 05 3y Iy (D = 51) sy Aa () e ()
seS rio1
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p(s) 1
+y / / / G CIE Iy T2 iy I oy (D1 — 51) sy Apa () A (),
j=2 0

(2.12)
where we have used the fact that
[ s 0 = O3 — )}y 1)
Lj-1
= 1{tj,1<ri,1} / Qt_,—xj,l,s(o)h(”i —1j) dl‘j, t; (2.13)
ri—1
and
/ 1{tj,1<rf,1<x_,}q;,—tj,l(X — Vh(r; —tj)dt;
fj-1
= 1{xj,1<r,«,1} / q;_,—zj,l(x —Yh(r — tj) dtj- (2.14)

Fi—1
and note that we can remove the factar, L, ,; in these displays, since it is
automatically taken into account in the subsequent integration. This completes the proc
of Lemma2. O

3. A uniform upper bound

In this section we will show that each term on the right hand side of (2.6) is uniformly
bounded ire > 0. Although not strictly necessary for proving Theorem 3, this will give
us an opportunity to develop, in a simpler setting, the tools and ideas used in our proo
that y,(u; t) has 0 quadratic variation. To anticipate things a bit, we mention that the
real problem in showing the uniform bound én> 0 comes from/, due to the non-
integrability of g, nears = 0. The remedy will be found iD_;. We now develop this
idea in detail.

Let Ji )= —1f andJ3 |, = I]. We fixs € §, and breaking up’; asJg ,, + Ji
we can Write

/ / G I )T 3y~ I oy (Dt — 51 sy A () A () (3.1)

=>// / Gy e e dE s (D = s1) dsy du (o) du(y),

UCB;s

Wherel‘s(]) v=({@11) if jeU, I's(j),u = = (1, ) |f eV dEfB - U, andrs(j) v=2Iif
J € B{. Fixing U C By, and setting = B — {1} we can rewrite each summand in the
right hand side of (3.1):
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t
// / Gy e e e (D = s1) sy A (o) dua(y)

=" [ [ [ 10069020 [] 20 (Zsz)qs,.,AO)D_si

ieU I<i

2n
11 - (r - Zsz>s(s,-> 11 l[o,f](Zsz>qSk (v —x) [ [ dsi die(x) du(y). (3.2)
1<k =1

jev I<j keWw

where it is to be understood that the operafdr, operates only on the factors
L0, (Xoi<is1)s Qet =32, s1) and 3o 1 (37,4 s1) corresponding te, j, k > m. We note
that the many factorsd,;(3_,¢; s;) are redundant, but keeping them will make the
connection with the following section, where we prove Theorem 3, easier.

We then use the fact thd, fg = (D, f)g(x) + f(0)D,g to rewrite the right hand
side of (3.3) as a sum of many terms, in which e@xly, is applied to one factor of the
form 0132, s1) or Q:(t — 3=, ; s1) with j > m. We fix one such (generic) term, and
show that it is bounded as— 0. Such a term can be written as

// 1[o,<s1>qsl<x)H({ I D} 01 (Zsz))qs,,g(O)

ieU meU; 1<i
(1o (2o
jev meUj I<j
2n
<[] ({ 11 D—sm}l[o,t] (Z&))czsk(y — 0 [[dvdu)duy)  (3.3)
kew meUy 1<k =1

whereU =, U,.

For the remainder of this section we restrict our discussion to the cagse-&. The
case of Brownian motion will follow by the same line of reasoning but will be simpler
due to the fact that for Brownian motiart(x) has a logarithmic (as opposed to a power)
singularity agx| — 0.

Let v =2/8 — 1. Our approach is to bound thés, integration, proceeding in
decreasing order df and showing that each_,, allows us to ‘extract’ a factas’+%),
which will then allow us to controd;, nears; = 0. We must consider in turn the three
cases of € V, U, W. We show how to bound each integration seperately and then use
a counting argument to show how to put it all together. As the reader goes through th
following lines, he should observe how eagh contributes a factor of,(-), either
directly asJ ,, or indirectly as/{ | through the operatdP._; .

Consider firstj € V, and use the mean value theorem, monotonicity g ~
Ct~"to bound

(Mo fo(r-Xu)[ccomom(i=Ss) [T s, @4

meU; I<j I<j meU;




J. ROSEN/ Ann. |. H. Poincaré — PR 37 (2001) 403—420 413

Here and throughout the papes 0 will denote a constant which may change from line
to line but which can be made arbitrarily small. Similadywill denote a finite constant
which may change from line to line.

Let

0 _ @) =clx|m@ PP if x| <1
e = {c|x|‘<2+ﬂ> if |x| > 1.

We note thatC’u®(x, 1) < u'(x) < Cu®(x, 1), see Lemma 5.

We now state two lemmas which will allow us to handle respectively/ andk € W.
The proofs of these lemmas will be given in the final section. The second display in eact
lemma will only be used in the following section when we prove Theorem 3.

LEMMA 3. -

I (5

meUy 1<k

<Cul(y —x, 14 |Up| + hy + ) H sULH0)

meUy

Furthermore, for any p > 0 with (o + |Ux| + hi)v < 1 we have

/ { H D_, }1[r1_1,r,«] (Z Sl) g5 (y — x) Q" (l - Zm) dsy (3.6)

-0 (1= Ta)d @)

1<k

meU 1<k 1<k
<Clri —rica”u®(y —x, 1+ p + |U| + by + 8) H srvn(1+6).
meUy
LEMMA 4. —
/H H D—sm} [0.1] (Z ) s/ Mg, (0 QM (; _Zs,) ds; (3.7)
meU; I<i I<i
< CQlu,|+h +8< Sz) H §VA+8)
I<i

< meU;

Furthermore, for any p’ > 0 with (o’ + |U| + h)v < 1 we have
/ H H D, }1["1—17"1‘] <Zsl) q$j,a(0) Qh—i_(S (”i - ZSI) ds; (3.8)
mel I<j 1<j

v A14+p'+|U|+h+8 148
< Clry —ri_q|P v QY7 HIUIFAE (”i—l—zsl) Hsr‘;( +0),

I<j melU

We now explain how to put all these steps together to show that the terms on the righ
hand side of (2.6) are uniformly boundedsinUsing (3.4), (3.5) and (3.7) it is easy to
check that for eachh € U we pick up a factors; v(i+o) prior to integrating with respect
to ds;, which allows us to control the smgular terqm . (0). Integrating with respect
to s;,i € U contributes|U;| factors of Q,, while eachs;, j € V contributes 1 |U;]|
factors ofQ,. If k™ denotes the successorktin W, (with natural ordering), the number
of such Q, factors arising in this manner from with » betweenk and k™ is h; =
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> ker i U + Ly (r)}. (If & is the largest element iW, setk™ = 2n + 1). Integrating
with respect tay, k € W replaces thesk, factors ofQ, by u®(y —x, 1+ |Ux| + hi +6).

If we usekq to denote the smallest elementWin, then after integrating with respect to
si, We are left withy", ., (L + |Ui| + hy + 8) ‘powers’ of u®(y — x), i.e.

u°(y—x,|W|+ Z{|Ur|+1v<r)}+a). (3.9)

rz=ko

Similarly, integrating with respect te, replaces all factors oD, picked up after
integrating with respect tg,, with

(x4 T+ 200 +3). (3.10)

r<ko

Since

Wi+ D U+ IO} +14 ) {IUA+ ()} =1+ W[+ |U[+|V|=2n, (3.11)

r=ko r<ko

our assumption that sug u®(x — v, 2n — 1+ ¢) du(y) < oo completes the proof that
the terms on the right hand side of (2.6) are uniformly bounded in

4. Quadratic variation

We begin by focusing on the casefk 2. The basic idea which will now be exploited
to show thaty, (u; ¢) has zero quadratic variation is that since sfip®(x — y, 2n — 1+
) du(y) < oo, in some senséu(x)du(y) can ‘handle’ 22n — 1+ ¢)=4n — 2+ 2¢
‘powers’ of 4%, and since only 2 powers appear in (3.9)—(3.11), there is an excess
capacity to handle an additionakh 2- 2 + 2¢ powers. We will see that these can be
‘traded’ for (2n — 2+ 2¢)v > 1 powers ofir; — r;_1|. We now provide the details.

Proof of Theorem 3. — As mentioned, we first discuss the casegot 2. Unraveling
the term for a fixedj on the right hand side of (2.9), we obtain expressions similar to
(3.3) with the following differences: each factor of the form 43", ¢, /) withm > j is
replaced by ., .1(>"<,, 51), While each factor of the formid, (>, <, s1) with m < j
isreplaced by &, ,1(>",<,, s1), and ifry(j) = 1 then, see (2.13), the operay; is not
present. (Since this operator was essential in controlling the non-integrability (65
nears; = 0, we will have to provide a different way to deal with this problem, see below.)

A: Consider the first term on the rhs of (2.9). As mentioned, the analogue of (3.3)
has each @}, replaced by | , ;. We proceed as in the previous section except that we
apply (3.6) when we integrate with respectstpands;. We obtain the bound

Iri — r,~_1|<P+ﬂ’>”u°<x, 140 + Y U]+ v} + 5)

r<kg

u°(y—x,p+|W|+Z{|Ur|+1v<r)}+8>. (4.1)

r=ko
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By assumptions we can find> 0 with sup [u%(x — y,2n — 1+ ¢) du(y) < oo and
(2n —1+2¢)(2— B) > 2. Choosev’, p so that

1+ 0+ > U+ 1y} +8=2n—1+¢ (4.2)
r<ko
and
pHIWI+ D {IUI+1y()}+8=2n—1+1. (4.3)

r=ko
Using (3.11) now shows that

pH+p=20—-2+2¢, (4.4)

so that after integrating with respect tg.@)du(y) we are left with the bound

lri — ri_1|@®=2+20v_ Since our assumption th@n — 1 + 2¢)(2 — B) > 2 implies

(2n — 2+ 2¢)v > 1. we see that the first term on the rhs of (2.9) contributes zero to
the quadratic variation.

B: Consider one of the later terms on the rhs of (2.9). We treat the case et 1.

The case of,(j) = 2 is similar. Letk* = inf{k € W|k > j}. Assume first that* = kg.

As above, we apply we apply (3.6) when we integrate with respag}.tbheds; integral

is our last opportunity to extract powers jof — r;_;|. Recall that sinc_;; is absent,
we never picked up a factm]”-”. We use (3.8). As in case A, we can use this to show
that our term contributes zero to the quadratic variation.

Assume finally thako < k*. We proceed as before except that we apply (3.6) when
we integrate with respect tq-, and (3.8) when we integrate with respectso This
generates a large number @ffactors that can only be handled by #ig integration.

We thus temporarily interupt our procedure of integrating with respegtinalecreasing
order ofl, and integrate now with respectdg We use (3.5) in the form

/H { H D_Sm}l[o,r,.l]<2s,> H QL+ Usl+ (”i—l—Zﬁ) (4.5)

aclU meUg [<a beV I<b
a<j b<j

% Q1+p +Zj§r<k*{|Ur‘+1V(r)}+5 (ri—l . Zsl)q‘sl(x) ds;

I<j

<u°(x,1+p/+ > U +1v(”)}+5> IT 1T su+.

r<k* acU mel,
a<j

We then resume our procedure of integrating with respest to decreasing order of

[. The integral with respect tg, for each remaining: € U is finite, while those with
respect tas; for each remaining € W each provide a factor af'(y — x). The case

of kg < k* is then completed using (4.2) and (4.3), but withreplaced byk*. This
completes the proof that,(u; r) has zero quadratic variation whegh< 2. The case

of Brownian motion is even easier, using Lemma 6 in place of Lemma 5 to prove the
necessary analogues of Lemmas 3 and 4, see the next section. Condition (1.12) for sor
¢ > 1is only needed to extract a factey — r;_1|¢ for some;’ > 1.
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To complete the proof of our Theorem it only remains to show that we can choose

a version of{x/"'(A): (A,1) € B(R? x R.} which is a.s. a measure iA and

continuous ir¢, and such that (1.15) holds. Under the conditions of our Theorem this
follows from the methods of [12]. O

5. Proofs of Lemmas 3 and 4

Proof of Lemma 4. — Assume first that/; # @.

/ { 17 }1[0,,] (Z s,) S g (0N (t - Zsl) ds

meU; I<i I<i

</ { 11 D—Sm}l[o,t] (Z Sz) sy Qhitd (t - ZSI) ds;

meU; I<i I<i

< Q\Ui|+hi+35 (l _ Zsl>

I<i
X/

(112 o2
meU; 1<i

where we have used the presence|®f,, D, Lio.1(> i s)| to guarantee that
s; =t —>,_; 5. We use the generalized Holder’s inequality to bound

/ { H D—sm}l[o,l] (Z Sz) 57 U+ it (t _ Z&) ds;

meU; I<i I<i

I+ i (t _ ZSz) ds. (5.1)

I<i

< { 11 D—sm}l[o,z] (ZSI) ||Si_1+(Ui+hi+48)v||b"th+8 (f - Zsl)
meU; i<i 7 lla i 2 e

< T 5+, (5.2)
meU;

where Ya = (|Ui| + 8)v, 1/b = 1 — (U;| + h; + 38)v, and Ve = (h; + 26)v.
Our choice ofc makes||Q"*(t — > ,;s)llc < oo, while our choice ofs makes
sy FHIVIEREROM < 0o, Finally, for eachm € U; we note that{[],.cy, D)
110,13, <; 1) Is the characteristic function of a finite union of intervals of length,,

so that we havel{[],,cy, P, } 101 i<; D lla < Cs{IY1+97 and the last line of (5.2)
follows by interpolation and adjustment &f
If, on the other hand, we havé = @, we use the simple identity far+ 5 > 1

/s_“ (t—s)"tds = Cct~@th=D

to bound

/S;)(1+5)qs1,8(0) Qh,‘-‘rS (t _ ZS[> dSi

I<i
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[ (oY) a <0 (oY) 69
1<i

I<i

which completes the proof of (3.7).

To prove (3.8) we begin by using the presence pf 1,,(>,<; s:) to guarantee that
Sj=Tii1— Y-8 We have that

JH{I o (50)
mel 1<)
= / { H D_Sm}l[rilsri] (Z Sl> Sj_l_v Qh+8 (7’[ - ZS]) de
mel 1<) I<j
< Qﬂ+l+|0|+h+46 (r,-_l - Zs;) / H H D_,, }1[,1.1,,1] (Z s;) ‘

mel I<j

I<j

0, @0 (1= S5 ) o,

I<j

8 S;l+(p+\0\+h+43)VQh+5 (,,i _ Zsl> ds;. (5.4)

I<j

We use the generalized Holder’s inequality as in (5.2), this time with= (o + |U|+
S, 1—1/b=(p+|U|+h+38)v, 1/c = (h + 28)v to bound

—14+(p+|U |+-h+48 h+8
o A G
mel I<j

1<)
S H{ 1L 7= }l[ril’ri] (Z s1> Q" (l’i - Zsz)
mel I<j

I<j
<Clry —rizal™ s (0, 55
m

mel

where we have usef{IT,.cg D-s, L 1.1 (Ci<k $Dlla < Clri — r;—a|* and interpo-
lated as before, which completes the proof of (3.8)

||sj—1+<p+|0|+h+46>v|’b
a

c

Proof of Lemma 3. — We now use the generalized Hdélder's inequality to bound

/ { H D—sm}:l-[O,t] (Zsl> g5 (y — x) Q" F° (t - Zsz) ds;

meUy 1<k 1<k
< { H D—Sm}l[o,t] (Zﬁ) ”qsk (x— y)llb Qhk+8 (t — ZS[) (56)
meUx 1<k a 1<k c

with 1/a = (|Ui| + 8)v, 1/b =1 — (|Ux| + hy + 38)v, and Ve = (hy + 25)v.

Our choice ofc makes|| Q" (1 — >, <; s1)llc < oo, while, by Lemma 5 below, our
choice ofb gives the bound g, (x — )|, < Cu®(y — x, 1+ |Ux| + hy + 8), where we
have readjusted for ease of notation. Handling the tet{{[,,cy;, D, }1i0.1 i<k St lla
as above now completes the proof of (3.5).

The proof of (3.6) is similar, except that we now takgal= (p + |Ui| + S)v,
1/b=1— (p + |Us|l + hy + 38)v, and Yc = (h, + 28)v and use the fact that
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T T mev, P=su i1 i<k Dl < Clri — riza|M. Interpolating as before completes

the proof of (3.6) and hence of Lemma 30

LEMMA 5. —Ifpv<landl/a=1- pvthenforany T < oo

T

1/a
Cru’(x, 14 p) < ( / (ps<x>)“ds> < Cru’(x, 14 p)

0

(5.7)

for some 0 < C; < Cr < oo where p,(x) denotes the transition density for the
symmetric stable process of order 1 < 8 < 2 in R?. In particular, for some C > 0 we

have
Cu(x, 1) <ul(x).

Proof. — We note the scaling property

_ 1 18
Ps(x)—szwpl(x/s )

and the asymptotics, [3],

C
pi(x) ~ lxlTﬁ, |x| — oo.

Letting v denote a unit vector iR?, and using (5.9) we have

T

(/(Ps(x))ads> 1/a: </T (L@%Pl(x/sl/ﬁ)yds)
) </ = <m<x/s”ﬁ>>“ds)

T/Ix|?
1
- |x|2a—ﬁ

1
=CF(T,X,G,,B)W

1
=Cr(T,x,a, IB)W
1
|x|(2—ﬂ)(l+p) ’

1/a

1/a

=Cr(T,x,a,p)

where

T/|x|P

1/a
1 a
r(T,x,a,ﬂ):( / Sza/ﬂ(pl(v/sl/ﬂ)) ds)

0

(5.8)

(5.9)

(5.10)

1/a
1 a
/ s2a/B (pl(v/sl/ﬁ)) ds dy)
0

(5.11)
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00 1/a
1 a

S (/sza/ﬁ(l’l(”/sl/ﬁ)) dS) <00

0

using (5.10), and (7, x, a, B) > ¢ > 0 uniformly for |x| < 1.
This implies our Lemma fofx| < 1. For|x| > 1, (5.9) and (5.10) imply that

C
P S g s ST (5.12)

and
cr
Ps(x)2|x|Tﬁ, T/2<s<T (5.13)
so that (5.7) foiix| > 1 follows immediately. This completes the proof of Lemma &
We have the following analogue for Brownian motion.

LEMMA 6.—Ifa > 1lthenforany T < oo

T 1/a

a Crlx|724~Y/® if [x] <1,
< .
(/(ps(x)) ds) = {CT exp(—x2/4T) if |x| > 1, (5.14)
0

where p,(x) = (2s) "t exp(—x2/2s) denotesthe transition density for Brownian motion
in R?.

Proof. — This follows from

T exp—ax2/2s) .\
(27T)_1</ _ ds)

s4
0

sa

T P 1/a
=@2n) ! eXp(—ax2/4T) (/ exp—ax’/4s) ds)

0

2 00 _ 1/a
<(271)_1exp( ax /4T)</exp( a/bs) ds) L

|X |2(1—1/a) 54
0

Acknowledgement

I would like to thank M. Yor for some very helpful conversations.

REFERENCES

[1] Bass R., Khoshnevisan D., Intersection local times and Tanaka formulas, Ann. Inst. H.
Poincaré Probab. Stat. 29 (1993) 419-452.



420 J. ROSEN/ Ann. |. H. Poincaré — PR 37 (2001) 403—420

[2] Bertoin J., Applications des processes de Dirichlet aux temps locaux et temps locaux
d’intersection d’'un mouvement Brownien, Probab. Theory Related Fields 80 (1989) 433-
460.
[3] Blumenthal R., Getoor R., Some theorems on stable proceses, Trans. Amer. Math. Soc. 9
(1960) 261-273.
[4] Dynkin E.B., Self-intersection gauge for random walks and for Brownian motion, Ann.
Probab. 16 (1988) 1-57.
[5] Fitzsimmons P., Salisbury T., Capacity and energy for multiparameter Markov processes
Ann. Inst. H. Poincaré Probab. Stat. 25 (1989) 325-350.
[6] Follmer H., Dirichlet processes, in: Proceedings Durham 1980 (Berlin), Lecture Notes
Math., Vol. 851, Springer-Verlag, Berlin, 1981, pp. 476—-478.
[7] Le Gall J.-F., Proprietes d'intersection des marches aleatoires, I, Comm. Math. Phys. 10-
(1986) 471-507.
[8] Le Gall J.-F., Fluctuation results for the Wiener sausage, Ann. Probab. 16 (1988) 991-1018
[9] Le Gall J.-F., Some properties of planar Brownian motion, Ecole d’ete de probabbilities de
St. Flour XX, 1990 (Berlin), Lecture Notes in Mathematics, Vol. 1527, Springer-Verlag,
Berlin, 1992.
[10] Le Gall J.-F., Rosen J., The range of stable random walks, Ann. Probab. 19 (1991) 650-70¢
[11] Marcus M., Rosen J., Renormalized self-intersection local times and Wick power chaos
processes, Mem. Amer. Math. Soc. 142 (675) (1999).
[12] Rosen J., Joint continuity and a Doob—Meyer type decomposition for renormalized
intersection local times, Ann. Inst. H. Poincaré Probab. Stat. 35 (1999) 143-176.
[13] Rosen J., Continuity and singularity of the intersection local time of stable proced®&s in
Ann. Probab. 16 (1988) 75-79.
[14] Rosen J., The asymptotics of stable sausages in the plane, Ann. Probab. 20 (1992) 29-60
[15] Rosen J., Joint continuity of renormalized intersection local times, Ann. Inst. H. Poincaré
Probab. Stat. 32 (1996) 671-700.
[16] Varadhan S.R.S., Appendix to Euclidian quantum field theory by K. Symanzyk, in: Jost R.
(Ed.), Local Quantum Theory, Academic Press, 1969.



