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Let � �x� r� denote the total occupation measure of the ball of radius r
centered at x for Brownian motion in �3. We prove that sup�x�≤1 � �x� r�/�r2
� log r�� → 16/π2 a.s. as r→ 0, thus solving a problem posed by Taylor in
1974. Furthermore, for any a ∈ �0�16/π2�, the Hausdorff dimension of the
set of “thick points” x for which lim supr→0 � �x� r�/�r2� log r�� = a is al-
most surely 2−aπ2/8; this is the correct scaling to obtain a nondegenerate
“multifractal spectrum” for Brownian occupation measure. Analogous re-
sults hold for Brownian motion in any dimension d > 3. These results are
related to the LIL of Ciesielski and Taylor for the Brownian occupation
measure of small balls in the same way that Lévy’s uniform modulus of
continuity, and the formula of Orey and Taylor for the dimension of “fast
points” are related to the usual LIL. We also show that the lim inf scaling
of � �x� r� is quite different: we exhibit nonrandom c1� c2 > 0, such that
c1 < supx lim inf r→0 � �x� r�/r2 < c2 a.s. In the course of our work we
provide a general framework for obtaining lower bounds on the Hausdorff
dimension of random fractals of “limsup type.”

1. Introduction. For any Borel measurable function f from 0 ≤ t ≤ T to
�d we denote by µ

f
T its occupation measure,

µ
f
T�A� =

∫ T

0
1A�ft�dt

for all Borel sets A ⊆ �d. Throughout, B�x� r� denotes the ball in �d of radius
r centered at x, and 
Wt�t≥0 denotes Brownian motion in �d� d ≥ 3.
In the last decade, much insight into the structure of various measures has

been gained from their multifractal analysis. A general introduction to this
analysis can be found in [8], [12] and [22]; certain important random measures
are analyzed in [9], [11], [20], [24] and [28].
Consider Brownian occupation measure µW

T in �d, d ≥ 3. It is well known
that for almost all Brownian paths W, the pointwise Hölder exponent

Hölder�µW
T �x� = lim

ε→0
logµW

T �B�x� ε��
log ε

(1.1)
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takes the value 2 for all points x in the range 
Wt �0 ≤ t ≤ T�. In particu-
lar, the usual multifractal spectrum a �→ dim
x ∈ �d Hölder�µW

T �x� = a�
vanishes for all a �= 2, a > 0. Indeed, this fact was crucial in Kaufman’s work
[10], written long before the term “multifractal” was invented.
Rather than being the end of the story, this means that standard multifrac-

tal analysis must be refined to capture the delicate fluctuations of occupation
measure under scaling; the problem of obtaining such a refined analysis was
posed by Hu and Taylor in 1997 ([9], page 287), but it is closely linked to
problems posed by Taylor [26] in 1974. Our main results, Theorems 1.1 and
1.3, resolve these problems.
The correct scaling for studying the fluctuations of occupation measure was

already indicated in [26]; more details were given by Perkins and Taylor ([18],
Lemmas 2.3 and 2.5), who showed that there exist absolute constants 0 <
c1 < c2 < ∞, such that almost surely for all points x ∈ 
Wt�0 ≤ t ≤ T� and
all positive ε ≤ ε0�ω�,

c1ε
2/� log ε� ≤ µW

T �B�x� ε�� ≤ c2ε
2� log ε� �(1.2)

(As they point out, the lower bound is immediate from Lévy’s uniform modulus
of continuity.)
Our main result describes the multifractal nature, in a fine scale, of “thick

points” for the occupation measure of Brownian motion in �d, d ≥ 3. [We call
a point x ∈ �d on the Brownian path a thick point if x is in the set considered
in (1.3) for some a > 0; similiarly, t > 0 is called a thick time if it is in the set
Thicka considered in (1.4) for some a > 0 and T > 0.]

Theorem 1.1. With d ≥ 3, let qd denote the first positive zero of the Bessel
function Jd/2−2�x�. (See [31] for information on qd; in particular, q3 = π/2.)
Then, for any T ∈ �0�∞� and all 0 < a ≤ 4/q2d,

dim
{
x ∈ �d

∣∣∣ lim sup
ε→0

µW
T �B�x� ε��
ε2� log ε� = a

}
= 2− aq2d/2 a�s�(1.3)

Equivalently, for any T ∈ �0�∞� and all 0 < a ≤ 4/q2d ,

dim
{
0 ≤ t < T

∣∣∣ lim sup
ε→0

µW
T �B�Wt� ε��
ε2� log ε� = a

}
= 1− aq2d/4 a�s�(1.4)

Denote the set in (1.4) by Thicka. Then Thicka �= � at the critical value a = 4/q2d.

For comparison purposes, recall three fundamental results on Brownian
increments:

1. The large increments at a fixed time t are governed by Khinchin’s classical
LIL,

lim sup
ε→0

Wt+ε −Wt

�2ε log � log ε��1/2 = 1 a�s�
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2. The dimension of certain exceptional fast points was determined by Orey
and Taylor in [13]:

∀a ∈ �0�1� dim
{
0 ≤ t < T

∣∣∣ lim sup
ε→0

Wt+ε −Wt

�2ε� log ε��1/2 = a

}
= 1− a2 a�s�

(This can be viewed as a multifractal decomposition of white noise.)
3. Lévy’s uniform modulus of continuity governs the largest increments over-
all,

lim
ε→0

sup
0≤t≤T

Wt+ε −Wt

�2ε� log ε��1/2 = 1 a�s�

The three statements above hold in any dimension d ≥ 1. Next, we indicate
their analogues for Brownian occupation measure in dimension d ≥ 3; only
the first of these was previously known.

1′. The limsup asymptotic behavior of Brownian occupation measure around a
fixed time t is governed by the LIL of Ciesielski and Taylor [3], Theorem 3;
for any T ∈ �0�∞� and t ≤ T,

lim sup
ε→0

µW
T �B�Wt� ε��
ε2 log � log ε� =

2

q2d
a�s�(1.5)

2′. The dimension of exceptional thick times is given by (1.4) above.
3′. Our results (1.7) and (1.9) give the largest occupation measure possible for

a small ball.

Further remarks on Theorem 1.1.

(i) Perhaps more significant than the numerical values obtained in (1.3)
and (1.4) is the insight gained, while proving these results, about the manner
by which the “thick points” on the Brownian path arise. The key to our proof of
Theorem 1.1 is a localization phenomenon for transient Brownian motion: the
balls of radius ε that have the largest occupation measure (of order ε2� log ε�),
accumulate most of this measure in a surprisingly short time interval (of
length at most ε2� log ε�b for some b, e.g., b = 6 works); see Section 3 where
this localization is established. The localization phenomenon breaks down in
dimension d = 2, where the correct scaling of occupation measure, and the
techniques needed to establish it, are quite different. In [6] we have obtained
the corresponding results for the planar case; we emphasize that the current
paper concerns only d ≥ 3.
(ii) Given the localization phenomenon, there are several possible ap-

proaches to the proof of the lower bound in (1.4). Our proof relies on a gen-
eral lower bound on Hausdorff measure of random fractals “of limsup type”,
Theorem 2.1. This general bound sharpens similar estimates obtained by [13],
[9], [4] and [24]; of course, our work owes a substantial debt to these earlier
papers.
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(iii) For any x /∈ 
Wt �0 ≤ t ≤ T� and ε small enough, µW
T �B�x� ε�� = 0.

Hence, the equivalence of (1.3) and (1.4) is a direct consequence of the uniform
dimension doubling property of Brownian motion, due to Kaufman [10] [see
also [18], (0.1)].
(iv) Let vd−2 denote the first eigenvalue of �1/2�� in the unit ball of �d−2

with Dirichlet boundary conditions. As the spherically symmetric fundamental
solution for the Laplacian eigenvalue problem in B�0�1� is Jd/2−2�

√
λ�x��, the

required Dirichlet boundary conditions imply that vd−2 = q2d/2 [see, e.g., [3],
(2.15)]. The appearance of �d− 2� in our result for d dimensions is due to the
celebrated identity of Ciesielski–Taylor [3], Theorem 2.

To indicate the qualitative difference between the sets of thick points and
the most familiar random fractals associated with Brownian motion (the range,
the graph, and the level sets) we present the following proposition; for the def-
inition and properties of packing dimension dim

P
, see [29] or [8].

Proposition 1.2. Let the notation of Theorem 1.1 be in force. For all
0 < a ≤ 4/q2d, the union Thick≥a =

⋃
b≥a Thickb has the same Hausdorff dimen-

sion as Thicka a.s., but its packing dimension a.s. satisfies dimP
�Thick≥a� = 1.

Equivalently,

dim
P

{
x ∈ �d

∣∣∣ lim sup
ε→0

µW
T �B�x� ε��
ε2� log ε� ≥ a

}
= 2 a�s�(1.6)

Remark. The importance of comparing the Hausdorff and packing dimen-
sions of a set was stressed in Taylor’s survey [27]. By a more involved ar-
gument, it can be shown that Thicka itself also has packing dimension 1 for
0 < a ≤ 4/q2d. (For a = 4/q2d, this statement follows from Proposition 1.2.)
The next theorem solves two problems posed by Taylor in 1974 (see [26],

page 201).

Theorem 1.3. Let 
Wt� be a Brownian motion in �d, d ≥ 3. Then, for any
R ∈ �0�∞� and any T ∈ �0�∞�,

lim
ε→0

sup
�x�≤R

µW
T �B�x� ε��
ε2� log ε� = 4q−2d a�s�(1.7)

Furthermore, for any k ∈ �0�∞� and any T ∈ �k�∞�,

lim
ε→0

inf
t∈�0�k�

µW
T �B�Wt� ε��
ε2/� log ε� = 1 a�s�(1.8)

Remarks. Our proof shows that for any T ∈ �0�∞�,

lim
ε→0

sup
0≤t≤T

µW
T �B�Wt� ε��
ε2� log ε� = 4q−2d a�s�(1.9)
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Combining (1.3) and (1.7) we see that

sup
x∈�d

lim sup
ε→0

µW
∞�B�x� ε��
ε2� log ε� = 4q−2d a�s�

In particular, the sets in (1.3) and (1.4) are a.s. empty for any a > 4q−2d ,
T ∈ �0�∞�.
A detailed multifractal analysis of thin times for Brownian motion, that is,

t ∈ �0�T�, satisfying

lim inf
ε→0

µW
T �B�Wt� ε��
ε2/� log ε� = a

for some a ≥ 1, can be found in [7]. The relation between thin times and (1.8)
is the same as the relation between thick times and (1.7).

Computation of Laplace transforms is an important component of a com-
plete multifractal analysis, and it was also the starting point of our investiga-
tion. Pemantle, Peres and Shapiro [15] showed that

∫ 1
0 µW

1 �B�Wt� ε�� /ε2 dt,
the pathwise first moment of the ratio µW

1 �B�Wt� ε�� /ε2, remains bounded al-
most surely as ε→ 0. The following theorem provides a pathwise asymptotic
formula for the moment generating function of that ratio. In one sense, it is
finer than Theorem 1.1, since it yields a precise estimate of the total duration
in �0�1� that the Brownian particle spends in balls of radius ε that have un-
usually high occupation measure (see Corollary 1.5 below). Such an estimate
(which is an analogue in our setting of the “coarse multifractal spectrum,” cf.
[22]), cannot be inferred from Theorem 1.1.

Theorem 1.4. Denote by µ̄W̄
∞ the total occupation measure for a two-sided

Brownian motion 
W̄t�∞−∞ in �d, d ≥ 3. Then for each θ < q2d/2,

lim
ε→0

∫ 1
0
exp
(
θµW

1

(
B�Wt� ε�

)/
ε2
)
dt = Ɛ

(
exp
(
θµ̄W̄

∞ �B�0�1��
))

a�s�(1.10)

Remarks.

(i) We note by [3] that

Ɛ
(
exp
(
θµ̄W̄

∞
(
B�0�1�)))= (Ɛ( exp (θµW

∞
(
B�0�1�))))2

= 1∏∞
j=1
(
1− 2θ/q2d�j

)2(1.11)

for each θ < q2d/2, where 
qd�j�j≥1 are the positive zeros of the Bessel func-
tion Jd/2−2�x�, enumerated in increasing order. It is clear that the right-hand
side diverges as θ ↑ q2d/2 = q2d�1/2. The case d = 3 is particularly explicit be-
cause then q3 = π/2 and the right-hand side of (1.11) simplifies to cos−2�√2θ�
(cf. [3]).
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(ii) Let τ denote a random variable uniform on �0�1�, which is independent
of the Brownian path W. Then (1.10) implies in particular that for almost
every Brownian path W, the ratio µW

1 �B�Wτ� ε�� /ε2, a random variable in τ,
converges in law as ε→ 0 to the total occupation time µ̄W̄

∞ �B�0�1�� of the unit
ball by a two-sided Brownian motion W̄.

Next, we state the promised corollary of Theorem 1.4, which is analogous
to the coarse multifractal spectrum.

Corollary 1.5. Let 
Wt� be a Brownian motion in �d, d ≥ 3, and denote
Lebesgue measure on �1 by � eb.
Then, for any a ∈ �0�4/q2d�,

lim
ε→0

log � eb
{
0 ≤ t ≤ 1

∣∣∣µW
1 �B�Wt� ε�� ≥ aε2� log ε�

}
log ε

= aq2d/2 a�s�

The thick points considered in Theorem 1.1 are centers of balls B�x� ε� with
unusually large occupation measure for infinitely many radii, but these radii
might be quite rare. The next theorem shows that for the balls B�x� ε� to have
unusually large occupation measure for all small radii ε and the same center x,
what constitutes “unusually large” must be interpreted more modestly. Define

Id�a� =
a

4

(
max

{
0� d− 2− 2

a

})2
�(1.12)

and let

Cd = inf
{
a Id�a� = 2

} = 2

d− 2√d− 1 �(1.13)

(The equality on the right is easily verified.)
Then we have the following:

Theorem 1.6. For 
Wt� a Brownian motion in �d� d ≥ 3, and a ∈ �0�Cd�,

dim
{
x ∈ �d

∣∣∣ lim inf
ε→0

µW
∞�B�x� ε��

ε2
≥ a

}
≤ 2− Id�a� a�s�(1.14)

and this can be strengthened to

dim
P

{
x ∈ �d

∣∣∣ lim inf
ε→0

µW
∞�B�x� ε��

ε2
≥ a

}
≤ 2− Id�a� a�s�(1.15)

where dim
P
denotes packing dimension. Moreover,

1
d
≤ sup

x∈�d

lim inf
ε→0

µW
∞�B�x� ε��

ε2
≤ Cd a�s�(1.16)
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Remarks.

(i) In particular, replacing the lim sup by lim inf in (1.3) and (1.4) yields
an a.s. empty set for any a > 0.
(ii) The new assertion in (1.16) is the right-hand inequality; the inequality

on the left is an immediate consequence of Theorem 9 of Perkins [17] concern-
ing “Brownian slow points.”
(iii) It is an open problem to determine exactly the dimension appearing in

(1.14) and the precise asymptotics in (1.16).
(iv) That the upper bound (1.14) on Hausdorff dimension applies to packing

dimension as well is in sharp contrast with Theorem 1.1 and Proposition 1.2.
Intuitively, the reason for this contrast is that for a point to be in the set
considered in (1.3), it only needs to satisfy a certain condition at infinitely
many scales, so that set can appear large at other scales; these scales can be
used to pack many disjoint balls with centers in the set. Points considered in
(1.14), however, must satisfy a (less stringent) condition at all scales.

The next section contains a discussion of fractals “of limsup type” and a
general lower bound (Theorem 2.1) for their Hausdorff measure. In Section 3
we prove the crucial Localization Lemma 3.1. The results of those two sections
are applied in Section 4 to establish the lower bounds on Hausdorff dimen-
sion in Theorem 1.1 and Proposition 1.2. The complementary upper bounds in
Theorem 1.1 are proved in Section 5. Combining these bounds with the Local-
ization Lemma 3.1, we prove Theorem 1.3 in Section 6. Section 7 is devoted to
the proof of Theorem 1.4, with Corollary 1.5 proved in Section 8. Theorem 1.6
is proved in Section 9. At the end of the paper we present some open problems.
Analogous results for transient symmetric stable processes are contained

in [5].

2. Random fractals of limsup type. Suppose that for each n ≥ 1, a
finite union A�n� of intervals of length λn is given. Assume that λn → 0
as n → ∞ and that the number of intervals comprising A�n� grows like a
negative power of λn. We call A = lim supA�n� = ⋂∞n=1⋃∞k=n A�k� a fractal of
limsup type. We will be interested in situations in which theA�n� are random,
and in hypotheses on their distribution which will allow us to obtain dimension
bounds on A. The main result of this section, Theorem 2.1, provides a general
framework for obtaining lower bounds on the Hausdorff measure of random
fractals of limsup type.
Random sets that are (well approximated by) random fractals of limsup

type include:

1. the fast points of Orey–Taylor [13];
2. the initial points of exceptional Brownian excursions considered in [1];
3. the close approaches on the Brownian path measured by [19];
4. the paths in a family tree where a tree-indexed random walk has positive
burst speed; see [2];

5. times where the Strassen functional LIL fails; see [4];
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6. sets arising in multifractal analysis of stable subordinators (studied in [9]
and [24]);

7. the sets Thicka in Theorem 1.1.

Such random sets differ qualitatively from the random fractals most fre-
quently encountered (e.g., ranges, graphs, levels sets and slow points of Brow-
nian motion). For instance, the packing dimension of sets of limsup type is
typically full, hence larger than their Hausdorff dimension; see Corollary 2.4.
In particular, that corollary implies that the sets of fast points of [13] have
packing dimension 1 (the assertion to the contrary in [27], page 401 is wrong).
Three general methods have been employed to establish lower bounds for

Hausdorff dimension of random fractals of limsup type. (These methods were
used earlier for other sets).

1. Orey–Taylor [13] constructed a Frostman measure directly, using estimates
on binomial probabilities. Their method is expounded in [4]. This elegant
method requires strong independence assumptions “within levels,” and it
is difficult to refine it to handle sets defined by an equality, like Thicka,
rather than an inequality. Orey–Taylor ([13], page 185) state that this can
be done for the random fractals of limsup type, which they consider the
Brownian fast points, by “tightening their argument,” but extending this
to more general situations seems quite hard.

2. Intersection properties with an independent random set (the range of a
stable subordinator) were used by [1] and [19]; random Cantor sets arising
from fractal percolation as in [16] could also be used. Here independence
assumptions can be replaced by correlation bounds, but, as above, handling
sets like Thicka is unwieldy.

3. A powerful method based on estimation of energy integrals was used by [9]
and [24]. Below we sharpen and extend this method and show that it yields
good estimates of Hausdorff measure, while requiring only mild correlation
hypothesis.

Let �n denote the collection of dyadic intervals 
��i− 1�2−n� i2−n��2
n

i=1. For
any increasing function ϕ �0�1� → �0�∞� with ϕ�0� = 0, let� ϕ�A� denote the
Hausdorff measure of a set A in the gauge ϕ (see, e.g., [27] for the definition).

Theorem 2.1. Suppose that for every n ≥ 1, a collection of 
0�1� valued
random variables 
ZI�I∈�n

is given, so that pn = P�ZI = 1� is the same for
all I ∈ �n. Let

A�n� =⋃{I ∈ �n

∣∣ZI = 1
}
and A = lim supA�n� =

∞⋂
n=1

∞⋃
k=n

A�k� �

For I ∈ �m, with m < n, define

Mn�I� =
∑

J∈�n�J⊂I
ZJ�
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Choose ζ�n� ≥ 1 such that

Var�Mn�I�� ≤ ζ�n�Ɛ�Mn�I�� = ζ�n�pn2
n−m �(2.1)

Let ϕ�r� be a gauge function which is regularly varying of index α ∈ �0�1� as
r ↓ 0 (i.e., ϕ�r� = rαL�r� where L�cr�/L�r� → 1 as r ↓ 0 for any c > 0). If

2−nζ�n�
ϕ�2−n�pn

→ 0�(2.2)

then � ϕ�A� > 0 a.s.

Remarks.

(i) We emphasize that no independence or correlation assumptions are
made relating ZI and ZJ for I and J of different lengths.
(ii) � ϕ�A� > 0 immediately implies that dim�A� ≥ α.
(iii) Theorem 2.1 can be applied to the “fast points” and “thick points” of a

variety of processes; the only essential requirements are stationarity of incre-
ments, suitable decay of correlations and (for discontinuous processes) bounds
on the jump probabilities. The non-vanishing of Hausdorff measure is proved
in Theorem 2.1, rather than merely a bound on dimension, in order to handle
the sets Thicka, rather than just their unions Thick≥a =

⋃
b≥a Thickb, in (1.4).

(See the remark following the statement of Corollary 4.1.)
(iv) Let ϕn = 1/ϕ�2−n�. Beyond the obvious fact of some exponential

growth of ϕn, our proof uses only the following simple consequence of the
assumption that ϕ�r� is regularly varying of index α ∈ �0�1� as r ↓ 0: for
some C <∞ that does not depend on n,

n∑
m=1

ϕm ≤ Cϕn and
∞∑

m=n
2−mϕm ≤ C2−nϕn�(2.3)

(v) We will apply Theorem 2.1 below to prove Theorem 1.1. In that appli-
cation, we will take ϕ�r� = r1−γ� log2�r��13 with pn ≥ 2−nγ for some 0 < γ < 1
and ζ�n� = n12, where throughout this paper, log2 stands for the logarithm to
the base 2.
(vi) Theorem 2.1, which is formulated for random fractals of limsup type

in �0�1�, has an obvious generalization to random “fractals of limsup type”
in �0�1�d. In this setup we can take ϕ�r� to be any gauge function which is
regularly varying of index α ∈ �0� d� as r ↓ 0, and replace (2.1) and (2.2) by
Var�Mn�I�� ≤ ζ�n�Ɛ�Mn�I�� = ζ�n�pn2d�n−m� and 2−dnζ�n�/�ϕ�2−n�pn� → 0,
respectively. The proof of such a generalization is basically identical to the
proof of Theorem 2.1.

To establish Theorem 2.1 we need two lemmas. The first one is a version of
the well-known connection between energy and Hausdorff measure. For the
reader’s convenience, we include the brief proof.
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Lemma 2.2. Fix an increasing gauge function ϕ such that ϕ�0� = 0. Sup-
pose that B is a Borel set in �0�1�, and ν is a probability measure on B. If the
dyadic energy

�ϕ�ν� =
∞∑

m=1

∑
J∈�m

ν�J�2
ϕ�2−m�

of ν is finite, then � ϕ�B� > 0.

(In fact � ϕ�B� = ∞, but that is unimportant for our purpose.) See [14] for
the connection of �ϕ�ν� to more traditional expressions for energy.

Proof. Let

0�x� =
∞∑

m=1

∑
J∈�m

ν�J�
ϕ�2−m�1J�x� �

Since
∫
B 0�x�dν = �ϕ�ν�, taking C = 2�ϕ�ν�, the set BC = 
x ∈ B �0�x� ≤ C�

has ν�BC� ≥ 1/2. The restriction νC of ν to BC satisfies νC�J� ≤ Cϕ�2−m� for
every J ∈ �m for all m. Since any interval I ⊂ �0�1� can be covered by three
shorter dyadic intervals, it follows that νC�I� ≤ 3Cϕ��I�� for any interval I.
Hence, if � is any countable collection of intervals with BC ⊆

⋃
� I, then

1
2 ≤ ν�BC� ≤

∑
�

νC�I� ≤ 3C
∑
�

ϕ��I���

which implies that 1/�6C� ≤ � ϕ�BC�.
Alternatively, the a.s. finiteness of 0, in conjunction with [23], implies that

� ϕ�B� = ∞. ✷

The following lemma, which, roughly speaking, controls the “quadratic vari-
ation” of the random sets A�n�, is the key to the proof of Theorem 2.1. Recall
that ϕn = 1/ϕ�2−n�, and note that by (2.2), for any l we can choose an integer
n�l� > l such that

ϕn�l�ζ�n�l��
2n�l�pn�l�

≤ 2−3l�(2.4)

Lemma 2.3. Let the assumptions of Theorem 2.1 be in force. There exist an
a.s. finite random variable l0�ω� and a constant C3, such that if l ≥ l0�ω� and
n = n�l�, then for all D ∈ �l, we have

�Mn�D� − ƐMn�D�� < 1
2ƐMn�D�(2.5)

and

n�l�∑
m=l

ϕm

∑
J∈�m�J⊂D

Mn�J�2
�2n−lpn�2

≤ C3ϕl �(2.6)
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Proof. For m ≤ n and J ∈ �m, denote

�n�J� =Mn�J� − ƐMn�J� �
Also, for l ≤ n and D ∈ �l, set

ϒn�D� =
n∑

m=l
ϕm

∑
J∈�m�J⊂D

�n�J�2 �

For J ∈ �m, the assumption (2.1) gives Ɛ��n�J�2� ≤ ζ�n�pn2n−m. Therefore,

∀D ∈ �l� Ɛϒn�D� =
n∑

m=l
ϕm2

m−lζ�n�pn2
n−m = 2n−lζ�n�pn

n∑
m=l

ϕm �

By (2.3), we then have

Ɛϒn�D� ≤ C2n−lp2nϕnζ�n�/pn �

Thus, by (2.4), since n = n�l�,

Ɛ
∑

D∈�l

ϒn�D�
�2n−lpn�2

≤ C2−l �

Since the right-hand side is summable in l, we conclude that the summands
inside the last expectation tend to 0 a.s. as l→∞. In particular, there exists
l0�ω� <∞ such that for all l ≥ l0�ω� and D ∈ �l, we have

ϒn�D� ≤
(
2n−lpn

)2
= �ƐMn�D��2 �(2.7)

To deduce (2.5), observe that

�n�D�2 ≤ ϕ−1l ϒn�D� ≤ ϕ−1l �ƐMn�D��2 < 1
4 �ƐMn�D��2 �

Next, we calculate

∑
J∈�m�J⊂D

�ƐMn�J��2
�2n−lpn�2

= ∑
J∈�m�J⊂D

22�l−m� = 2l−m �

Therefore, by (2.3),
n∑

m=l
ϕm

∑
J∈�m�J⊂D

�ƐMn�J��2
�2n−lpn�2

= 2l
n∑

m=l
2−mϕm ≤ Cϕl �(2.8)

Rewrite (2.7) in the form
n∑

m=l
ϕm

∑
J∈�m�J⊂D

�n�J�2
�2n−lpn�2

= 1
�2n−lpn�2

n∑
m=l

ϕm

∑
J∈�m�J⊂D

�n�J�2 ≤ 1 �
(2.9)

Since

Mn�J�2 = �ƐMn�J� + �n�J��2 ≤ 2�ƐMn�J��2 + 2�n�J�2 �
adding the inequalities (2.8) and (2.9) yields (2.6), for some constant C3. ✷
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Proof of Theorem 2.1. We use freely the terminology introduced in the
statement of Lemma 2.3. With l0 = l0�ω� as in the lemma, define inductively
lk+1 = n�lk� for k ≥ 0. For D ∈ �lk−1 with k ≥ 1, write

Qk = ƐMlk
�D� = 2lk−lk−1plk

�

and note that by (2.5),

∀k ≥ 1 ∀D ∈ �lk−1 �
1
2Qk ≤Mlk

�D� ≤ 2Qk �(2.10)

Summing this over D ∈ �lk−1 gives

∀k ≥ 1� Mlk
��0�1�� ≤ 2lk−1+1Qk �(2.11)

To establish the theorem, we will construct a (random) probability measure
ν, supported on

⋂
k≥1A�lk� ⊂ A, such that �ϕ�ν� < ∞ a.s. To specify ν, it

suffices to define ν�J� consistently for all binary intervalsJ. Start by assigning
the leftmost interval in �l0

full measure, that is, set ν�0�2−l0� = 1. Continue
inductively: if J ∈ �m with lk−1 < m ≤ lk and J ⊂ D with D ∈ �lk−1 , define

ν�J� = Mlk
�J�ν�D�

Mlk
�D� �(2.12)

It is straightforward to verify that this assignment is consistent and that ν
is supported on

⋂
k≥1A�lk�. For k ≥ 2 and J as in (2.12), two applications of

(2.10) and the bound

ν�D� ≤ ZD

minD̃∈�lk−2
Mlk−1�D̃�

give

ν�J� ≤ 2Mlk
�J�ν�D�
Qk

≤ 4Mlk
�J�ZD

QkQk−1
�(2.13)

Now we apply Lemma 2.3. For k ≥ 2 and D ∈ �lk−1 ,

lk∑
m=lk−1

ϕm

∑
J∈�m�J⊂D

ν�J�2

≤ 16ZD

Q2
k−1

lk∑
m=lk−1

ϕm

∑
J∈�m�J⊂D

Mlk
�J�2

Q2
k

≤ 16C3ZD

Q2
k−1

ϕlk−1 �

(2.14)

by the definition of Qk and (2.6). Summing this over all D ∈ �lk−1 , and then
using (2.11) with k− 1 in place of k, we obtain

lk∑
m=lk−1

ϕm

∑
J∈�m

ν�J�2 ≤ 16C3Mlk−1��0�1��
Q2

k−1
ϕlk−1 ≤

C42lk−2

Qk−1
ϕlk−1

≤ C422lk−2

2lk−1plk−1

ϕlk−1 ≤ C42
−lk−2 �

(2.15)
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where the last step used (2.4) and the fact that ζ ≥ 1. As the right-hand side
of (2.15) is summable in k, we conclude that

�ϕ�ν� =
∞∑

m=0
ϕm

∑
J∈�m

ν�J�2 <∞ a.s.

By Lemma 2.2, this completes the proof. ✷

The next corollary will be used to prove Proposition 1.2 in Section 4. For
K ⊂ �0�1�, let 	m�K� denote the number of intervals in �m that intersect K.
Denote by

dim
M
�K� = lim sup

m→∞
log2	m�K�

m
�(2.16)

the upper Minkowski dimension ofK, also known as the upper box dimension.
The only property of packing dimension dim

P
that we need is its relation

to Minkowski dimension: for any Borel set E,

dim
P
�E� = inf

E⊂⋃j Ej

sup
j

dim
M
�Ej� �(2.17)

where the infimum is over all countable covers 
Ej� of E by closed sets. See
[30] or [8], Proposition 3.8.

Corollary 2.4. (i) If for each n ≥ 1 the set Vn is relatively open and dense
in �0�1�d, then dim

P
�⋂n Vn� = d.

(ii) In the setting of Theorem 2.1, the random set A = lim supA�n� satisfies
dim

P
�A� = 1 a.s.

Proof. (i) Let 
Ej� be a countable collection of closed sets that cover⋂
n Vn. Then the union 
Ej�j≥1 ∪ 
Vc

n�n≥1 is a countable cover of �0�1�d con-
sisting of closed sets. By Baire’s theorem, at least one of these closed sets must
have nonempty interior in �0�1�d; since each Vn is dense, some Ej must have
interior. From (2.17), we conclude that dim

P
�⋂n Vn� = d.

(ii) Denote by A�n�◦ the interior of A�n�, so that Vn =
⋃∞

k=n A�k�◦ is cer-
tainly open in �0�1�. Fixing a dyadic interval I in �0�1� it is easy to check that
Theorem 2.1 applies also when �n are the dyadic subintervals of I. Hence,
a.s., for each dyadic I, the set A ∩ I, of positive Hausdorff dimension, is un-
countable. Since A \ Vn is countable, each Vn is a.s. dense in �0�1�, so the
assertion follows from (i). ✷

3. Localization. Throughout this section, c, c′ denote positive, finite con-
stants, independent of ε, the values of which may change from line to line,
using the notation a ∼ b if limε→0 a/b = 1.
To derive lower bounds on the Hausdorff dimension of the sets appearing

in Theorem 1.1, as well as for proving (1.7) in Theorem 1.3, it is crucial to be
able to consider the occupation measure of a ball of radius ε over a small time
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interval (of length δε which tends to zero with ε), rather than over an interval
of constant length.
Surprisingly, it turns out that with only a small loss in probability, we can

work with rather short time intervals; the following lemma makes this precise.

Lemma 3.1 (Localization lemma). Let 
Wt� be a Brownian motion in �d,
d ≥ 3. Write h�r� = r2� log r�, and θ∗ = :−1d = q2d/2. Finally, denote δε =
ε2� log ε�6 and βε = 1− 2� log ε�−2. Then for some 0 < c <∞, we have

pε = P
(
µW
δε
�B�0� εβε�� ≥ ah�ε�

)
≥ cεaθ

∗
�

We did not attempt to optimize the powers of � log ε� appearing in the defi-
nitions of δε and βε. Nevertheless, to appreciate the sharpness of this lemma,
recall that by [3] [cf. (3.4) below],

P
(
µW
∞�B�0� ε�� ≥ ah�ε�

)
∼ c′εaθ

∗
�

Proof. Define

� = � �ε� = inf {s ≥ 0 �Ws� = ε� log ε�2} �
By Brownian scaling, we deduce the existence of positive constants c1� c2 such
that

P�� > δε� = P

(
sup

t∈�0�� log ε�2�
�Wt� ≤ 1

)
∼ c1 exp

(
− c2� log ε�2

)
�(3.1)

Therefore,

pε ≥ P
(
ε−2
∫ �

0
1
�Ws�<εβε�ds ≥ a� log ε�"� ≤ δε

)

≥ P
(
ε−2
∫ �

0
1
�Ws�<εβε�ds ≥ a� log ε�

)
−P�� > δε��

(3.2)

By (3.1) and (3.2), the lemma will be proved once we establish that

P

(
ε−2
∫ �

0
1
�Ws�<εβε�ds ≥ a� log ε�

)
≥ cεaθ

∗
�(3.3)

To see (3.3), denote by τd−2 the hitting time of the unit sphere in �d−2 by
Brownian motion, and define

I = ε−2
∫ ∞
0

1
�Ws�<εβε�ds�

I� = ε−2
∫ �

0
1
�Ws�<εβε�ds�
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Recall that, using [3] for the first equality,

P
( ∫∞
0 1
�Ws�<1�ds ≥ x

)
e−xθ∗

= P�τd−2 ≥ x�
e−xθ∗

→ c as x→∞�(3.4)

Therefore, using Brownian scaling and (3.4),

P�I ≥ a� log ε��=P
(
�βεε�−2

∫ ∞
0

1
�Ws�<εβε�ds ≥ β−2ε a� log ε�
)

=P�τd−2 ≥ β−2ε a� log ε��
∼ c exp

(
− θ∗a� log ε�/�1− 2� log ε�−2�2

)
∼ cεaθ

∗
�

(3.5)

Let now � ′ = inf
t > �  �Wt� < ε�, and define

I� ′ = ε−2
∫ ∞
� ′

1
�Ws�<εβε�ds �

Then, I = I� 1
� ′=∞� + �I� + I� ′ �1
� ′<∞� so that

P
(
I� ≥ z"� ′ = ∞) = P�I ≥ z� −P

(
I� + I� ′ ≥ z"� ′ <∞) �(3.6)

Let Ĩ be an independent copy of I for a Brownian motion whose expectation
when starting at v we denote by Ɛ̃v. Using symmetry and the strong Markov
property we have

P
(
I� + I� ′ ≥ z"� ′ <∞) = Ɛ

(
Ɛ̃W� ′

{
Ĩ ≥ z− I�

}
"� ′ <∞)

≤ Ɛ
(
Ɛ̃
{
Ĩ ≥ z− I�

}
"� ′ <∞)

= Ɛ̃

{
Ɛ

(
I� ≥ z− Ĩ"� ′ <∞

)}

= Ɛ̃

{
Ɛ

(
ƐW� �TB�0�ε� <∞�" I� ≥ z− Ĩ

)}
= � log ε�−2�d−2�P(I� + Ĩ ≥ z

)
≤ � log ε�−2�d−2�P(I+ Ĩ ≥ z

)
�

(3.7)

where TB�0�ε� = inf
t ≥ 0  Wt ∈ B�0� ε�� denotes the first hitting time of
B�0� ε�.
Let τ̃d−2 denote an independent copy of τd−2, and let qτ denote their common

law. Then, for some constant C independent of z, which may change from line
to line,

P�τd−2 + τ̃d−2 > z� = P�τd−2 > z� +
∫ z

0
P�τ̃d−2 > z− y�qτ�dy�

≤ C
[
exp�−zθ∗� +

∫ z

0
exp�−�z− y�θ∗�qτ�dy�

]
≤ C exp�−zθ∗� +C

∫ z

0
exp�−zθ∗�dy

= C�1+ z� exp�−zθ∗��

(3.8)
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where the third line came from integration by parts. Hence, by the same
argument as in (3.5), for some c > 0 and any ε > 0 small enough,

P�I+ Ĩ ≥ a� log ε�� ≤ ca� log ε�εaθ∗ �
Since 2�d − 2� > 1, the inequality (3.3) follows from (3.5), (3.6), (3.7) and the
above. ✷

4. Proof of the lower bound and critical case in Theorem 1.1. The
following corollary of Theorem 2.1 and the Localization Lemma will yield the
desired lower bound.
Recall that θ∗ = :−1d = q2d/2 denotes the first eigenvalue of the Dirichlet

half-Laplacian in the unit ball of �d−2.

Corollary 4.1. Let T ∈ �0�∞� and a ∈ �0�2:d�. Denote h�ε� = ε2� log ε�,
and consider the set of “thick times,”

Thick≥a =
{
0 ≤ t < T

∣∣∣ lim sup
ε→0

µW
T �B�Wt� ε��

h�ε� ≥ a

}
�

Let γ = aθ∗/2 ∈ �0�1� and ϕ�r� = r1−γ� log2 r�13. Then � ϕ�Thick≥a� > 0 a.s.

4.1. Derivation of the lower bound in Theorem 1.1 Assuming for the mo-
ment the upper bounds on dimension obtained in Section 5, we may infer
that dim�Thicka� = 1− γ as follows (cf. the argument in [13], page 185). The
inequality dim�Thick≥�a+1/n�� ≤ 1 − �a + 1/n�θ∗/2 of Section 5 implies that
� ϕ�Thick≥�a+1/n�� = 0, and since Thicka = Thick≥a −

⋃∞
n=1 Thick≥�a+1/n�, Corol-

lary 4.1 shows that � ϕ�Thicka� > 0 which in turn implies that dim�Thicka� ≥
1 − γ � Using once again the upper bound from Section 5 then completes the
proof that dim�Thicka� = 1− γ � ✷

4.2. Derivation of the critical case in Theorem 1.1 We now show that
Thick4/q2d �= �; perhaps surprisingly, this can be done by a “soft” argument.
For h > 0 and a < 4/q2d, consider the set of approximate thick times

Thick�a�h� = ⋃
ε∈�0�h�

{
0 < t < T

∣∣∣ µW
T �B�Wt� ε��
ε2� log ε� > a

}
�

For any a < 4/q2d and h > 0, it follows from (1.4) and the Markov property of
Brownian motion that Thick�a�h� is a.s. dense in �0�T�, and it is easy to check
that Thick�a�h� is an open set. Thus fixing sequences an ↑ 4/q2d and hn ↓ 0,
Baire’s category theorem implies that⋂

n

Thick�an� hn� �= � �

Finally, inspection shows that this intersection coincides with Thick≥4/q2d , which
in turn coincides with Thick4/q2d by the remark following Theorem 1.3. ✷
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Proof of Corollary 4.1. Since we are proving a lower bound, we may
assume that T is finite; by Brownian scaling, it is enough to consider T = 2.
Take εn = n32−n/2� n = 1�2� � � � and βεn

= 1−2� log εn�−2 as in the Localization
Lemma. With I = �t� t+ 2−n� ∈ �n, define Ĩ = �t� t+ n122−n�, and let

ZI = 1 iff
∫
Ĩ
1{�Ws−Wt�<εnβεn

}ds ≥ ah�εn� �

By Lévy’s uniform modulus of continuity, there exists an a.s. finite random
variable n0�ω�, such that, for all n ≥ n0�ω�,

sup
{�Wt −Wt′ � t� t′ ∈ �0�1�� �t− t′� ≤ 2−n} ≤ 2√2−n log�2n� �

Therefore, for all n > n0�ω�, if I ∈ �n and ZI = 1, then∫
Ĩ
1{�Ws−Wt′ �<εn

}ds ≥ ah�εn�

for every t′ ∈ I. The set A defined in Theorem 2.1 satisfies A ⊂ Thick≥a a.s.
(we have taken T = 2 rather than T = 1 to avoid boundary effects here). The
localization lemma (Lemma 3.1) shows that for I ∈ �n, and all n large enough,
pn = P �ZI = 1� ≥ 2−aθ∗n/2. Thus, Corollary 4.1 will be established once we
verify the variance condition (2.1). For intervals I�J ∈ �n the variables ZI

and ZJ always satisfy Cov�ZI�ZJ� ≤ Ɛ�ZI� = pn, and if dist�I�J� > n122−n,
then ZI and ZJ are independent. Therefore, fixing m < n and D ∈ �m, each
I ∈ �n satisfies Cov�ZI�Mn�D�� ≤ n12pn. Consequently

Var�Mn�D�� =
∑

I∈�n� I⊂D
Cov�ZI�Mn�D�� ≤ 2n−mn12pn �

Hence, Theorem 2.1 may be applied (with pn ≥ 2−γn and ζ�n� = n12) to yield
the conclusion. ✷

Proof of Proposition 1.2. In the course of the proof of Corollary 4.1, we
showed that for a ∈ �0�2:d�, the set Thick≥a contains a set of the form A =
lim supA�n� that satisfies the hypotheses of Theorem 2.1. Thus, the assertion
dim

P
�Thick≥a� = 1 follows immediately from Corollary 2.4(ii). To handle the

critical case a = 4/q2d = 2:d, observe that in the analysis of that case earlier
in this section, we expressed Thick≥a as a countable intersection of dense open
sets, so dim

P
�Thick≥a� = 1 by Corollary 2.4(i). (This method also applies to

smaller a.) Finally, we may deduce (1.6) from the uniform doubling of packing
dimension by spatial Brownian motion, established in [18], Corollary 5.8. ✷

5. The upper bound in Theorem 1.1. In this section we establish the
upper bound for (1.3), thus completing the proof of Theorem 1.1. Let 
Wt�t≥0
be a Brownian motion in �d, d ≥ 3, and h�ε� = ε2� log ε�. Set

zT�x� ε� = µW
T �B�x� ε��/h�ε��
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with z�x� ε� = z∞�x� ε�. In this section we show that

dim
{
x ∈ B�0� k�

∣∣∣ lim sup
ε→0

z�x� ε� ≥ a
}
≤ 2− a:−1d(5.1)

a.s. for all a ≤ 2:d, k ∈ �1�∞�. Using z�x� ε� ≥ zT�x� ε�, and considering the
countable union over k = 1�2� � � � � will then complete the proof of the upper
bound on the dimension of sets in (1.3).
Fix k ∈ �1�∞� and δ ∈ �0�1/5�. Choose a sequence εn ↓ 0 as n→∞ in such

a way that ε1 < e−2 and

h�εn+1� = �1− δ�h�εn��(5.2)

For any a > 0 let

Da =
{
x ∈ B�0� k�

∣∣∣ lim sup
n→∞

z�x� εn� ≥ �1− δ�a
}
�

Since, for εn+1 ≤ ε ≤ εn we have

z�x� εn� =
h�εn+1�
h�εn�

µW
∞�B�x� εn��
h�εn+1�

≥ �1− δ�z�x� ε��(5.3)

it is easy to see that{
x ∈ B�0� k�

∣∣∣ lim sup
ε→0

z�x� ε� ≥ a
}
⊆ Da �

Let
{
xj j = 0�1� � � � �Kn

}
, with x0 = 0, denote a maximal collection of points

in B�0� k� such that inf l�=j �xl−xj� ≥ δεn. Let �n be the set of j � 0 ≤ j ≤Kn,
such that

µW
∞�B�xj� �1+ δ�εn�� ≥ �1− 2δ�ah�εn��

We will shortly prove that for any a > 0,

Ɛ��n� ≤ c′ε�1−4δ�aθ
∗−2

n �(5.4)

Assuming this for the moment, fix a ≤ 2/θ∗ and let 
n�j = B�xj� δεn�.
For any x ∈ B�0� k� there exists j ∈ 
0� � � � �Kn� such that x ∈ 
n�j and
B�x� εn� ⊆ B�xj� �1 + δ�εn�. Consequently,

⋃
n≥m
⋃

j∈�n

n�j forms a cover of

Da by sets of maximal diameter 2δεm. Since 
n�j have diameter 2δεn, it follows
from (5.4) that for γ = 2− �1− 5δ�aθ∗ > 0,

Ɛ
∞∑

n=m

∑
j∈�n

�
n�j�γ ≤ c′�2δ�γ
∞∑

n=m
εδaθ

∗
n <∞ �

Thus,
∑∞

n=m
∑

j∈�n
�
n�j�γ is finite a.s. implying that dim�Da� ≤ γ a.s. Taking

δ ↓ 0 completes the proof of the upper bound (5.1), subject only to (5.4) which
we now prove.



THICK POINTS FOR SPATIAL BROWNIAN MOTION 19

Let σj = inf
t ≥ 0 Wt ∈ B�xj� �1+ δ�εn��. By the strong Markov property
and [3] [cf. (3.4)], for some c = c�δ� a�d� <∞ and all n,

P
(
µW
∞�B�xj� �1+ δ�εn�� ≥ �1− 2δ�ah�εn�

)
= P
(
Ɛ
Wσj

−xj

(
µW
∞�B�0� �1+ δ�εn�� ≥ �1− 2δ�ah�εn�

)
"σj <∞

)
≤ P
(
Ɛ
(
µW
∞�B�0� �1+ δ�εn�� ≥ �1− 2δ�ah�εn�

)
"σj <∞

)
≤ cε

�1−4δ�aθ∗
n P�σj <∞��

where the first inequality is due to symmetry. Recall that

P�σj <∞� =
( �1+ δ�εn

�xj�
)d−2

∧ 1�

Hence, for some c1 = c1�δ� a�d�, c′ = c′�δ� a�d� k� <∞ and every n,

Ɛ��n� =
Kn∑
j=0

P
(
µW
∞�B�xj� �1+ δ�εn�� ≥ �1− 2δ�ah�εn�

)

≤ c1ε
�1−4δ�aθ∗−2
n

(
1+
∫
�x�≤k

1
�x�d−2 dx

)
≤ c′ε�1−4δ�aθ

∗−2
n �

(5.5)

which completes the proof of (5.4) and consequently that of Theorem 1.1. ✷

6. A solution of Taylor’s 1974 problems.

Proof of Theorem 1.3. We begin by proving (1.7). To this end, fix T ∈
�0�∞�, δ ∈ �0�1/4� and a < 2:d = 2/θ∗ such that η = 2 − �1 + δ�aθ∗ > 0.
Choose a sequence εn ↓ 0 as in (5.2), noting that for εn ≤ ε ≤ εn−1 and any
x ∈ �d,

�1− δ�zT�x� εn� ≤ zT�x� ε� ≤ �1− δ�−1zT�x� εn−1� �(6.1)

Let δε = ε2� log ε�6,Nn = �T/δεn�, and ti�n = iδεn for i = 0� � � � �Nn−1. Writing
Wt

s =Ws+t −Wt, it follows that

inf
ε∈�εn�εn−1�

sup
t∈�0�T�

zT�Wt� ε� ≥ �1− δ�Nn−1
max
i=0

Z
�n�
i �

where Z
�n�
i = µWti�n

δεn
�B�0� εn��/h�εn� are i.i.d. and by Lemma 3.1, for some

c = c�T� > 0 and all n large enough,

P
(

Nn−1
max
i=0

Z
�n�
i ≤ a

)
≤ �1− pεn

�Nn ≤ exp�−cε−ηn ��

Applying Borel–Cantelli, then taking δ ↓ 0 and a ↑ 2:d, we see that a.s.,

lim inf
ε→0

sup
t∈�0�T�

zT�Wt� ε� ≥ 2:d = 4q−2d �
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With Sk�ω� = inf
t �Wt� ≥ k� ∧ T ∈ �0�∞� a.s. and T �→ zT�x� r� monotone
nondecreasing, it follows that a.s.,

lim inf
ε→0

sup
�x�≤k

zT�x� ε� ≥ lim inf
ε→0

sup
t∈�0�Sk�ω��

zSk�ω��Wt� ε� ≥ 4q−2d �

Turning to the proof of the corresponding upper bound, fix k ∈ �0�∞�,
δ ∈ �0�1/5� and let a = �2+ δ�/��1− 4δ�θ∗� > 2/θ∗. Considering the sequence
εn of (5.2) and the sets �n as in Section 5, it follows from (5.4) that

∞∑
n=1

P���n� ≥ 1� ≤
∞∑
n=1

Ɛ��n� ≤ c′
∞∑
n=1

εδn <∞�

By Borel–Cantelli, it thus follows that a.s. �n is empty for all n ≥ n0�ω�. By
the construction of Section 5 the latter event implies that

lim sup
ε→0

sup
�x�≤k

z∞�x� ε� ≤ a �

Taking δ ↓ 0 for which a ↓ 2/θ∗ = 4q−2d , we conclude that a.s.,
lim sup

ε→0
sup
�x�≤k

z∞�x� ε� ≤ 4q−2d �

as needed to complete the proof of (1.7).
The left side of (1.8) is monotone in T and by Brownian scaling its law

depends only on T/k. Therefore, it suffices to consider k = 1 and the extreme
values T = 1 and T = ∞. Fix δ > 0 and εn = �1− δ�n. (Note: this is different
from the εn used above.) Using the notation

ẑT�x� ε� =
µW
T �B�x� ε��
�ε2/� log ε�� �

it follows that for any ε ∈ �εn� εn−1� and x ∈ �d,

n− 1
n

�1− δ�2ẑT�x� εn� ≤ ẑT�x� ε� ≤
n

n− 1�1− δ�−2ẑT�x� εn−1� �

Thus, it suffices for (1.8) to show that for any fixed δ ∈ �0�1/5� both the lower
bound

lim inf
n→∞ inf

t∈�0�1�
ẑ1�Wt� εn� ≥ �1− δ�5(6.2)

and the upper bound

lim sup
n→∞

inf
t∈�0�1�

ẑ∞�Wt� εn� ≤ �1+ δ�5 �(6.3)

hold a.s.
Our first task in proving (6.2) is to get a good upper bound on the proba-

bility of small occupation measure. If µW̄
�−a�b��B�0� εn�� denotes the occupation

measure of a two-sided �d-valued Brownian motion W̄ in B�0� εn� during the
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time interval �−a� b� with a� b ≥ 0, then µW̄
�−a�b��B�0� εn�� ≤ γ implies that

τ̄d�εn� ∧ a+ τd�εn� ∧ b ≤ γ, where

τ̄d�ε� = inf
t ≥ 0 �W̄−t� ≥ ε� � τd�ε� = inf
t ≥ 0 �W̄t� ≥ ε��
Taking γ = �1 − δ�2ε2n/� log εn�, then a ∧ b ≥ �1 − δ�2ε2n/� log εn� together with
Brownian scaling shows that

P
(
µW̄
�−a�b��B�0� εn�� ≤ �1− δ�2ε2n/� log εn�

)
(6.4)

≤ P
(
τ̄d�1� + τd�1� ≤ �1− δ�2/� log εn�

)
�

Since P�τd�1� ≤ x� = P�sup0≤t≤x �Wt� ≥ 1�, it is well known (see [29], Lemma
6.4) that for 0 < x < 1�

c1x
1−d/2e−0�5/x ≤ P�τd�1� ≤ x� ≤ c2x

1−d/2e−0�5/x�(6.5)

This estimate leads, as in the proof of [29], Lemma 6.5, to

P �τ̄d�1� + τd�1� ≤ x� ≤ exp�−2�1− δ�/x�(6.6)

for any δ > 0 and x ≤ x�δ�. Hence, whenever a ∧ b ≥ �1− δ�2ε2n/� log εn�,

P
(
µW̄
�−a�b��B�0� εn�� ≤ �1− δ�2ε2n/� log εn�

)
≤ ε

2/�1−δ�
n(6.7)

for all n ≥ n0�δ�, which is the good upper bound we need. In particular, using
W̄t

s = W̄t+s − W̄t for the time-shifted path, this shows that for all n ≥ n0�δ�,

P
(
ẑ1�Wt� εn� ≤ �1− δ�2

)
= P
(
µW̄t

�−t�1−t��B�0� εn�� ≤ �1− δ�2ε2n/� log εn�
)
≤ ε

2/�1−δ�
n

(6.8)

provided that

�1− δ�2ε2n/
∣∣ log εn∣∣ ≤ t ≤ 1− �1− δ�2ε2n/

∣∣ log εn∣∣�(6.9)

On the other hand, if 0 ≤ t ≤ 1 but condition (6.9) does not hold, (i.e., for t
close to 0 or 1), we can no longer use the good upper bound (6.8), but must
work with the following bound which comes from (6.5):

P
(
ẑ1�Wt� εn� ≤ �1− δ�2

)
≤ P
(
τd�1� ≤ �1− δ�2/� log εn�

)
≤ ε

0�5/�1−δ�2
n(6.10)

for all n ≥ n1�δ�, some n1�δ� <∞.
To apply these estimates for proving (6.2), take k = k�δ� = 20�1− δ�2/δ2 to

be an integer, ρn = �1−δ�2ε2n/�� log εn�k�δ�� = δ2ε2n−1/�20� log εn��,Nn = %ρ−1n &
and ti�n = iρn, i = 1� � � � �Nn. On the one hand, by Lévy’s uniform modulus of
continuity, we have that a.s. for some finite n0 = n0�ω� ≥ δ−1 and all n ≥ n0,

Nn
max
i=1

sup
�s�<ρn

�Wti�n+s −Wti�n
� < δεn−1 �
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which implies that

inf
t∈�0�1�

ẑ1�Wt� εn−1� ≥ �1− δ�3
Nn

min
i=1

ẑ1�Wti�n
� εn� �(6.11)

On the other hand, we see that condition (6.9) is satisfied by all but the first
and last k points of the form t = ti�n, i = 1� � � � �Nn. Hence, using the good
upper bound (6.8) for those ti�n, and the bound (6.10) for the remaining 2k
ti�n’s we have

P
(

Nn

min
i=1

ẑ1�Wti�n
� εn� ≤ �1− δ�2

)
≤

Nn∑
i=1

P
(
ẑ1
(
Wti�n

� εn
) ≤ �1− δ�2)

≤ 2kε0�5/�1−δ�2n +Nnε
2/�1−δ�
n ≤ ε2δn �

(6.12)

Since ε2δn is summable, combining (6.11) and (6.12) yields (6.2) by an applica-
tion of the Borel–Cantelli lemma.
Turning to prove (6.3), let now γn = �1+ δ�5ε2n/�2� log εn��, ρn = ε2−5�6δn and

n large enough for ρn ≥ γn. (Our choice of the constant 5�6 will become clear at
the end of the proof). Let ε′n = �1+δ�εn and consider the event � = � +∩� −,
where

� + =
{
τd�ε′n� ≤ γn� inf

s∈�0�ρn�
�Wτd�ε′n�+s� ≥ εn� �Wτd�ε′n�+ρn

� ≥ ε1−δn

}
and

� − =
{
τ̄d�ε′n� ≤ γn� inf

s∈�0�ρn�
�W̄−τ̄d�ε′n�−s� ≥ εn� �W̄−τ̄d�ε′n�−ρn

� ≥ ε1−δn

}
�

By the strong Markov property and symmetry,

P�� +� = P
(
PWτd�ε′n�

(
�Wρn

� ≥ ε1−δn � inf
s∈�0�ρn�

�Ws� ≥ εn

)
" τd�ε′n� ≤ γn

)

= P�τd�ε′n� ≤ γn�Px0

(
�Wρn

� ≥ ε1−δn � inf
s∈�0�ρn�

�Ws� ≥ εn

)
�(6.13)

for any x0 with �x0� = ε′n.
By Brownian scaling, P�τd�ε′n� ≤ γn� = P�τd�1� ≤ �1+ δ�3/�2� log εn��, so

that using (6.5) and �1+ δ�−3 = 1− 3δ+O�δ2� we get
c3ε

1−2�9δ
n ≤ P�τd�ε′n� ≤ γn� ≤ c4ε

1−3�1δ
n

for some c3� c4 > 0, δ small and all n large enough. Since

Px

(
inf
s≥0
�Ws� < ε

)
=
(

ε

�x�
)d−2

�(6.14)

whenever �x� > ε, we have, with �x0� = ε′n = �1+ δ�εn,

Px0

(
inf
s≥0
�Ws� ≥ εn

)
= 1− �1+ δ�−�d−2��(6.15)
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hence

1− �1+ δ�−�d−2� ≤ Px0

(
inf

s∈�0�ρn�
�Ws� ≥ εn

)
≤ 1�(6.16)

while

Px0
(�Wρn

� ≤ ε1−δn

) = P
(�x0 + ε1−2�8δn W1� ≤ ε1−δn

)
= P
(�ε2�8δn �x0/εn� +W1� ≤ ε1�8δn

) → 0

since �x0/εn� = 1 + δ, independent of n. Putting this all together and noting
that P�� � = P�� +�P�� −� = P�� +�2 shows that

cε2−5�8δn ≤ P�� � ≤ c′ε2−6�2δn(6.17)

for c� c′ > 0 independent of n.
With ti�n = 4iρn and Nn = ��4ρn�−1� = �0�25ε−2+5�6δn �, set �i = � ◦ θti�n ,

that is, the event � for the shifted path Wti�n (W̄ti�n ). By the strong Markov
property, for any i = 1� � � � �Nn,

P
(
ẑ∞�Wti�n

� εn� ≥ �1+ δ�5��i

)
≤ 2 max

�x0�≥ε1−δn

Px0
(
inf
t≥0
�Wt� < εn

)
≤ 2ε�d−2�δn �

where (6.14) was used in the second inequality. Hence, by the independence
of the events 
�i�Nn

i=1,

P
(

Nn

min
i=1

ẑ∞�Wti�n
� εn� ≥ �1+ δ�5

)

≤ �1−P�� ��Nn +
Nn∑
i=1

P
(
ẑ∞
(
Wti�n

� εn
) ≥ �1+ δ�5��i

)

≤ exp�−P�� �Nn� +
Nn∑
i=1

P
(
ẑ∞
(
Wti�n

� εn
) ≥ �1+ δ�5 ��i

)
P��i�

≤ exp (− cε−0�2δn

)+ c′ε−0�6δn ε
�d−2�δ
n

≤ exp (− cε−0�2δn

)+ c′ε0�4δn

and (6.3) follows by an application of the Borel–Cantelli lemma. (One can see
now the reason for choosing the constant 5.6 above. With more care, we could
have chosen ρn = ε

2−qδ
n with 5 < q < 6.) This completes the proof of Theorem

1.3. ✷

7. Almost sure convergence of exponential moments.

Proof of Theorem 1.4. For any Borel function f �a� b� → �d, we use µf
a�b

to denote its occupation measure,

µ
f
a�b�A� =

∫ b

a
1A�ft�dt
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for all Borel setsA ⊆ �d. We use the abbreviations µf
T = µ

f
0�T and µ̄

f
T = µ

f
−T�T.

As a first step in proving Theorem 1.4, we rewrite things so that we deal
only with occupation measures of B�0�1�. Writing Wε

t = ε−1Wε2t and Wε�t
s =

Wε
t+s −Wε

t with similar notation for W̄ we have

µW
1 �B�Wε2t� ε�� =

∫ 1
0
1
�Ws−Wε2t�≤ε� ds = ε2

∫ 1/ε2
0

1
�Wε2s−Wε2t�≤ε� ds

= ε2
∫ 1/ε2
0

1
�Wε
s−Wε

t �≤1� ds = ε2
∫ 1/ε2
0

1B�0�1��Wε
s −Wε

t �ds

and consequently,

∫ 1
0
exp
(
θµW

1 �B�Wt� ε�� /ε2
)
dt

= ε2
∫ 1/ε2
0

exp
(
θµW

1 �B�Wε2t� ε�� /ε2
)
dt

= ε2
∫ 1/ε2
0

exp
(
θ
∫ 1/ε2
0

1B�0�1��Wε
s −Wε

t �ds
)

dt

≤ ε2
∫ 1/ε2
0

exp
(
θ
∫ ∞
−∞

1B�0�1��W̄ε
s − W̄ε

t �ds
)

dt

= ε2
∫ 1/ε2
0

exp
(
θ
∫ ∞
−∞

1B�0�1��W̄ε�t
s �ds

)
dt

= ε2
∫ 1/ε2
0

exp
(
θµ̄W̄ε�t

∞ �B�0�1��
)
dt�

(7.1)

Hence for each θ < q2d/2 and any subsequence εm → 0, in order to show that

lim sup
m→∞

∫ 1
0
exp
(
θµW

1 �B�Wt� εm�� /ε2m
)
dt

≤ Ɛ
(
exp
(
θµ̄W̄

∞ �B�0�1��
))

a�s��

(7.2)

it suffices to show that

lim
m→∞ ε2m

∫ 1/ε2m
0

exp
(
θµ̄W̄εm�t

∞ �B�0�1��
)
dt

= Ɛ
(
exp
(
θµ̄W̄

∞ �B�0�1��
))

a�s�
(7.3)

For any 1 < p < 2 such that pθ < q2d/2, (7.3) will follow with εm = m−2/�p−1�

from the Borel–Cantelli lemma, Chebyshev’s inequality and the following
lemma. For notational convienience we shall sometimes write W̄�n−1� t� for
W̄n−1�t.
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Lemma 7.1. For θ < q2d/2, there exists c = cd�θ finite, such that for all n,∥∥∥∥ 1n2
∫ n2

0
exp
(
θµ̄

W̄�n−1�t�
∞ �B�0�1��

)
dt

− 1
n2

∫ n2

0
exp
(
θµ̄

W̄�n−1�t�
n �B�0�1��

)
dt

∥∥∥∥
1
≤ cn−�d/2−1��

(7.4)

and for any 1 < p < 2 such that pθ < q2d/2, there exists c = cp�d�θ finite, such
that for all n,∥∥∥∥ 1n2

∫ n2

0
exp
(
θµ̄

W̄�n−1�t�
n �B�0�1��

)
dt

−Ɛ
(
exp
(
θµ̄W̄

∞ �B�0�1��
)) ∥∥∥∥

p

≤ cn−�1−1/p��
(7.5)

Before proving this lemma we first use it to show that for any 1 < p < 2
such that pθ < q2d/2, and with εm =m−2/�p−1�,

lim inf
m→∞

∫ 1
0
exp
(
θµW

1 �B�Wt� εm�� /ε2m
)
dt

≥ Ɛ
(
exp
(
θµ̄W̄

∞ �B�0�1��
))

a�s�

(7.6)

Note that for any n ≤ t ≤ n2 − n,∫ n2

0
1B�0�1�

(
Wn−1

s −Wn−1
t

)
ds =

∫ n2−t

−t
1B�0�1�

(
W̄n−1�t

s

)
ds

≥
∫ n

−n
1B�0�1�

(
W̄n−1�t

s

)
ds

= µ̄
W̄
(
n−1�t
)

n �B�0�1�� �
Hence from (7.1),∫ 1

0
exp
(
θµW

1

(
B
(
Wt�n

−1))/n−2)dt
= 1

n2

∫ n2

0
exp
(
θ
∫ n2

0
1B�0�1��Wn−1

s −Wn−1
t �ds

)
dt

≥ 1
n2

∫ n2−n

n
exp
(
θµ̄

W̄�n−1� t�
n �B�0�1��

)
dt �

Equation (7.6) then follows by using Lemma 7.1 as before and noting that∥∥∥∥ 1n2
∫ n2

0
exp
(
θµ̄

W̄�n−1�t�
n �B�0�1��

)
dt

− 1
n2

∫ n2−n

n
exp
(
θµ̄

W̄�n−1�t�
n �B�0�1��

)
dt

∥∥∥∥
1
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≤
∥∥∥∥ 1n2

∫ n

0
exp
(
θµ̄

W̄�n−1�t�
n �B�0�1��

)
dt

∥∥∥∥
1

+
∥∥∥∥ 1n2

∫ n2

n2−n
exp
(
θµ̄

W̄�n−1�t�
n �B�0�1��

)
dt

∥∥∥∥
1

≤ 1
n2

∫ n

0

∥∥∥∥ exp (θµ̄W̄�n−1�t�
n �B�0�1��

)∥∥∥∥
1
dt

+ 1
n2

∫ n2

n2−n

∥∥∥∥ exp (θµ̄W̄�n−1�t�
n �B�0�1��

)∥∥∥∥
1
dt

≤ 2n−1
∥∥∥∥ exp (θµ̄W̄

∞ �B�0�1��
)∥∥∥∥
1
�

Since µW
1 �B�Wt� ε�� is monotone in ε and limm→∞ εm+1/εm = 1, the proof of

Theorem 1.4 now follows from (7.2), (7.6) and a simple interpolation argument.

Proof of Lemma 7.1. Equation (7.4) will follow from∥∥∥∥ 1n2
∫ n2

0
exp
(
θµ̄

W̄�n−1�t�
∞ �B�0�1��

)
dt− 1

n2

∫ n2

0
exp
(
θµ̄

W̄�n−1�t�
n �B�0�1��

)
dt

∥∥∥∥
1

≤ 1
n2

∫ n2

0

∥∥∥ exp (θµ̄W̄�n−1�t�
∞ �B�0�1��

)
− exp

(
θµ̄

W̄�n−1�t�
n �B�0�1��

)∥∥∥
1
dt

and the following lemma.

Lemma 7.2. For any θ < q2d/2, there exists c = cd�θ finite such that for any
ε > 0, ∥∥∥ exp (θµ̄W̄

∞ �B�0�1��
)− exp (θµ̄W̄

1/ε �B�0�1��
)∥∥∥
1
≤ cεd/2−1�

As for (7.5), we first rewrite

1
n2

∫ n2

0
exp
(
θµ̄

W̄�n−1�t�
n �B�0�1��

)
dt

= 1
n

n−1∑
k=0

1
n

∫ �k+1�n
kn

exp
(
θµ̄

W̄�n−1�t�
n �B�0�1��

)
dt

= 1
n

n−1∑
k=0

In�k�

where

In�k =
1
n

∫ �k+1�n
kn

exp
(
θµ̄

W̄�n−1�t�
n �B�0�1��

)
dt�

Unraveling the definitions, we see that for each fixed n, the In�k" 0 ≤ k ≤
n are identically distributed, and In�k is measurable with respect to the σ-
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algebra generated by 
W̄n−1
t+s − W̄n−1

t " kn ≤ t ≤ �k + 1�n " −n ≤ s ≤ n�. Hence
In�k� In�k′ are independent as soon as �k− k′� ≥ 3. Thus we can write

1
n

n∑
k=0

In�k =
1
n

n/3∑
k=0

In�3k +
1
n

n/3∑
k=0

In�1+3k +
1
n

n/3∑
k=0

In�2+3k�

where each of the three sums on the right-hand side is now a sum of i.i.d.
random variables. Furthermore,

Ɛ
(
In�k
) = 1

n

∫ �k+1�n
kn

Ɛ
(
exp
(
θµ̄

W̄�n−1�t�
n �B�0�1�� )) dt

= Ɛ
(
exp
(
θµ̄W̄

n �B�0�1��
))

�

Using Lemma 7.2, to complete the proof of Lemma 7.1, it now suffices to note
that for any 1 < p < 2 such that pθ < q2d/2 we have the following bounds,
where the first inequality comes from the Marcinkiewicz–Zygmund inequality
(see, e.g., [25], page 341), where our condition pθ < q2d/2 guarantees that
In�k ∈ Lp), and the second inequality comes from the fact that �a + b�p/2 ≤
�a�p/2 + �b�p/2 (since p < 2),

Ɛ

(∣∣∣ 1
n/3

n/3∑
k=0

(
In�i+3k − Ɛ

(
In�i+3k

)) ∣∣∣p
)

≤ c

np
Ɛ

(∣∣∣ n/3∑
k=0

(
In�i+3k − Ɛ

(
In�i+3k

))2 ∣∣∣p/2
)
≤ cn−�p−1�

for i = 0�1�2.

Proof of Lemma 7.2. Let pr�x� = �2πr�−d/2 exp�−�x�2/2r� and u0�x� =∫∞
0 pr�x�dr = cd/�x�d−2 denote the zero-potential of Wt. Let :d denote the
norm of

Kf�x� =
∫
B�0�1�

u0�x− y�f�y�dy

considered as an operator from L2 �B�0�1�� dx� to itself, recalling from [3]
that :−1d = q2d/2 is the first eigenvalue of �1/2�� in the unit ball of �d−2 (not
�d) with Dirichlet boundary conditions. We claim thatKiu0 ∈ L2�B�0�1�� dx�
for sufficiently large i (i = �d/2� will do). To see this, note that
u0 ∈ L2�B�0�1�� d3x� for d = 3, while for d = 4, by scaling, Ku0�x� ≤ c

∫ �x−
y�−2�y�−2 d4y ≤ c log�1/�x�� ∈ L2�B�0�1�� d4x�. When d > 4 we first note,
again by scaling, that

∫ �x−y�−�d−2��y�−k ddy ≤ c�x�−�k−2� for any k > 2, and we
can repeat this argument until we find that Kju0�x� ≤ c�y�−k with 1 ≤ k ≤ 2
for some j. Noting that for such k we have �y�−k ∈ L2�B�0�1�� ddx� completes
the verification of our claim. It follows from this in particular, for some κd <∞
and all i, ∫

B�0�1�
Kiu0�x�dx ≤ κd�:d�i �(7.7)
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Setting t0 = 0, x0 = 0, we first bound the following moments for m =
1�2� � � � :

1
m!

Ɛ

( ∫ ∞
1/ε

1B�0�1��Wr�dr
( ∫ ∞

0
1B�0�1��Ws�ds

)m−1)

= 1
m

m∑
i=1

∫
B�0�1�m

∫
0≤t1≤···≤tm<∞

ε−1≤ti

m∏
j=1

ptj−tj−1�xj − xj−1�dt1 · · · dtm dx1 · · · dxm

= 1
m

m∑
i=1

∫
B�0�1�m

∫
ε−1≤∑i

j=1 rj

m∏
j=1

prj
�xj − xj−1�dr1 · · · drm dx1 · · · dxm

≤
m∑
i=1

∫
B�0�1�m

∫
�mε�−1≤ri

m∏
j=1

prj
�xj − xj−1�dr1 · · · drm dx1 · · · dxm

=
m∑
i=1

∫
B�0�1�m

m∏
j=1
j �=i

u0�xj − xj−1�
∫ ∞
�mε�−1

pri
�xi − xi−1�dri dx1 · · · dxm

≤
(∫ ∞

�mε�−1
pr�0�dr

) m∑
i=1

∫
B�0�1�m

m∏
j=1
j �=i

u0�xj − xj−1�dx1 · · · dxm

= kd�mε�d/2−1
[
�1�Km−11�B�0�1�

+
m∑
i=2

( ∫
B�0�1�

Ki−2u0�xi−1�dxi−1

)
�1�Km−i1�B�0�1�

]

≤ cdε
d/2−1md/2:m−1

d �

where �·� ·�B�0�1� denotes the inner product in L2�B�0�1�� dx� and (7.7) was
used in the last inequality. With cd independent of
m and gd�θ = Ɛ�exp (θµW

∞ �B�0�1��
)� finite, it follows that

∥∥∥ exp (θµ̄W̄
∞ �B�0�1��

)
− exp

(
θµ̄W̄

1/ε �B�0�1��
)∥∥∥
1

= Ɛ
(
exp
(
θµ̄W̄

∞ �B�0�1��
))
− Ɛ
(
exp
(
θµ̄W̄

1/ε �B�0�1��
))

=
{
Ɛ
(
exp
(
θµW

∞ �B�0�1��
)) }2

−
{
Ɛ
(
exp
(
θµW

1/ε �B�0�1��
)) }2

≤ 2gd�θ

∣∣∣Ɛ (exp (θµW
∞ �B�0�1��

))
− Ɛ
(
exp
(
θµW

1/ε �B�0�1��
)) ∣∣∣

≤ 2gd�θθ Ɛ
(
�µW
∞ �B�0�1�� − µW

1/ε �B�0�1�� � exp
(
θµW

∞ �B�0�1��
))

= 2gd�θ

∞∑
m=0

θm+1

m!
Ɛ

(∫ ∞
1/ε

1B�0�1��Wr�dr
(∫ ∞

0
1B�0�1��Ws�ds

)m)

≤ 2θgd�θcdε
d/2−1

∞∑
m=0

�m+ 1�d/2+1�θ:d�m ≤ cd�θε
d/2−1
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for any θ < :−1d , as needed to complete the proof of Lemma 7.2 and hence of
Theorem 1.4. ✷

8. The coarse multifractal spectrum.

Proof of Corollary 1.5. The lower bound in Corollary 1.5 is an imme-
diate consequence of (1.10) and Chebyshev’s inequality. Turning to the cor-
responding upper bound, fix a ∈ �0�2/θ∗�. Choosing δ ∈ �0�1/4� such that
η = 2− aθ∗�1+ 3δ� > 0 and εn as in (5.2), leads [see (6.1)] to

lim sup
ε→0

log � eb
{
0 ≤ t ≤ 1

∣∣∣ z1�Wt� ε� ≥ a
}

log ε

≤ lim sup
n→∞

log � eb
{
0 ≤ t ≤ 1 ∣∣ z1�Wt� εn� ≥ a/1− δ

}
log εn−1

�

(8.1)

Let Wt
s = Wt+s −Wt, δn = ε2n� log εn�6 and βn = 1 − 2� log εn�−2. The random

variables Y
�n�
i = µWiδn

δn
�B�0� βnεn��/h�εn�, i = 1� � � � � δ−1n − 1 are i.i.d. The

Localization Lemma implies that for some c > 0 and all n large enough,

p∗n = P
(
Y�n� ≥ a/�1− δ�) ≥ cε

aθ∗�1+2δ�
n �

Thus, by standard tail estimates for the Binomial (δ−1n − 1� p∗n), for all n large
enough,

P
(∣∣{i Y�n�

i ≥ a/�1− δ
)}∣∣ ≤ ε−ηn � ≤ exp�−ε−ηn � �

since �1− δ�−1 ≤ 1+ 2δ. It follows that a.s., for all n ≥ n0�ω�δ� a�,∣∣{i Y�n�
i ≥ a/�1− δ�}∣∣ ≥ ε−ηn �(8.2)

Taking ρn = ε2n/� log εn�6, by Lévy’s uniform modulus of continuity, we have
that a.s. for some n1 = n1�ω� <∞ and all n ≥ n1,

δ−1n −1
max
i=1

sup
�s�<ρn

�Wiδn+s −Wiδn
� < �1− βn�εn �

which together with (8.2) implies that a.s. for any n ≥ n2�ω�δ� a�,

� eb
{
0 ≤ t ≤ 1

∣∣∣ z1�Wt� εn� ≥ a/�1− δ�
}
≥ ρn

∣∣∣{i Y�n�
i ≥ a/�1− δ�

}∣∣∣ ≥ ε2−η+δn �

In view of (8.1), we have a.s.,

lim sup
ε→0

log� eb
{
0 ≤ t ≤ 1

∣∣∣ z1�Wt� ε� ≥ a
}

log ε
≤ �1− 2δ�−1/2�2− η− δ� �

To complete the proof, consider δ ↓ 0, for which 2− η− δ→ aθ∗. ✷
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9. Large occupation measure at all scales.

Proof of Theorem 1.6. For k ∈ �1�∞�� T <∞, let Hk = 
x �x� ∈ �1/k� k��
and

Da =
{
x ∈ Hk

∣∣∣ lim inf
ε→0

µW
T �B�x� ε��

ε2
≥ a

}
�

[We work with the annulus Hk rather than the ball B�0� k� because the basic
bound we will use, Lemma 9.2, blows up at the origin.]
Fix δ > 0 and let b = 1+δ > 1. Set ηn = 2−n and δn = η1−b

−1
n for n = 1�2� � � �,

Let 
xj j = 1� � � � �Kn�, Kn ≤ c�δ� k�d�η−dn , denote a maximal collection of
points in Hk such that inf l�=j �xl − xj� ≥ δηn. Let �n = �n�a� δ�T� be the set
of j � 1 ≤ j ≤Kn, such that

inf
ε∈�ηn�δn�

µW
T �B�xj� bε��

ε2
≥ a

b
�(9.1)

We will shortly prove that for any γ > 0 we can find δ > 0 such that for
some c = c�a� δ�T� <∞ and all n,

Ɛ��n� ≤ cη
Id�a�−2−γ
n �(9.2)

where Id�v� is defined in (1.12). Assuming this for the moment, let �n�j =
B�xj� δηn�. Then, for any x ∈ Hk there exists j ∈ 
1� � � � �Kn� such that x ∈
�n�j and B�x� ε� ⊆ B�xj� ε + δηn� ⊆ B�xj� bε� for all ε ≥ ηn. If x ∈ Da then
a.s. for some m1�ω�x� b� <∞ and all n ≥m1,

inf
ε∈�ηn�δn�

µW
T �B�x� ε��

ε2
≥ a

b
�

Therefore,
⋃

n≥m
⋃

j∈�n
�n�j forms a 2δηm-cover of Da for any m ≥ 1. Since

�n�j has diameter 2δηn, it follows from (9.2) that

Ɛ
∞∑

n=m

∑
j∈�n

��n�j�2−Id�a�+2γ

=
∞∑

n=m
Ɛ��n��2δηn�2−Id�a�+2γ ≤ c2

∞∑
n=m

ηγ
n <∞�

(9.3)

Thus,
∑∞

n=m
∑

j∈�n
��n�j�2−Id�a�+2γ is finite a.s. implying that dim�Da� ≤ 2 −

Id�a�+2γ a.s. for any T <∞, γ > 0. Since a.s. there exists Tk = Tk�ω� finite,
such that �Wt� ≥ �k+ 1� for any t ≥ Tk, obviously a.s. also

dim
({

x ∈ Hk

∣∣∣ lim inf
ε→0

µW
∞�B�x� ε��

ε2
≥ a

})
≤ 2− Id�a� + 2γ �

Taking γ ↓ 0 and considering the countable union over k = 1�2 � � � completes
the proof of (1.14).
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To get our upper bound on packing dimension, denote by Dm�a/b� the set
of points x ∈ �d such that for all n ≥m, we have

inf
ε∈�ηn�δn�

µW
T �B�x� ε��

ε2
≥ a

b
�

Clearly,
⋃

j∈�n
�n�j forms a 2δηn-cover of Dm�a/b� for any n ≥ m. Thus,

from (9.3),

lim
n→∞

∑
j∈�n

��n�j�2−Id�a�+2γ = 0 a�s�(9.4)

Denote by 	 �A�ε� the minimal cardinality of a collection of balls of radius
ε that covers A. Recall that dimM�A�, the upper Minkowski dimension of a
set A (also known as the upper box-counting dimension), may be defined by

dim
M
�A� = lim sup

ε→0

log	 �A�ε�
� log ε�(9.5)

[see [8], (3.5)]. From (9.4) we may deduce that dim
M
�Dm�a/b�� ≤ 2−Id�a�+2γ.

Since b > 1, necessarily

Da ⊂
⋃
m≥1

Dm�a/b� �(9.6)

and the upper bound dim
P
�Da� ≤ 2−Id�a�+2γ a.s. follows by [8], Proposition

3.8. This completes the proof of (1.15).
We next recall that Id�v� of (1.12) is strictly increasing in v ≥ 2/�d − 2�,

whereas Id�Cd� = 2. Hence, fixing a > Cd, we may and shall fix γ > 0 such
that Id�a� − 2− γ > 0. Then, by (9.2), for any δ > 0 sufficiently small,

∞∑
n=1

P���n� ≥ 1� ≤
∞∑
n=1

Ɛ��n� ≤ c1

∞∑
n=1

η
Id�a�−2−γ
n <∞�

Thus, by Borel–Cantelli, it follows that a.s. �n is empty for all n ≥ m2�ω�,
implying that the sets Da are a.s. empty for all T <∞. Since a.s.

lim inf
ε→0

µW
∞�B�0� ε��

ε2
= 0

(see [29], Theorem 6.8), taking k ↑ ∞ and a ↓ Cd completes the proof of (1.16),
and hence of Theorem 1.6, subject only to (9.2).
The first step in the proof of (9.2) is the following simple lemma (see [21]

for the definition and properties of Bessel processes).

Lemma 9.1. Let Z = ∫ T0 U−2
s ds with 
Us s ∈ �0�T�� the Bessel process of

index d′ = d/2 − 1 > 0, starting at U0 = u ∈ �0� k�. Then, for any α ∈ �0� d′�,
b > 1, there exist c = c�b�T�d′� k� <∞ such that

Ɛu�d′��exp
(�d′2/2− α2/2�Z)1inf s∈�0�T�Us≤v� ≤ cv2α/bu−�d

′−α�−2α/b �(9.7)
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Proof. Let Pu
�ν��·� denote the law of the Bessel process 
Us s ∈ �0�T�� of

index ν > 0 starting at U0 = u. Recall that for any index ν > 0,

dUs = �ν + 1/2�
ds

Us

+ dBs� U0 = u > 0 �

where Bs is a one-dimensional Brownian motion. In particular, dP
u
�d′�/dP

u
�α�

exists for any d′ ≥ α > 0 and is given by the Girsanov transformation as (see
[21], page 419)

dPu
�d′�

dPu
�α�

=
(
UT

u

)d′−α
exp
(
− �d′2/2− α2/2�

∫ T

0
U−2

s ds

)
�

In particular, by Hölder’s inequality, for q = b/�b− 1�,
Ɛu�d′��exp

(�d′2/2− α2/2�Z)1inf s∈�0�T�Us≤v�
= uα−d′Ɛu�α��Ud′−α

T 1inf s∈�0�T�Us≤v�

≤ uα−d′Pu
�α�
(
inf
s≥0

Us ≤ v
)1/b

Ɛu�α�
(
U

q�d′−α�
T

)1/q
≤ uα−d′

( v
u

)2α/b
Ɛk�α�
(
U

q�d′−α�
T

)1/q
�

where the last inequality follows using the fact that the Bessel process of in-
dex α has scale function −x−2α ([21], page 415), and for the rightmost expecta-
tion we used a simple comparison argument. A further comparison argument
shows that we can take c = Ɛk�d′���1 ∨UT�qd′ �1/q <∞. ✷

The next step in proving (9.2) is to establish the following consequence of
Lemma 9.1.

Lemma 9.2. For any T <∞, b > 1, k > 1, there exists c <∞ such that for
any a > 0, α ∈ �0� d′�, η > 0, δ = η1−b

−1
, �x� ∈ �0� k�,

P
(
inf

ε∈�η�δ�
µW
T �B�x� bε��

ε2
≥ a

b

)
≤ cηab−4�d′2−α2�+2α/b�x�−�d′−α�−2α/b �(9.8)

Proof. Fix T�a� b� k� α�η� δ and x as in the statement of the lemma.
Observe that Us = �Ws − x� is a Bessel process of index d′, starting at
U0 = �x� ∈ �0� k�. Clearly,{

µW
T �B�x� v�� > 0

} = { inf
s∈�0�T�

Us < v
}
�(9.9)

Setting Z = ∫ T0 U−2
s ds, also

b2Z =
∫ T

0

∫ ∞
b−1Us

2dε
ε3

ds =
∫ T

0

∫ ∞
0

1
�Ws−x�≤bε�
2dε
ε3

ds

=
∫ ∞
0

2dε
ε3

µW
T �B�x� bε�� ≥

∫ δ

η

2dε
ε3

µW
T �B�x� bε�� �

(9.10)
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If

inf
ε∈�η�δ�

ε−2µW
T �B�x� bε�� ≥

a

b

then µW
T �B�x� bη�� > 0 and∫ δ

η

2dε
ε3

µW
T �B�x� bε�� ≥

a

b

∫ δ

η

2dε
ε
= −2ab−2 logη �

Thus, for v = bη and λ = �d′2 − α2�/2 ≥ 0, by (9.9), (9.10) and Chebyshev’s
inequality,

P
(
inf

ε∈�η�δ�
µW
T �B�x� bε��

ε2
≥ a

b

)
≤ P

�x�
�d′�

(
Z ≥ −2ab−4 logη� inf

s∈�0�T�
Us ≤ v

)

≤ η2λab
−4
Ɛ
�x�
�d′�
[
expλZ 1inf s∈�0�T�Us≤v

]
�

We thus obtain (9.8) by applying Lemma 9.1. ✷

We now return to complete the proof of (9.2). For b > 1 and α ∈ �0� d′� let
fa�b� α� = ab−4�d′2 − α2� − d+ 2α/b �

By Lemma 9.2, for some c� c1� c2 <∞ independent of n,

Ɛ��n� =
Kn∑
j=1

P
(

inf
ε∈�ηn�δn�

µW
T �B�xj� bε��

ε2
≥ a

b

)

≤ cη
ab−4�d′2−α2�+2α/b
n

Kn∑
j=1
�xj�−�d

′−α�−2α/b

≤ c1η
ab−4�d′2−α2�+2α/b−d
n

(
1+
∫

�x�≤k�

�x�−�d′−α�−2α/b dx
)

≤ c2η
fa�b�α�
n �

(9.11)

using �d′ − α� + 2α/b < d′ + α ≤ d− 1.
Setting α = d′ − θ for θ ∈ �0� d′�, in which case d′2 − α2 = θ�d− 2− θ�, we

see that

fa�b� α� = ab−4θ�d− 2− θ� − d�1− b−1� − �2θ+ 2�/b�(9.12)

Observe that Id�a�, defined in (1.12), can also be written as(
max
0� a�d− 2� − 2��2/4a�

whence

Id�a� = sup
0≤θ<�d−2�/2


aθ�d− 2− θ� − 2θ��(9.13)
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and the supremum in (9.13) is attained at θ = max
0� �d− 2�/2− a−1�. Com-
paring this with (9.12) we see that

lim
b↓1

sup
α∈�0�d′ �

fa�b� α� = Id�a� − 2�(9.14)

which completes the proof of (9.2) and hence of Theorem 1.6. ✷

Some unsolved problems.

1. Determine exactly the dimension appearing in (1.14) and the precise
asymptotics in (1.16).

2. Does the set considered in (1.14) have equal Hausdorff and packing dimen-
sions?

3. By arguments similar to those in the proof of (1.16), we can show that there
exist nonrandom constants c̃d > 0, C̃d <∞ such that

c̃d ≤ inf
t∈�0�1�

lim sup
ε→0

µW
∞�B�Wt� ε��

ε2
≤ C̃d a�s�(9.15)

More precisely, the upper bound here is proved just like the lower bound in
(1.16), while the lower bound can be inferred from [17] or from a branching
process argument. As in (1.16), it is an open problem to determine the
optimal constants in (9.15).
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