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Abstract

We introduce the concept of capacitary modulus for a set �⊆Rd, which is a function h that
provides simple estimates for the capacity of � with respect to an arbitrary kernel f, estimates
which depend only on the L2 inner product (h; f). We show that for a large class of L�evy
processes, which include the symmetric stable processes and stable subordinators, a capacitary
modulus for the range of the process is given by its 1-potential density u1(x), and a capacitary
modulus for the intersection of the ranges of m independent such processes is given by the
product of their 1-potential densities. The uniformity of estimates provided by the capacitary
modulus allows us to obtain almost-sure asymptotics for the probability that one such process
approaches within � of the intersection of m other independent processes, conditional on these
latter processes. Our work generalizes that of Pemantle et al. (1996) on the range of Brownian
motion. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

For any decreasing kernel function f : [0;∞) → [0;∞], de�ne the capacity of a
Borel set �⊂Rd with respect to f by

Capf(�) =
[
inf

�∈P1(�)
Ef(�)

]−1
;

where Ef(�), the energy of a Borel measure � on Rd with respect to f, is given by

Ef(�) =
∫
Rd

∫
Rd
f(|x − y|) d�(x) d�(y)

and P1(�) denotes the set of Borel probability measures supported on �. When
f(|x|) = u�(x), the �-potential density of a symmetric L�evy process X , then Capf(�)
coincides with the natural �-capacity for � with respect to X of probabilistic potential
theory.
In the sequel we assume that all kernel functions f considered are (weakly) de-

creasing and satisfy limr↓0 f(r) = f(0) if this limit is �nite.
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The following de�nition is central to this paper.

De�nition 1. A function h(x) on Rd is a capacitary modulus for �⊂Rd if there exist
constants 0¡C16C2¡∞ such that

C1

∫
f(|x|) h(x) dx6 inf

�∈P1(�)
Ef(�)6C2

∫
f(|x|) h(x) dx for allf;

or equivalently[
C2

∫
f(|x|) h(x) dx

]−1
6Capf(�)6

[
C1

∫
f(|x|) h(x) dx

]−1
for all f:

We emphasize that the constants C16C2 in the above de�nition are required to be
independent of the kernel function f. Clearly, the capacitary modulus of �⊂Rd is not
unique. It depends only on the behaviour of h(x) near x = 0. Two sets �1; �2⊂Rd
with the same capacitary modulus are capacity equivalent in the sense of Pemantle
et al. (1996).
In a recent paper Pemantle et al. (1996) showed that almost surely h(x) = |x|−(d−2)

is a capacitary modulus for the range

B[0; 1] = {x ∈ Rd: Bt = x for some 06t61}
of Brownian motion in Rd when d¿3, while almost surely h(x)=|log x| is a capacitary
modulus for the range B[0; 1] of Brownian motion in R2. We can generalize this to a
large class of L�evy processes Xt in Rd, which includes the symmetric stable processes,
stable subordinators and many processes in their domains of attraction. The collection
of processes we consider is speci�ed precisely at the end of this section and is referred
to as class V. We use

X [0; 1] = {x ∈ Rd: Xt = x for some 06t61}
to denote the range of X , and u1(x) to denote the 1-potential density of X .

Theorem 1.1. Let Xt be a L�evy process of class V in Rd. Then almost surely u1(x)
is a capacitary modulus for the range X [0; 1] of X .

Thus, for almost every path the range will have the same capacitary modulus u1(x),
although the constants C1; C2 in the de�nition of capacitary modulus will depend on
the path.
I �rst became interested in this subject when Yuval Peres asked if I could generalize

the work of Pemantle et al. (1996) to intersections. Here is our generalization.

Theorem 1.2. Let X (i)t ; i = 1; 2; : : : ; k be k independent L�evy processes of class V

in Rd which intersect almost surely. Let u(i);1(x) denote the 1-potential density of
X (i). Then almost surely

∏k
i=1 u

(i);1(x) is a capacitary modulus for the intersection⋂k
i=1 X

(i)[0; 1] of X (i)t ; i = 1; 2; : : : ; k.

Pemantle et al. (1996) also showed that almost surely the zero set Z = {06t61:
Bt = 0} for linear Brownian motion has the capacitary modulus x−1=2. This is an
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immediate consequence of Theorem 1.1 once we recall that the zero set Z for linear
Brownian motion is ‘essentially’ the range S of a stable subordinator of index 1=2;
more precisely, Z contains S ∩ [0; 1] as a dense subset with countable complement,
which allows us to show that Capf(Z) = Capf(S ∩ [0; 1]) for all f.
We also mention the work of Delmas (1998) who determined the capacitary modulus

of the support and range of super-Brownian motion.
Our main interest in capacity is that for many stochastic processes, particularly

Markov processes (see Chung (1973) and Fitzsimmons and Salisbury (1989) and the
references therein) and certain fractal percolation processes (see Pemantle and Peres,
1995), hitting probabilities of sets are equivalent to their capacities.
The next theorem exploits this equivalence, as well as the fact that our almost-sure

capacity estimates hold uniformly over all kernels. Aizenman (1985) showed that if
[B] and [B′] are the traces of two independent d-dimensional Brownian motions started
apart, then

P[dist([B]; [B′]) ¡�] �
{
�d−4 if d¿ 4;

(log 1� )
−1 if d= 4;

as � ↓ 0. (Earlier, Lawler (1982) had obtained precise asymptotics for the analogous
problem for two random walks on Z4. See Albeverio and Zhou (1994) for a recent
re�nement of Aizenman’s estimates.) Theorem 2:6 of Peres (1996) contains the fol-
lowing generalization of Aizenman’s result: if [X �] and [B] denote the traces of an
independent �-stable process and Brownian motion, started apart, then

P[dist([B]; [X �]) ¡�] �
{
�d−�−2 if �¡d− 2;
(log 1� )

−1 if �= d− 2;
as � ↓ 0.
Pemantle et al. (1996) derived an almost-sure version of these estimates, uniform

over �, conditional on the Brownian motion B. Here is our generalization. Let PxX be
the law of X in Rd started at x. Write [X ]=X [0;∞) and ⋂ki=1 [Y (i)]=⋂ki=1 Y (i)[0; 1].
Theorem 1.3. Let Xt be a symmetric L�evy processes of class V in Rd with a mono-
tone 1-potential density u1(x); and let Y (i)t ; i= 1; 2; : : : ; k; be k independent L�evy pro-
cesses of class V in Rd started at x = 0 with 1-potential densities u(i);1(x). Set

m(x; Y ) = inf
y∈
⋂k

i=1
[Y (i)]

|x − y|;

M (x; Y ) = sup
y∈
⋂k

i=1
[Y (i)]

|x − y|:

Then for some constants cd; c′d ¿ 0 the following is true: For a.e. Y (1); : : : ; Y (k) and
all x ∈ Rd, there exists �0 = �0(Y; x) such that; for all 0¡�¡�0;

cdu1(M (x; Y ))6 �(�)PxX

[
dist

(
[X ];

k⋂
i=1

[Y (i)]

)
¡�|Y (1); : : : ; Y (k)

]

6 c′du
1(m(x; Y ))

where �(�) = �du1(�)
∏k
i=1 u

(i);1(�).
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Remark. Note the uniformity in X in the statement above. Even for a �xed X , the
proof of Theorem 1.3 requires estimating the capacity of the intersection

⋂k
i=1 [Y

(i)]
for a �xed sample path in in�nitely many kernels simultaneously.
As detailed below, Theorems 1.1–1.3 will follow once we have established the next

two theorems, which are of some interest in their own right. We formulate things in
terms of intersections, but point out that our results also apply to the case of a single
process.
Let X (l)t ; l= 1; : : : ; m, denote m independent L�evy processes of class V in Rd with

1-potentials u(l);1(x).
The L�evy sausage S(l)� (t) of radius � for X (l) is de�ned by

S(l)� (t) = {y ∈ Rd | inf
06s6t

|y − X (l)s |6�}:

Let �(1); : : : ; �(m) denote independent mean-1 exponential times. If A is any set in Rd
we use |A| to denote the Lebesgue measure of A.

Theorem 1.4. We can �nd a random variable S ∈ L2 such that

lim
�→0

(
m∏
l=1

u(l);1(�)

)∣∣∣∣∣
m⋂
l=1

S(l)� (�
(l))

∣∣∣∣∣=S a:s: (1.1)

Remark. With more e�ort, S can be identi�ed with the intersection local time
�(�(1); : : : ; �(m)) which we now de�ne.
We �rst de�ne the approximate intersection local time

��(B) =
∫ ∫

B

m∏
l=2

f�(X
(l)
tl − X (1)t1 )

m∏
l=1

dtl (1.2)

where B is any bounded Borel set in Rm+, f�(x) = �−df(x=�), and f(x) is any �xed
continuous symmetric function on Rd supported in the unit ball. When B=×ml=1[0; Tl]
we will write ��(T1; : : : ; Tm) for ��(B).
It is not hard to show, see e.g. Rosen (1986), that {��(T1; : : : ; Tm); Tl6M}, for

any M ¡∞, converges uniformly a.s. and in all Lp spaces as �→ 0 to a limit which
we denote by {�(T1; : : : ; Tm); Tl6M}. Consequently {�(T1; : : : ; Tm); T1; : : : ; Tm} will be
continuous and monotone increasing a.s. and the measures ��(·) converge weakly to a
limit which we denote by �(·).
Let � : Rm+ 7→ Rd be de�ned by �(s1; : : : ; sm)=X (1)s1 , and de�ne the (random) measure

�T1 ;:::; Tm on Rd by �T1 ;:::; Tm = �∗(� |×m
l=1[0;Tl]

), i.e.∫
g(x) d�T1 ;:::; Tm(x) =

∫
×m
l=1[0;Tl]

g(�(s1; : : : ; sm)) d�(s1; : : : ; sm)

for bounded continuous functions g on Rd. Let

�� = {(x; y) ∈ Rd × Rd | |x − y|6�}:
Let �(1); : : : ; �(m) denote independent mean-1 exponential times. We shall use the

abbreviation �� for ��(1) ; :::; �(m) .
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Theorem 1.5. We can �nd a random variable T ∈ L2 such that

lim
�→0

1
�d
∏m
l=1 u

(l);1(�)
(�� × ��)(��) =T a:s: (1.3)

Remark. With more e�ort, T can be identi�ed with �(�(1); : : : ; �(m)).

We now describe the class V of L�evy processes considered in this paper. This class
contains all symmetric L�evy process in Rd and subordinators with 1-potential density
u1(x) regularly varying at 0 of index �−d¡ 0, bounded outside any neighborhood of
the origin and satisfying

|u1(x + a)− u1(x)|6C |a|�
|x|d−�+� ∀|a|6|x|=4 (1.4)

for some �¿ 0. Finally, we also include planar Brownian motion in V.
It is clear what the regular variation of u1(x) means for subordinators. For symmetric

processes, since u1(x) depends only on |x|, we can write u1(x) = g(|x|) for some g :
R+ 7→ R+. By abuse of notation we shall also write u1 for g, and it is this u1 which
is assumed to be regularly varying, and which appears as u1(�) in the statement of our
theorems.
We expect that our results can be generalized to a large class of L�evy processes in

the domain of attraction of general strictly stable processes in Rd. We have restricted
ourselves to the symmetric and subordinator case to avoid getting bogged down in
details. For a similar reason we did not attempt to work with processes in the domain
of attraction of planar Brownian motion.
Theorem 1.4 is proven in Section 2, and Theorem 1.5 is proven in Section 3. In the

brief Section 4 we show how Theorems 1.1–1.3 follow from Theorems 1.4 and 1.5.

2. L�evy sausages

We begin by recalling some notions from probabilistic potential theory, see
Blumenthal and Getoor (1968). If X is a L�evy process in Rd of class V, �¿0 and
B⊆Rd a compact set we can de�ne the natural �-capacity of B as

C�(B) = sup
�⊆ B

{
�(B):

∫
u�(y − x) d�(y)61 ∀x

}
(2.1)

where the supremum runs over all measures �⊆B, i.e. supported in B. When X is a
symmetric L�evy process we have that C�(B) = Capu�(B).
Let now X be a �xed L�evy process of class V in Rd with 1-potential density

u1(x) regularly varying at 0 of index � − d¡ 0. We will use the abbreviation c(�) =
C1(B(0; �)). We will need the asymptotics of c(�).

Lemma 2.1.

lim
�→0

u1(�)c(�) = u0�(1)C
0
�(B(0; 1)) (2.2)
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where u0�(x) and C
0
�(B(0; 1)) denote; respectively; the 0-potential density and natural

0-capacity of the unit ball for the strictly stable process of index � in Rd; symmetric
if X is symmetric and a subordinator if X is a subordinator.

Proof. We have

c(�) = sup
�⊆ B(0; �)

{
�(B(0; �)):

∫
u1(y − x) d�(y)61 ∀ x

}

= sup
�⊆ B(0; 1)

{
�(B(0; 1)):

∫
u1(�(y − x)) d�(y)61 ∀ x

}
: (2.3)

We claim that for small � and any �⊆B(0; 1)∫
u1(�(y − x)) d�(y)61 ∀ |x|61⇒

∫
u1(�(y − x)) d�(y)61 ∀x: (2.4)

For X symmetric (and for all �) this is just a special case of the maximum principle,
see Blumenthal and Getoor (1970), but we can give a simple proof which covers our
subordinators along the lines of the proof given in Blumenthal and Getoor (1970) for
stable subordinators. By our assumptions for class V we can �nd 1¡r¡∞ such that
u1(x) is monotone decreasing in (0; r], and since u1 is bounded (say by M) outside
this interval we can �nd �0 such that u1(2�0)¿M . It is then easy to check that for any
|y|61; |x|¿ 1 and �6�0 we have u1(�(y − x=|x|))¿u1(�(y − x)), and noting that we
can assume that we are dealing with non-atomic � completes the proof of our claim.
Hence by (2.4) for small enough �

u1(�)c(�) = sup
�⊆ B(0; 1)

{
�(B(0; 1)):

∫
u1(�(y − x))

u1(�)
d�(y)61 ∀ |x|61

}
: (2.5)

We recall the Potter bounds (Bingham et al., 1987). For any �¿ 0 we can �nd �� ¿ 0
so that

(1− �) 1
|x|d−�−�6

u1(�x)
u1(�)

6(1 + �)
1

|x|d−�+� ∀�6�� (2.6)

and all |x|62 in the symmetric case, and 06x62 for subordinators. We can combine
this as

(1− �) u
0
�+�(x)

u0�+�(1)
6
u1(�x)
u1(�)

6(1 + �)
u0�−�(x)

u0�−�(1)
∀�6��; |x|62: (2.7)

From (2.5) we then have

u1(�)c(�)

¿ sup
�⊆ B(0; 1)

{
�(B(0; 1)):

∫
(1 + �)

u0�−�(y − x)
u0�−�(1)

d�(y)61 ∀|x|61
}

=
u0�−�(1)

(1 + �)
sup

�⊆ B(0; 1)

{
�(B(0; 1)):

∫
u0�−�(y − x) d�(y)61 ∀|x|61

}

=
u0�−�(1)

(1 + �)
C0�−�(B(0; 1)):
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C0�(B(0; 1)) is a known constant which depends on whether we are in the symmetric
or subordinator case, but in either event both C0�(B(0; 1)) and u

0
�(1) are continuous

in �, (Bliedtner and Hanson, 1986; Hawkes, 1970).
We thus see that

lim inf
�→0

u1(�)c(�)¿u0�(1)C
0
�(B(0; 1)):

Similarly, using the other half of (2.7) we see that

lim sup
�→0

u1(�)c(�)6u0�(1)C
0
�(B(0; 1))

which completes the proof of Lemma 2.1.

Proof of Theorem 1.4. Let now X (l)t ; l=1; : : : ; m; denote m independent L�evy processes
of class V in Rd with 1-potentials u(l);1(x) which are regularly varying at x = 0 of
index d − �l; l = 1; : : : ; m. We assume for now that all �′′l ≡ d − �l ¿ 0 and that
� ≡ ∑m

l=1 �
′′
l =

∑m
l=1(d − �l)¡d. At the end of this section we shall describe the

simple modi�cations necessary for Brownian motion in R2.
We will use the abbreviation c(l)(�) = Capu(l); 1 (B(0; �)). We intend to show that for

all 0¡�′6�61∥∥∥∥∥ |
⋂m
l=1 S

(l)
� (�(l))|∏m

l=1 c
(l)(�)

− |⋂ml=1 S(l)�′ (�(l))|∏m
l=1 c

(l)(�′)

∥∥∥∥∥
2

6�� (2.8)

for some �¿ 0 and our theorem will follow easily from this and Lemma 2.1. It su�ces
to prove (2.8) for all 0¡�=2¡�′6�61, since the general case can be obtained from
this by using a telescoping sum. The proof of (2.8) will be accomplished in a series
of lemmas. Before plunging into the details we present a short outline of our strategy.
Eq. (2.8) involves the expectation of the square of a di�erence. By expanding this

square as a sum of four terms, it su�ces to show that for all 0¡�=2¡�′6�61

E

(
|⋂ml=1 S(l)� (�(l))|∏m

l=1 c
(l)(�)

|⋂ml=1 S(l)�′ (�(l))|∏m
l=1 c

(l)(�′)

)
= A+O(��) (2.9)

for some �¿ 0 and the same constant A. (This constant is identi�ed in Lemma 2.4.)
Let

T (l)y;� = inf{s¿ 0 |X (l)s ∈ B(y; �)}:
Note that∣∣∣∣∣

m⋂
l=1

S(l)� (�
(l))

∣∣∣∣∣=
∫ m∏

l=1

1{T (l)x; �¡�(l)}dx (2.10)

so that

E

(∣∣∣∣∣
m⋂
l=1

S(l)� (�
(l))

∣∣∣∣∣
∣∣∣∣∣
m⋂
l=1

S(l)�′ (�
(l))

∣∣∣∣∣
)
= E

(∫ m∏
l=1

1{T (l)x; �¡�(l)}dx
∫ m∏

l=1

1{T (l)
y; �′¡�

(l)}dy

)

=
∫ ∫ m∏

l=1

P(T (l)x; � ¡�(l);T (l)y;�′ ¡�(l)) dx dy: (2.11)
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Our �rst lemma shows that up to the error term allowed in (2.9) we can restrict the
last integration to a particularly convenient subset.

Lemma 2.2.

E

(∣∣∣∣∣
m⋂
l=1

S(l)� (�
(l))

∣∣∣∣∣
∣∣∣∣∣
m⋂
l=1

S(l)�′ (�
(l))

∣∣∣∣∣
)

=
∫
��

∫ m∏
l=1

P(T (l)x; � ¡�(l);T (l)y;�′ ¡�(l)) dx dy +O

(
�d

m∏
l=1

c(l)(�)

)
(2.12)

where

�� = {(x; y)| |x|¿4�; |y|¿4�; |x − y|¿4�}:

This lemma will be proven shortly. Lemma 2.3 will then show that up to the error
term allowed in (2.9) we can replace each P(T (l)x; � ¡�(l);T (l)y;�′ ¡�(l)) appearing in

(2.12) by the sum of P(T (l)x; � + T
(l)
y;�′ ◦ �T (l)x; � ¡ �(l)) and a corresponding term in which

the x; � and y; �′ are interchanged. These are then evaluated using the strong Markov
property. This is used in the proof of Lemma 2.4 to complete the proof of (2.9) and
hence of Theorem 1.4. We now present the details.

Proof of Lemma 2.2. Recall (Blumenthal and Getoor, 1970), that for a L�evy process
X in Rn of the type considered here with 1-potential density u1(x) and for any compact
set B⊆Rn there exists a unique measure �B supported in B, the 1-capacitary measure
for B with respect to X , which satis�es

Ex(e−TB) =
∫
u1(y − x) d�B(y) ∀x (2.13)

where TB is the �rst hitting time of B, and �B(B) = Cap1(B).
Let B(y; �) denote the ball centred at y of radius �. The 1-capacitory measure �(l)y;� for

B(y; �) with respect to X (l) is supported in B(y; �) and density �(l)y;�(dx) = �
(l)
0; �(dx+ y).

From (2.13) we have∫
u(l);1(x; z)�(l)y;�(z) dz = E

x(e−T
(l)
y; �)

= E x(T (l)y;� ¡�(l))
{
61
=1 if x ∈ B(y; �) (2.14)

and ∫ (∫
u(l);1(x; z)�(l)y;�(dz)

)
dy

=
∫ (∫

u(l);1(x; z + y)�(l)0; �(dz)
)
dy =

∫
�(l)0; �(dz) = c

(l)(�): (2.15)

Note from Lemma 2.1 that
∏m
l=1 c

(l)(�) ∼ ��s(�) as � → 0 for some slowly varying
s(�).
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We now establish (2.12). If, for example, |x− y|64�, then using (2.14) and (2.15)
we have the bound∫ ∫

|x−y|64�

m∏
l=1

P(T (l)x; � ¡�(l);T (l)y;�′ ¡�(l)) dx dy

6
∫ m∏

l=1

P(T (l)y;�′ ¡�(l))

(∫
|x−y|64�

dx

)
dy

6C�d
∫ m∏

l=1

P(T (l)y;�′ ¡�(l)) dy

6C�d
∫ m∏

l=1

(∫
u(l);1(zl)�

(l)
y;�′(dzl)

)
dy

6C�d
∫ (∫ m∏

l=1

u(l);1(y + zl) dy

)
m∏
l=1

�(l)0; �′(dzl)

6C�d
∫ m∏

l=1

�(l)0; �′(dzl)6C�
d
m∏
l=1

c(l)(�′) (2.16)

where we have used the multiple Holder inequality∫ m∏
l=1

u(l);1(y + zl) dy6
m∏
l=1

‖u(l);1‖�=�′′ ¡∞: (2.17)

The other cases are bounded similarly, completing the proof of Lemma 2.2.

Let us de�ne the �rst-order hitting operator of X (l) for B(x; �)

H (l)x; � f(z) = E
z
(
e−T

(l)
x; � f

(
X (l)
T (l)x; �

))
and note that

H (l)x; � 1(z) = E
z(e−T

(l)
x; � ) =

∫
u(l);1(z; y)�(l)x; �(dy): (2.18)

Lemma 2.3. For some �¿ 0

E

(∣∣∣∣∣
m⋂
l=1

S(l)� (�
(l))

∣∣∣∣∣
∣∣∣∣∣
m⋂
l=1

S(l)�′ (�
(l))

∣∣∣∣∣
)

=
∫
��

∫ m∏
l=1

(H (l)x; � H
(l)
y;�′1(0) + H

(l)
y;�′H

(l)
x; � 1(0)) dx dy +O(�

2�+�): (2.19)

Proof. Note that for (x; y) ∈ ��
P(T (l)x; � ¡�(l);T (l)y;�′ ¡�(l)) = P(T (l)x; � ¡T (l)y;�′ ¡�(l)) + P(T (l)y;�′ ¡T (l)x; � ¡�(l))

and

P(T (l)x; � ¡T (l)y;�′ ¡�(l))

=P(T (l)x; � + T
(l)
y;�′ ◦ �T (l)x; � ¡ �(l))− P(T (l)y;�′ ¡T (l)x; � ¡T (l)x; � + T

(l)
y;�′ ◦ �T (l)x; � ¡ �(l))
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= P
(
e
−T (l)x; �+T (l)y; �′◦�T (l)x; �

)
− P

(
T (l)y;�′ ¡T (l)x; � ; e

−T (l)x; �+T (l)y; �′◦�T (l)x; �
)

= E

(
e−T

(l)
x; � E

X (l)
T (l)x; �

(
e−T

(l)
y; �′
))

− E
(
T (l)y;�′ ¡T (l)x; � ; e

−T (l)x; � E
X (l)
T (l)x; �

(
e−T

(l)
y; �′
))

=H (l)x; � H
(l)
y;�′1(0)− E

(
H (l)y;�′1

(
X (l)
T (l)x; �

)
;T (l)y;�′ ¡T (l)x; � ¡�(l)

)
: (2.20)

Using (2.18) and then (2.20) together with |x − y|¿4� and |x|¿4� we see that

H (l)x; � H
(l)
y;�′1(0) = E

(
e−T

(l)
x; � E

X (l)
T (l)x; �

(
e−T

(l)
y; �′
))

= E
(
e−T

(l)
x; �

∫
u(l);1

((
X (l)
T (l)x; �

)
; z
)
�(l)y;�′(dz)

)

6Cc(l)(�′)u(l);1(x; y)P(e−T
(l)
x; � )

6Cc(l)(�′)u(l);1(x; y)c(l)(�)u(l);1(x)

6C(c(l)(�))2u(l);1(x; y)u(l);1(x) (2.21)

so that by (2.20)

P(T (l)x; � ¡T (l)y;�′ ¡�(l))6C(c(l)(�))2u(l);1(x; y)u(l);1(x): (2.22)

Similarly, and using (2.22)

E
(
H (l)y;�′1

(
X (l)
T (l)x; �

)
;T (l)y;�′ ¡T (l)x; � ¡�(l)

)
=E

(∫
u(l);1

((
X (l)
T (l)x; �

)
; z
)
�(l)y;�′(dz);T

(l)
y;�′ ¡T (l)x; � ¡�(l)

)
6Cc(l)(�′)u(l);1(x; y)P(T (l)x; � ¡T (l)y;�′ ¡�(l))

6C(c(l)(�))3u(l);1(x; y))2u(l);1(x) (2.23)

so that by interpolation

E
(
H (l)y;�′1

(
X (l)
T (l)x; �

)
;T (l)y;�′ ¡T (l)x; � ¡�(l)

)
6C(c(l)(�))2+�(u(l);1(x; y))1+�u(l);1(x)

(2.24)

which can then be used to establish our lemma.

Lemma 2.4.

E

(∣∣∣∣∣
m⋂
l=1

S(l)� (�
(l))

∣∣∣∣∣
∣∣∣∣∣
m⋂
l=1

S(l)�′ (�
(l))

∣∣∣∣∣
)
=

(
m∏
l=1

c(l)(�′)c(l)(�)

)

×
∫
��

∫ m∏
l=1

(u(l);1(x)u(l);1(x; y) + u(l);1(y)u(l);1(y; x)) dx dy +O(�2�+�): (2.25)

Proof. This follows easily from Lemma 2.3, the �rst three lines of (2.21) and (1.4).

Proof of Theorem 1.4. Eq. (2.8) then follows easily from Lemma 2.4 which completes
the proof of our Theorem 1.4.
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We now describe the simple modi�cations necessary to handle Brownian motion in
R2 so that c(�) ∼ �(log(1=�))−1 as �→ 0. For simplicity of exposition we assume that
our m independent processes are all Brownian motions in R2. With this in mind, in
place of (2.8) we show that for all 0¡�′6�61∥∥∥∥∥ |

⋂m
l=1 S

(l)
� (�(l))|

(c(�))m
− |⋂ml=1 S(l)�′ (�(l))|

(c(�′))m

∥∥∥∥∥
2

6C(log(1=�))−1 (2.26)

and our theorem will follow easily from this.
We now note that it su�ces to prove (2.26) for all 0¡�2¡�′6�61, since the

general case can be obtained from this by using a telescoping sum. The proof of (2.6)
for all 0¡�2¡�′6�61 then follows as before.

3. Intersections of L�evy processes

Proof of Theorem 1.5. Let X (l)t ; l = 1; : : : ; m, denote m independent L�evy processes
of class V in Rd with 1-potentials u(l);1(x) which are regularly varying at x = 0 of
index d − �l; l = 1; : : : ; m. We assume for now that all �′′l ≡ d − �l ¿ 0 and that
� ≡ ∑m

l=1 �
′′
l =

∑m
l=1(d − �l)¡d. Using the ideas described at the end of the last

section, it will be easy to modify the arguments of this section to cover Brownian
motion in R2.
Set V� = (�� × ��)(��) and

�(�) =
∫
|z|61

m∏
l=1

u(l);1(�z) dz: (3.1)

Using the Potter bound (2.6) and the dominated convergence theorem we can easily
see that that �(�) ∼ (

∫
|z|61 |z|−�dz)

∏m
l=1 u

(l);1(�) ∼ �−�s(�) as � → 0 where s(�) is
some slowly varying function. We intend to show that for all 0¡�′6�61∥∥∥∥ 1

�d�(�)
V� − 1

(�′)d�(�′)
V�′
∥∥∥∥
2
6�� (3.2)

for some �¿ 0 and our theorem will follow easily from this. It su�ces to prove (3.2)
for all 0¡�=2¡�′6�61, since the general case can be obtained from this by using
a telescoping sum.
(3.2) involves the expectation of the square of a di�erence. By expanding this square

as a sum of four terms, it su�ces to show that for all 0¡�=2¡�′6�61

E
(

V�
�d�(�)

V�′
(�′)d�(�′)

)
= �A+O(��) (3.3)

for some �¿ 0 and the same constant �A. (This constant is identi�ed in (3.18).)
Let h(x) denote the characteristic function of the unit ball, so that we can write

V� =
∫ ∫

h
(
x − y
�

)
d��(x) d��(y):
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For �xed �¿ 0 it is not hard to show that

V� = lim
�→0

∫
×m
l=1[0; �

(l)]

∫
×m
l=1[0; �

(l)]
h

(
X (1)s1 − X (1)t1

�

)

×
m∏
l=2

f�(X (l)sl − X (1)s1 )
m∏
l=2

f�(X
(l)
tl − X (1)t1 )

m∏
l=1

dsl dtl (3.4)

in L2 and consequently the expectation E(V�V�′) can be evaluated and then analyzed,
see (3.14) and the discussion following. Before getting involved in the details, we
wish to illustrate the main ideas by considering the case where m= 1, and even there
highlighting only the critical concepts.
Thus, we consider

E(V�V�′) = E

(∫ �

0

∫ �

0
h
(
Xs − Xt
�

)
ds dt

∫ �

0

∫ �

0
h
(
Xs′ − Xt′
�′

)
ds′ dt′

)
: (3.5)

The expectation can be evaluated by breaking the integrand up into pieces depending
on the relative positions of s; t; s′; t′ and there are three basic types of relative positions
which are illustrated by the three �gures below, in which the time coordinates increase
as we go from left to right. Following each �gure is the corresponding integral.

J1 =
∫
u1(x1)u1(x2 − x1)u1(x′1 − x2)u1(x′2 − x′1)h

(
x2 − x1
�

)
h
(
x′2 − x′1
�′

)
dx

(3.6)

J2 =
∫
u1(x1)u1(x′1 − x1)u1(x2 − x′1)u1(x′2 − x2)h

(
x2 − x1
�

)
h
(
x′2 − x′1
�′

)
dx

(3.7)

J3 =
∫
u1(x1)u1(x′1 − x1)u1(x′2 − x′1)u1(x2 − x′2)h

(
x2 − x1
�

)
h
(
x′2 − x′1
�′

)
dx

(3.8)
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Our goal now is to show that the contributions from the integrals corresponding to
Cases 2 and 3 are of smaller order than the contribution from the integral corresponding
to Case 1, and hence can be ignored in the limit as �; �′ → 0. After a change of variables
we can write Ji = (��′)d �J i where

�J 1 =
∫
u1(x)u1(�z)u1(x′)u1(�′z′)h(z)h(z′) dx dz = �(�)�(�′); (3.9)

�J 2 =
∫
u1(x)u1(x′)u1(−x′ + �z)u1(x′ + �′z′ − �z)h(z)h(z′) dx dz; (3.10)

�J 3 =
∫
u1(x)u1(x′)u1(�′z′)u1(−x′ − �′z′ + �z)h(z)h(z′) dx dz; (3.11)

where here �(�) =
∫
|z|61 u

1(�z) dz, and we assume that u1(x) is regularly varying of
index �¡d. The dx integral drops out and the basic idea now is that the dx′ integration
is ‘smoothing’, so that �J 2; �J 3 =O(�(�)�(�′)��), which leads to (3.3) in the case where
m= 1.
Here are the details. If 3�¿d, we use the Potter bounds (2.6) with �¡�′¡d and

3�′¿d and then scale in y to obtain the bound

�J 2 =
∫
u1(y)u1(−y + �z)u1(y − �z + �′z′)h(z)h(z′) dz dz′ dy

6C
∫

1
|y|�′

1
|y − �z|�′

1
|y − �z + �′z′|�′ h(z)h(z

′) dz dz′ dy

6C�d−3�
′
∫

1
|y|�′

1
|y − z|�′

1
|y − z + (�′=�)z′|�′ h(z)h(z

′) dz dz′ dy

6C�d−3�
′
∫

1
|y|�′

1
1 + |y|�′

1
1 + |y|�′ dy6C�

d−3�′ =O(�2(�)��); (3.12)

for some �¿ 0 by taking �′ su�ciently close to �, while if 3�¡d we use the inte-
grability of (u1(x))3 and the multiple Holder’s inequality to show that �J 2 = O(1).
Turning to �J 3, if 2�¿d, we use the Potter bounds (2.6) with �¡�′¡d and 2�′¿d

and then scale in y to obtain the bound

�J 3 =
∫
u1(y)u1(−y + �z − �′z′)u1(�′z′)h(z)h(z′) dz dz′ dy

6C�−�
′
∫

1
|y|�′

1
|y − �z + �z′|�′

1
|z′|�′ h(z)h(z

′) dz dz′ dy

6C�d−3�
′
∫

1
|y|�′

1
|y − z + (�′=�)z′|�′

1
|z′|�′ h(z)h(z

′) dz dz′ dy

6C�d−3�
′
∫

1
|y|�′

1
1 + |y|�′

1
|z′|�′ h(z

′) dz′ dy

6C�d−3�
′
=O(�2(�)��) (3.13)

for some �¿ 0 by taking �′ su�ciently close to �, while if 2�¡d we use the inte-
grability of (u1(x))2 and the Cauchy–Schwarz inequality to show that �J 3 = O(�(�)).
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We now return to write out the details of the general case with m arbitrary.
We have

E(V�V�′)

= lim
�→0

∫  3∑
i=1

1∑
j; k=0

(J (1)i; j; k(x1; x2; x
′
1; x

′
2) + J

(1)
i; j; k(x

′
1
; x′2; x1; x2))




×
m∏
l=2




 3∑
i=1

1∑
j; k=0

(J (l)i; j; k(u1; l; u2; l; u
′
1; l; u

′
2; l) + J

(l)
i; j; k(u

′
1; l; u

′
2; l; u1; l; u2; l))




×h
(
x1 − x2
�

)
h
(
x′1 − x′2
�′

)
f�(x1 − u1; l)f�(x2 − u2; l)

×f�(x′1 − u′1; l)f�(x′2 − u′2; l) du1; l du2; l du′1; l du′2; l


 dx1 dx2 dx′1 dx

′
2

=
∫ m∏

l=1




3∑
i=1

1∑
j; k=0

(J (l)i; j; k(x1; x2; x
′
1; x

′
2) + J

(l)
i; j; k(x

′
1
; x′2; x1; x2))




×h
(
x1 − x2
�

)
h
(
x′1 − x′2
�′

)
dx1 dx2 dx′1 dx

′
2 (3.14)

where

J (l)i;0;0(x1; x2; x
′
1; x

′
2) = J

(l)
i (x1; x2; x

′
1; x

′
2);

J (l)i;0;1(x1; x2; x
′
1; x

′
2) = J

(l)
i (x1; x2; x

′
2; x

′
1);

J (l)i;1;0(x1; x2; x
′
1; x

′
2) = J

(l)
i (x2; x1; x

′
1; x

′
2);

J (l)i;1;1(x1; x2; x
′
1; x

′
2) = J

(l)
i (x2; x1; x

′
2; x

′
1);

and

J (l)1 (x; y; x
′; y′) = u(l);1(x)u(l);1(y − x)u(l);1(x′ − y)u(l);1(y′ − x′);

J (l)2 (x; y; x
′; y′) = u(l);1(x)u(l);1(x′ − x)u(l);1(y − x′)u(l);1(y′ − y)

and

J (l)3 (x; y; x
′; y′) = u(l);1(x)u(l);1(x′ − x)u(l);1(y′ − x′)u(l);1(y − y′):

Changing variables we see that

E(V�V�′)

= (��′)d
∫ m∏

l=1




3∑
i=1

1∑
j; k=0

(J (l)i; j; k(x; x + �z; x
′; x′ + �′z′)

+ J (l)i; j; k(x
′; x′ + �′z′; x; x + �z))


 h(z)h(z′) dx dx′ dz dz′
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= (��′)d
∫ m∏

l=1




3∑
i=1

1∑
j; k=0

(K (l)i; j; k; �; �′(x; x
′; z; z′) + K (l)i; j; k; �; �′(x

′; x; z′; z))




×h(z)h(z′) dx dx′ dz dz′ (3.15)

where

K (l)i; j; k; �; �′(x; x
′; z; z′) = J (l)i; j; k(x; x + �z; x

′; x′ + �′z′)

= J (l)i (x + j�z; x + (1− j)�z; x′ + k�′z′; x′ + (1− k)�z′)
=K (l)i; �; �′(x + j�z; x

′ + k�′z′; (1− 2j)z; (1− 2k)z′)
where

K (l)1; �; �′(x; x
′; z; z′) = u(l);1(x)u(l);1(�z)u(l);1(x′ − x − �z)u(l);1(�′z′);

K (l)2; �; �′(x; x
′; z; z′) = u(l);1(x)u(l);1(x′ − x)u(l);1(x − x′ + �z)u(l);1(x′ − x + �′z′ − �z)

and

K (l)3; �; �′(x; x
′; z; z′) = u(l);1(x)u(l);1(x′ − x)u(l);1(�′z′)u(l);1(x − x′ + �z − �′z′):

We thus see that E(V�V�′) can be written as the sum of many integrals, each
involving a product of m of the K’s.
Using the multiple Holder inequality in the following form:∫ m∏

l=1

hl(�; �′; y) dy6
m∏
l=1

(∫
(hl(�; �′; y))�=�

′′
l dy

)�′′l =�
(3.16)

and using the estimates obtained when m= 1 we see that E(V�V�′) di�ers from

(��′)d
∫ m∏

l=1




1∑
j; k=0

(K (l)1; j; k; �; �′(x; x
′; z; z′) + K (l)1; j; k; �; �′(x

′; x; z′; z))




×h(z)h(z′) dx dx′ dz dz′ (3.17)

by terms which can be bounded by C�−2(d−�)+�.
Using (1.4) now shows that

E(V�V�′)

=4m(��′)d
∫ m∏

l=1

{
u(l);1(x)u(l);1(x′ − x) + u(l);1(x′)u(l);1(x − x′)} dx dx′

×
∫ m∏

l=1

u(l);1(�z)u(l);1(�′z′)h(z)h(z′) dz dz′ +O(�−2�+(d−�))

= 4m(��′)d�(�)�(�′)
∫ m∏

l=1

{
u(l);1(x)u(l);1(x′−x) + u(l);1(x′)u(l);1(x−x′)} dx dx′

+O(�−2(d−�)+�) (3.18)

which completes the proof of our theorem.
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4. Proof of Theorems 1.1, 1.2 and 1.3

Proof of Theorems 1.1 and 1.2. Theorem 1.1 is a special case of Theorem 1.2. To
prove the latter, for any �⊆Rd, let Nn(�) be the number of dyadic cubes in Rd of
edge length 2−n which intersect �. As explained in Section 2 of Pemantle et al. (1996),
see especially inequality (8) there, the following Corollary of Theorem 1.4 leads easily
to the lower bound

inf
�∈P1(

⋂m

l=1
X (l)[0;1])

Ef(�)¿C!

∫
f(|x|)

m∏
l=1

u(l);1(x) dx: (4.1)

Corollary 4.1.

Nn

(
m⋂
l=1

X (l)[0; 1]

)
6C!

2nd∏m
l=1 u

(l);1(2−n)
a:s: (4.2)

Proof. By (1.1) we see that for almost every (T1; : : : ; Tm) ∈ Rm+ we have

lim
�→0

(
m∏
l=1

u(l);1(�)

)∣∣∣∣∣
m⋂
l=1

S(l)� (Tl)

∣∣∣∣∣=S(T1; : : : ; Tm) a:s: (4.3)

The result follows easily from this since we can choose (T1; : : : ; Tm) so that 16Tl62
for all 16l6m.
As explained in the proof of Theorem 1.4 in Section 3 of Pemantle et al. (1996),

the following Corollary of Theorem 1.5 leads easily to the upper bound corresponding
to (4.1)

inf
�∈P1(

⋂m

l=1
X (l)[0;1])

Ef(�)6C′
!

∫
f(|x|)

m∏
l=1

u(l);1(x) dx (4.4)

which will complete the proof of Theorem 1.2.

Corollary 4.2.

(�1; :::; 1 × �1; :::; 1)(�2−n)6C′
!2

−nd
m∏
l=1

u(l);1(2−n) a:s: (4.5)

This corollary follows from Theorem 1.5 as in the proof of Corollary 1.

Proof of Theorem 1.3. This follows from the corollaries of this section as explained
in the proof of Theorem 1.3 in Section 4 of Pemantle et al. (1996).
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