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ABSTRACT. - We study renormalized self-intersection local times

t) for Lévy processes, where the n-fold multiple points are weighted
by the translate of an arbitrary measure ~. General sufficient conditions
are provided which insure that t) is a.s. jointly continuous in ~
and t. Our proof involves a new Doob-Meyer type decomposition of

t) as the difference of a martingale and a lower order renormalized
self-intersection local time. © Elsevier, Paris

RESUME. - Nous etudions pour certains processus de Levy les temps
locaux d’auto-intersection renormalises t) définis en affectant aux
points de multiplicité n un poids donne par la translatee une mesure

~. Nous donnons des conditions suffisantes pour la continuite de t)
comme fonction du couple (x, t). La preuve utilise une decomposition de
Doob-Meyer nouvelle de comme difference d’une martingale et
d’un temps local d’intersection renormalise d’ordre inferieur. © Elsevier,
Paris
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144 J. ROSEN

1. INTRODUCTION

The object of this paper is to establish the almost sure joint continuity
of renormalized intersection local times for multiple self-intersections of
a large class of Levy processes in Rd including the symmetric stable

processes in the plane. This builds on our work in [14] which dealt with
intersection local times weighted by Lebesgue measure, and on our work
in [12] which dealt with continuity in the spatial variable only. Our main
technical tools are the Isomorphism Theorem for renormalized intersection
local times developed in [12] and a Doob-Meyer type decomposition for
renormalized intersection local times in terms of a martingale and a lower
order renormalized intersection local time..

Intersection local times "measure" the amount of self-intersections of a

stochastic process, say, X(t) E Rd. To define the n-fold intersection local
time, the natural approach is to set

where fE is an approximate 8-function at zero, and take the limit as E - 0.

Intuitively, this gives a measure of the set of times (ti , ... , tn ) such that

where the "n-multiple points" x E Rd are weighted by the measure 
However, in general, this limit does not exist because of the effect of

the integral in the neighborhood of the diagonal. The method used to
compensate for this is called renormalization. One subtracts from t)
terms involving lower order intersections t) for k  n, in such a

way that a finite limit results. This was originally done by Varadhan [15]
for double intersections of Brownian motion in the plane with  taken to
be Lebesgue measure. Varadhan’s work stimulated a large body of research
which is summarized by Dynkin in [4]. Renormalized intersection local
times have turned out to be the right tool for the solution of certain

"classical" problems such as the asymptotic expansion of the area of the
Wiener and stable sausage in the plane and fluctuations of the range of stable
random walks. (See Le Gall [7, 6], Le Gall-Rosen [9] and Rosen [13]). For
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145JOINT CONTINUITY AND DOOB-MEYER DECOMPOSITION

a clear account of progress concerning Brownian intersection local times
up to 1990 see Le Gall’s lecture notes [8]. For more recent results see Bass
and Khoshnevisan [1], Rosen [14] and Marcus and Rosen [12].

Let be a symmetric Lévy processes in Rd, d = 1, 2
with transition density = pt(x - y) and I-potential density

y) = ~(:r 2014 y). Since intersection local times are trivial for processes
which have an actual local time we only consider Levy processes for which
ul (0) = oo. The results obtained in this paper are valid for a large class
of radially symmetric Levy processes which we say are in Class B. This
class contains the symmetric stable processes and many processes in their
domains of attraction. Class B is defined later in this section, see (1.15).
We will take the function ff appearing in (1.1) to be a smooth approximate

identity. That is, is a smooth positive symmetric function on

(y, E) E Rd x (0,1] with support in the ball of radius E and such that

J ~~J = 1.

For a Levy processes X (t) E Rd and measure  on Rd let

where ~(0) Heuristically, one may think of t)
as

where 8(.) is the ’8-function’. This formulation compensates for the

difficulties caused when various of the ti are close to each other. We set

whenever the limit exists in L2(PY), and refer to t) as a renormalized
intersection local time. For any measure  on Rd and x E Rd, we let x
denote the translation of p by x. The main goal of this paper is to study
the a.s. continuity of t); (x, t) E Rd x R+~.

Vol. 35, n° 2-1999.



146 J. ROSEN

Since we are dealing with processes which do not hit points, one cannot
talk about the amount of ’multiple time’ spent at a point x. However, if 
is concentrated near the origin, t) relates to the the ’n-multiple time’
spent near x, and hence (x, t) E Rd x R+~ can be thought of
as an analogue of the local time process {Lxt; (x, t) E Rd x 
We will obtain a sufficient condition for a.s. continuity of

t) ; (x, t) E Rd x R+ ~ in terms of a Gaussian chaos process which
we now define. Known results about continuity of Gaussian chaos processes
then allow us to provide concrete sufficient conditions for the a.s. continuity
of t); (x, t) E Rd x R.+~.
We use to denote the class of positive measures J-L for which

It should be understood that when we say  E that this is with respect
to the 1-potential of some given Levy process.

Let (x, E) E Rd x (0, I]} be the mean zero Gaussian process
with covariance

It is easily checked that the right hand side is positive definite on

(Rd x (0,1]) . Now let G~1),~,E, ... , G"(2~),.B,~ denote 2n independent copies
of 

For (t~i,... v2n ) E (Rd ) 2n and M E g2n define the decoupled Gaussian
chaos ..., as the E -+ 0 limit of

It is easily checked that this limit exists in L2(PG~1~,...,~~2n&#x3E;)
where ~Gn), ,~(2~) denotes probability with respect to G~1~, ... , G~2n~.

V2n) has mean zero and for E g2n we have

For details see [ 11 ] .

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



147JOINT CONTINUITY AND DOOB-MEYER DECOMPOSITION

We can now state our main result on a.s. continuity of renormalized
intersection local times.

THEOREM 1. - Let ~cc E If v E is continuous
a.s. then t); (x, t) E Rd x R+~ is continuous a.s.
With v = (vl, ... , 272n), 2U = (WI,... , and p E let us define

the metric on ( Rd) 2n

A well known result about the a.s. continuity of Gaussian chaos processes
allows us to state the following criteria for the a.s. continuity of renormalized
intersection local times in terms of the metric T(v, w) defined in (1.8). Let
NT (B, E) be the minimum number of balls of radius E, in the metric T,
that covers B, the unit ball in (Rd ) 2n . is called the metric

entropy of B with respect to T.

THEOREM 2. - Let J-l E If

then t) ; (x, t) E Rd x R+ ~ is continuous a. s.

Theorem 4 of [11] describes simple concrete conditions which

guarantee (1.9) and hence the a.s. continuity of t); (~, t) E
Rd x R+}.
An important technical tool for proving Theorem 1 and an interesting

result in its own right is a Doob-Meyer type decomposition for renormalized
intersection local times. If  is a measure on Rd with bounded potential
Up, and Lt denotes the continuous additive functional with potential

= it is easily seen using additivity and the Markov
property that

or equivalently Up(X (t)) = Mt-L t where Mt = Ex(L£ This is the

Doob-Meyer decomposition for the potential Up(X (t) ) . This decomposition
Vol. 35, n° 2-1999.



148 J. ROSEN

has proven very useful in constructing and analyzing continuous additive
functionals. We present an analogue of the Doob-Meyer decomposition
related to the renormalized self-intersection local time t). We note
that is not increasing in t. In fact, is defined so that

I (~,; t)) dt = 0. (This can be seen by first replacing t) by
t) and then passing to the limit).

Let Y(t) denote our Levy process X (t) killed at an independent mean-1
exponential time A. For our next theorem, the renormalized intersection
local times t) will be defined for the process Y(t) in place of X (t),
and we write in place of 7k(N; oo).

Before presenting our general theorem, we first describe our results in
the simplest case, n = 2. Let 7rt be the random additive measure-valued
process defined by

for A ç Rd. Our next theorem will imply the following analogue of the

Doob-Meyer decomposition = Mt - Lt:

Here Mt is the martingale and = t0 ul(Y(t)-
Y(s)) dLf/ is the potential of the random measure 

We now describe the general case. We use hx (y) = h(y - x) for any
function h. Let i~ - ~ denote, as usual, the measure obtained by multiplying

by We will see that under the conditions of Theorem 1, we

can find an a.s. continuous version of ~~y~_1(~v ’ p; t) ; (v, t) E Rd x R+~.
Using such a version we define

We also make the convention that t) = t) = the total

mass of /-L.

THEOREM 3. - Under the conditions of Theorem 1, for each t &#x3E; 0 and

y E Rd

Let us point out that in the special case of Brownian motion in the plane,
with p taken to be Lebesgue measure, the decomposition ( 1.14) together

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



149JOINT CONTINUITY AND DOOB-MEYER DECOMPOSITION

with an exact description of the martingale as a stochastic integral was
obtained by Bertoin [2] for n = 2 and by Bass and Khoshnevisan [ 1 ] for
general n. Bertoin showed, in addition, that ~2 (M, t) has zero quadratic
variation. This guarantees that the decomposition is unique, and gives an
intrinsic characterization of 12 (M, t) which does not involve any limiting
proceedure. The extent to which this can be generalized to other processes,
other measures and higher order renormalized intersection local times

t) is still an open question.
* * *

We now describe the Levy processes in Class B. We say that a strongly
symmetric Levy process belongs to Class B if it is radially symmetric, its
Levy is regularly varying - oo, its transition density
Pt (r) is bounded outside any neighborhood of the origin r = 0 uniformly
in t, and, denotes the j’th derivative of pt ( r ) with respect to r,
then for any j = 1,... we can find Cj  oo such that

for all t, r. In addition, we assume  oo for some

/3 &#x3E; 0. For this, it suffices that f  oo for some t &#x3E; 0, and in

particular this last condition is satisfied if X(t) is in the domain of attraction
of some stable process. It is readily checked that Class B is contained in
the Class A of [12]. It is also easily checked that (1.15) holds for Brownian
motion, and hence, using subordination, for the symmetric stable processes.
We caution the reader that our Class A and Class B differ from those which

appear in earlier classifications of Levy processes, .e.g. [5].
Assume now that ~ E ~2~ and define := f5(y - x). The

Cauchy-Schwarz inequality says that for any a, b E Rd

so that

where 03B4 =  * f03B4 = dx. (Here we use the notation (f03B4,x) =
j It is easy to check that for each 8 &#x3E; 0, M8 has a bounded
density. Since f dx = 1 and by assumption is bounded outside

any neighborhood of the origin, we have that (ul(.x))2’~ is integrable

Vol. 35, n° 2-1999.
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outside any neighborhood of the origin, and consequently ( 1.17) implies
that E L2n(Rd,dx). The following Lemma will then follow from a
straightforward modification of [ 14] .

LEMMA 1. - Let p E Then for any 0  k  n

is continuous a. s.

The only point which requires verification is that satisfies

the conditions of [14]. The basic condition of [14] is that u 1 (x ) E

The fact that in our case we actually have E

L2n (Rd , dx) gives us plenty of ’room to maneuver’ and allows us to

readily check all the other conditions of [14].
Lemma 1 does not say that the continuity is uniform in 8, a fact which

would basically imply the conclusion of Theorem 1. An important ingredient
in our proof of Theorem 1 will be to show that the continuity in Lemma 1
is actually uniform in 8.

2. JOINT CONTINUITY

Proof of Theorem 1. - We will prove this theorem when, in the definition
of t), ( 1.1 ) and ( 1.2), our Lévy process X(t) has been replaced by
Y(t), which is X(t) killed at an independent mean-1 exponential time A.
Fubini’s theorem will then yield our theorem for X (t) .

Set ~s * /6. Our proof consists of two steps. We first show that
~yn t) converges a.s. locally uniformly in (x, t) E x R+ as 8 - 0,
and then we identify the limit, which is a.s. continuous by Lemma 1, with

t). .

We begin with an overview of our first step. For facts about the

Wick power chaos : G2n : (tc) see [12]. Under the conditions of

our Theorem it follows from Theorem 3 of [ 11 ] that the Wick power
chaos process {: G2n : x E Rd~ is continuous a.s. Hence, a.s.,

J : G2n : y) dy converges to : G2n : locally uniformly
in x E Rd as 8 - 0. It will follow from the Isomorphism Theorem,
Theorem 4.1 of [12], that a. s . -~ locally uniformly in

x E Rd as 8 - 0, (see (3.6)-(3.7)). Using martingale techniques we will
be able to show that converges a.s. locally uniformly in

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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(x, t) E Rd x-R+ as 6 - 0 for each y E Rd. If, instead of 
we could show that ~yn ( pll/ ; t) converges a.s., the proof of our first step would
then be complete. Although is not the same as t),
they differ by a term of lower order, as shown by the following Lemma,
and we will be able to complete our argument by induction. The following
Lemma, which is proven in section 6, is a special case of Theorem 3.

LEMMA 2..- Let JL E Then for any 0  k  n, t &#x3E; 0, {) &#x3E; 0,
and y E Rd

We can now give the details of our proof that qn t) converges a.s.
locally uniformly in (x, t) E Rd x R+ as 8 - 0. If S is a subset of
Euclidean space we will say that (E, x) E (0, 1] x S~ converges
rationally locally uniformly on S as E - 0 if for any compact K E S,
Z E (x) converges uniformly in x E K as E - 0 when restricted to dyadic
rational x, E. The following Lemma is proven in section 3.

LEMMA 3. - Let ~,G E If v E is continuous

a. s. then for each 0  k  n,

- ,-

converges a.s. rationally locally uniformly in (x, v, t) E Rd x x R+
as 8 -+ 0.

We claim that converges a.s. locally uniformly in
(x, v, t, 8) E Rd x x R+ as 8 -+ 0 for each 0  k  n. The
case k = n is precisely our assertion that t) converges a.s. locally
uniformly in (x, t) E Rd x R+ as 6 - 0. We argue inductively on k.
Assume that our claim has been proven with k replaced by k - 1. Then by
Lemmas 2 and 3 we have that converges a. s. rationally
locally uniformly in (x, v, t, 8) E Rd x x R+ as 8 - 0 for each
0  I~  n, and Lemma 1 now allows us the remove the qualification
’rationally’. Our induction will be completed once we prove the k = 0
case, which is the k = 0 case of the following Lemma. This Lemma, which
is proven in section 4, will be used again, at that time for all values of k,
in the proof of Lemma 3. We note the convention that : G° : (M) = IMI,
the total mass of M.

Vol. 35, n° 2-1999.
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LEMMA 4. - Let ~.G E lf v E (.Rd)2n~ is continuous

a.s. then ~: G~~ : uv~ ~ (x, v) E Rd x is continuous

a.s. for each 0  k  n. Furthermore,

The proof of our Theorem will then be completed by the following
Lemma which is proven in section 5.

LEMMA 5. - Let p.G E If v E is continuous -

a. s. then

in L2(pz) for any z E Rd.

3. MARTINGALE CONVERGENCE

Proof of Lemma 3.

We will use Lemma 4. To use this lemma we claim that in L2, for
each 0  1~  n,

The simple argument needed to establish our claim will be used repeatedly
below, so for ease of exposition we isolate it as the following lemma.

LEMMA 6. - ~,!)); (~,6,~) E Rd x [0,1]2} be a stochastic
process such that

If in addition

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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0, 8) ; x E is a. s. continuous for each 8 E [0, 1]

then, a. s. ,

To prove this lemma simply apply (ii) to (i) to obtain (3.2) for each
x E Rd seperately, and then (3.3) follows from (iii).
To establish our claim (3.1 ) we apply Lemma 6 to

Here : G~ : (~c) = J* : G~, : Condition (i) follows from the
definitions and (ii) follows from the fact that x E 
bounded in ~2~ for all 8 E [0,1]. To see this we use the multiple Holder
inequality

and then use ( 1.17) and (2.1 ) to see that this is bounded uniformly in all
parameters. This proves (3.1 ).
Lemma 4 shows that I : G2~ : (~~-1 uv~ ~ dy converges

a.s. to : G2’~ : Mx) as 6 - 0 locally uniformly in

(x, v) E (Rd)n-k+l. Let B(m) C denote the ball of radius

m and let D C D C x (0,1~ 2 be countable dense subsets.

Vol. 35, n° 2-1999.
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Using (3.1 ) we have that for any &#x3E; 0 we can find E &#x3E; 0 such that

Let = ul(x) dz which is easily seen to be in gl using
E We will use the abbreviation ~v = Recalling

from Lemma 1 the a.s continuity of and using the notation of
the Isomorphism Theorem, Theorem 4.1 of [12], we have that

In the third equality we used the fact that

:) (~v ~ ~x) ~ _ ~ for all 0  i  k.

It is easy to check that we can choose ~ &#x3E; 0 such that, with f (x) = 1-""

on Rd, we have f (x) . dx E ~1. Then, using our hypothesis that

f dx  oo for some ~3 &#x3E; 0, we can choose p &#x3E; 1 sufficiently
large, such that with 1 / q = 1 - 1 /p we have

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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Hence, using Holder’s inequality and then the Isomorphism Theorem,
Theorem 4.1 of [ 12] and (3.5), we see that (3.6)

In the last step we used the equivalence of moments for a Gaussian chaos,
see [ 10], section 3.2. We note that the Isomorphism Theorem, Theorem 4.1
of [12] is stated for p with compact support and f bounded, uniformly
continuous and integrable, but the extension to our p, f is immediate.

Fix y E Bd(m/4), the ball of radius m/4 in Rd. For any y’ E Bd(m/4)
we have

Vol. 35, n° 2-1999.
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Using this, (3.6) and (3.7) we see that for any y E 

This says that for any y E 

Since for any finite sets F C B(m/4) and FE C (0, e] we have that

is a right continuous submartingale in t, we have from (3.10) that

with c independent of the finite sets By monotone convergence this
holds also if we take F, FE to be all rational elements in ~(m/4),(0,6]
respectively. This proves that for each 0  1~  n we have that t)
converges a.s. rationally locally uniformly in (x, v, t) E Rd x x R+
as 8 - 0 and completes the proof of Lemma 3.

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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4. CONTINUITY OF CHAOSES

Proof of Lemma 4. - Let us first show that I’: G2~ : 
~c~); (x, v) E x is a.s. locally bounded for each 0  k  n.

For any 0  I~  n set

and

where = = 1, ... , n - k, denote the (total) CAF’ s with Revuz
measure v built up from independent copies Y(~)(’) of Y(.). We will often
write w = (wi , ... , = (~i?... ? It is easy to check that the
limit in (4.1) exists in L2 ( dPG ), and by induction on 0  1~  n, using the
Isomorphism Theorem, see Theorem 4.3 of [ 12], it is easy to show that the
limit in (4.2) exists in L2( dPG x uniformly in (w, v) E 
for each  E Here, is the product measure for the processes
Y(1) (~); ... , y(~_~.)(’), each with initial measure p( dx) = ul (x) dx. By the
assumption of our Lemma and Theorem 5 of [11] ] we have that {( G2k,dec x :
G2 v); (w, v) E is continuous a.s., so that an easy
application of the Isomorphism Theorem, using the ideas of the previous
section, shows that X (w, v) E is
continuous a.s. and that for any m

where B(m) now denotes the ball of radius m in and

~~ ’ (~ ’ denote respectively the norms for LZ( dPG) and

L2( dPG x 

Vol. 35, n° 2-1999.
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Thus, if we set

we see that for each fixed 8 &#x3E; 0,

is continuous a.s. and, for 8 sufficiently small,

Furthermore, since the L~ limit in (4.2) is uniform im(w, v) E 
we have from Lemma 6 applied to

that

Here we used the fact that both sides are a.s. continuous in (w, v) E 
which follows easily since we are assuming that f b is smooth.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Since

using translation invariance as in the previous section we have that 
’

Hence by (4.5) we have that

In the case of k = 0 our last inequality together with (4.3) says that

Vol. 35, n° 2-1999.
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By assumption, is continuous for x # 0, hence 
as 8 - 0 for each x ~ (vi, ... , vn). Since  e G2n is

necessarily non-atomic, Fatou’s Lemma applied to (4.11) now gives

This shows that : G° : (D~i~ ’ is locally
uniformly bounded, and continuity is proven similarly.

Using now the stationarity of G together with (4.12), we have that for

any y E Rd

In particular this implies (2.1 ).
Now consider the case of k &#x3E; 1. Let ~v = rj~-1 uv~ . As in (3.4) we

have that cPv . ~c E and applying Lemma 6 to

we see that

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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in for each (w, v) E Hence, for any finite D ç

B(m/8) C by (4.10) we have that

As noted, E g2k and in fact, as a function of v, is continuous
in g2k as follows from the proof of Lemma 3.1 of [12]. Hence

(w, v) E is continuous in L2 ( dPc). Therefore

in L2( dPG) for fixed w, v, hence a.s for w, v in any finite D ç 
This shows that

By the Monotone Convergence Theorem this will also hold if we take D to
be any countable dense set in Since (w, v) E

is continuous in L2, we can assume that we are dealing with
a separable version. Because of separability we can replace D in (4.17)
by B(m/8). This shows that is bounded uniformly in

(w, v) E B(m/8) a.s. Then, Theorem 3 of [11] shows that : G2~ : 
is bounded uniformly in (x, v) E B(m/16) a.s. The result on continuity is
treated similarly. This completes the proof of lemma 4.

5. L~ CONVERGENCE

Proof of Lemma 5.

LEMMA 7. - E ~2~ satisfies (2.1), then for each t E R+ and y E Rd
the limit

exists in uniformly in y E Rd, and t) ; y E is

continuous 

Vol. 35, n° 2-1999.
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Using this Lemma we can apply Lemma 6 to Z(~,6,~) = t)
to see that t) = J dy in The continuity of

t) ; 2~ E in now implies that t) - t) in
L2(pz). This completes the proof of Lemma 5.

Proof of Lemma 7. - This proof is meant to be read in conjunction
with [12], on which we rely for ideas and notation. Using qt(x) to denote
transition density and semigroup of our killed process, we find the following
analogue of (5.24) of [12]:

where S is the set of mappings

such that = ni, i = 1,2 and c(p) = I{m  = 

1 ~ p  ni + n2. By convention we set = x and c(0) = 0.
Let us analyze the changes which occur in (5.1 ) when we replace one of

the factors, say by t). As in [12]
we see that 

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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where SDl is the subset of S such that Di = {p ] (s(p) , c(p)) E (1, Di)} ç
Using the notational convention that 6(s) ds designates the probability

measure which places unit mass at s = 0, we can rewrite this as

Arguing once more as in [12], this leads to

where Ry is the operator which acts on a function of the variable y by
setting y equal to 0. If now Dy = I - Ry where I denotes the identity
operator, we can write our last equation as

Vol. 35, n° 2-1999.
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When we compare this with the analysis in [12] we see that the main
new element comes from the inner integral involving A. In order to handle
this, we now show

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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LEMMA 8

Proof of Lemma 8. - Set QT = .~T qs (0) ds. We note that QT is regularly
varying at T = 0 (we include the possibility that QT is slowly varying)
and QT / = oo as T B 0. Let us analyze

where T(B) = {(tl,..., tk)  T} and l = (tl, ... , Thus

Vol. 35, n° 2-1999.
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and it suffices to bound this last integral over sets

for all A C {1, ... , A;}. _

Since tEe ( A) implies that

and if tj ~ T we can integrate fT qtj (0) dtj = QT, we see that it suffices
to show that

where DT = C({1,...,~}) ~  T}. Furthermore, by
symmetry, it suffices to show that

Note that if T/(2n), (5.10) follows immediately as above using the
regular variation of QT which implies that CQT. Hence, we
need only show

Observe that

hence we are reduced to proving (5.11) with integration restricted to sets
of the form D(A) = 0}, i.e.

D(A) = {(tl, ... , tk) ~ I  T, &#x3E; T}, and clearly we must
have 0. Let m denote the largest index in A. Then, if A’ = A - {m},
we have

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



167JOINT CONTINUITY AND DOOB-MEYER DECOMPOSITION

Furthermore, since implies that tm &#x3E; T / n, we have
from (5.12) that

while ti  T/(2n) then implies that

Using the regular variation of QT once more we bound

We can then bound the dtm integral by using (5.13) and the regular
variation of qtm (0) to obtain

On the other hand, the dt2 ... integral is bounded as in (5 .14)

and using (5.15) and (5.16) and the regular variation of qtl (0) we see that
we can bound (5.11) by
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The second inequality follows from the fact that is regularly
varying at t = 0 of index &#x3E; -1. To see this, let (3 be the index of regular
variation of This implies that is regularly varying at x = 0
of index ~3 - d. As we saw in the introduction, g2n non-empty implies

E L2n(Rd, dx), so that  d and therefore  1.

The use of polar coordinates together with the standard Tauberian Theorem,
Theorem 1.7.1 of [3], shows that is regularly varying of 
hence Q~ is regularly varying of index 1 - Since m - 1  2n, our

claim is established. This completes the proof of Lemma 8.
We now return to (5.5). Assume first that A = Bs, so that, using (5.7)

with TBc s = t - tp we have the integral

This differs from the integral

by a sum of terms similar to (5.18), in each of which the product

03A0p~Bs qtp has some of the of the replaced by 0, and
. one factor qt~ replaced by the difference qtp (0) - qtp 
. Using once again polar coordinates together with the standard Tauberian
Theorem, Theorem 1.7.1 of [3], we have that
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where ~(~) is regularly varying of index 1//3 at t = 0. (Actually, the precise
index of ~(t) will not be important for us).
We have seen above that (Qs)2n-1 is integrable at s = 0, so that we

can find a function h(s)  1, slowly varying at s = 0, with h(s) B 0
as s B 0 and such that .

with

Interpolating between (1.13) and the trivial bound qt(y)~  qt(0)
we have

More precisely, if Iyl  use the bound  

which follows from  and the fact that x/h(x)
is regularly varying of index 1, while if  Iyl use the bound
1  

_ 

,

Using the analysis of Lemma 8 we find that the difference between (5.18)
and (5.19) can be bounded by integrals of the form
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where E = max(~1, E2). If 03A3Bcs tp  t/2, we bound (5.23) by

which converges to 0 as E1, E2 - 0. On the other hand, if ~B~ t/2,
then we can find p’ E B~ with tp’ &#x3E; t/(4n). We bound the qtp,
factor in (5.23) integrate over ~/ ~ t/(4n), and in this way
bound (5.23) by a similar integral in which we have one extra power of Q
but have eliminated the qtp factor. This can be continued, and eventually
shows that (5.23) converges to 0 as E1, E2 - 0. We will briefly describe
how to handle the last step in the ’worst-case scenario’.

where we used (5.21). This analysis also shows that (5.19) converges as
E1, E2 - 0.

We now return to the general case of (5.5) in which B~ - A # 0. We
rely heavily on the proof of Lemma 3.4 and 3.5 of [12]. As in that paper,
if &#x3E; 2, we write out all but two of the D differences. If Bs - A
contains some p’s with s(p) = 1 and some with s(p) = 2, we must be
careful to retain one D difference for some p with s (p) = 1, and one for
some p with s (p) = 2. Again expanding as in [12], we can assume that
the D differences are now attached to one or two qtp factors with p E B~.
We then use the basic assumptions of Class B processes ( 1.15), to bound
our integral in terms of an integral which resembles the A = Bs case
of (5.5), except that on the one hand the divergent factors for
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p G Bs - A have now been replaced with factors that converge to 0 as
-~ 0, while on the other hand we introduce a new factor x2)

which has no effect on convergence of the integral. Then
using Lemma 8 as above we bound the remaining integral, showing that
in fact any term in (5.5) with Bs - A # 0 converges to 0 as E1, E2 -~ 0.
This completes the proof of Lemma 7

6. A DOOB-MEYER TYPE DECOMPOSITION

For any n &#x3E; 2, let

and

The following essentially combinatoric Lemma is the key to proving
Lemma 2 and Theorem 3.

LEMMA 9
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Proof of Lemma 9. - It will help clarify the proof if we let the E’s in ( 1.1 )
vary from factor to factor. Thus we introduce

and the related approximate renormalized intersection local time

where for any set A = {zi,..., C {2,... n ~ we let EA = ... , Eik )
and A~ will refer to the complement of A with respect to {2,..., n ~ . We
let I ( A) = ik denote the largest element in A

Similarly, for n &#x3E; 2, we introduce

and
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where, naturally, A~ is taken with respect to ~ 2, ... , n - 1}. We also set

In the following, X denotes an independent copy of X, and ~w denotes
expectation with respect to X starting at w. From the definition (6.4) of

-

Consequently, adopting the notation that for any set B = {~i,... ç

{2,...~} we let Bi = (j1, ... , and Bi = jj~), we
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have

Since any nonempty set D, we see that in the

last display B will not contribute unless we have l(B) = n. We can then
rewrite the sum in (6.10) as

This completes the proof of Lemma 9.
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Proof of Lemma 2. - Let

An easy modification of [14] shows that Tn_1,E(v; t) converges a.s.

locally uniformly in v E to t) as E - 0. By Lemma 9
this implies Lemma 2 for k = n. The general case follows by replacing n
in Lemma 9 by k and J-l by 

Proof of Theorem 3. - This now follows easily from Lemma 2 on letting
8 - 0 and using the proof of Theorem 1.
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