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Abstract

In this paper, we study a renormalized self-collision local time for superprocesses over sta-
ble processes and classical di�usions. When the renormalization breaks down, we obtain limit
theorems. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

With any nice Markov process zt in Rd we associate a new Markov Zt taking values
in the space of �nite measures on Rd. The process Zt is called the superprocess over zt ,
and we refer to Dynkin (1988a) for an introduction to superprocesses and for further
references.
We will use the notation

〈’; Zt〉=
∫

’(x)Zt(dx);

〈f(x; y); Zs(dx)Zt(dy)〉=
∫∫

f(x; y)Zs(dx)Zt(dy):

Throughout this paper we assume that the initial measure Z0 = � has a bounded and
integrable density with respect to Lebesgue measure. Also we use |�| for the mass of
a measure �. Our starting point is the formal expression∫ T

0
〈�(x − y); Zs(dx)Zs(dy)〉 ds (1.1)

which intuitively should measure the ‘self-collisions’ of Zs. In Eq. (1.1), � is the
Dirac delta ‘function’. In an attempt to make Eq. (1.1) rigorous, we replace � by
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an approximate delta function. Let f(x)¿0 be a continuous symmetric function with
support in the unit ball, and such that

∫
f(x) dx=1. Set

f�(x)=
1
�d

f
(x
�

)
and replace Eq. (1.1) by

∫ T

0
〈f�(x − y); Zs(dx) Zs(dy)〉 ds: (1.2)

We will describe the behavior of Eq. (1.2) as �→ 0:
To be speci�c, let us �rst take Zt to be the superprocess over Brownian motion in

Rd. If d=1 there are no problems with the �→ 0 limit. However, if d¿2; the case
we study here, Eq. (1.2) will typically blow up as �→ 0: In Theorem 1 we will show
that if d=2 or 3, then Eq. (1.2) can be renormalized, i.e. by subtracting a singular
term which does not involve collisions, we can obtain a nontrivial limit.
This is the analogue of a result for self-intersections of Brownian motion in R2 which

goes back to Varadhan (1969); see also Le Gall (1985), Rosen (1986), Yor (1985a) and
Dynkin (1988b). See also our work on the self-intersections of superprocesses (Rosen,
1992), which initiated many of the techniques used in this paper. The renormalized
intersection local time for Brownian motion in R2 turns out to be the right tool for
analyzing 
uctuations of the Wiener Sausage (see Le Gall, 1986b; Chavel et al., 1991;
Wienryb, 1987) and the range of random walks (Le Gall, 1986a; Le Gall-Rosen, 1991).
It is our hope that the renormalized collision local time of Theorem 1 will �nd similar
applications to the study of measure-valued processes. In this regard see the recent
paper of Evans and Perkins (1997).
When d=4, we can no longer obtain a renormalized collision local time. However,

Theorem 1 shows that a suitably scaled version converges in distribution. This is the
analogue of Yor’s theorem for Brownian motion in R3, (Yor, 1985b; Rosen, 1988).
We use Bt to denote a real Brownian motion independent of our superprocess.

Theorem 1. Let Zt denote the superprocess over Brownian motion in Rd, and set


�(T )=
∫ T

0
〈f�(x − y); Zs(dx)Zs(dy)〉 ds− 2

∫ T

0
’�(T − s)|Zs| ds; (1.3)

where

’�(t)=
∫ t

0

(∫∫
pr(x)f�(x − y)pr(y) dx dy

)
dr (1.4)

and

ps(y)=
e−y2=2s

(2�s)d=2

is the transition density for Brownian motion in Rd.
If d=2 or 3, then 
�(T ) converges in L2 as �→ 0:
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If d=4, then 
�(T )= lg(1=�) converges weakly to BMT where

MT =
1
�4

∫ T

0
|Zs| ds (1.5)

Remarks on Theorem 1.
• More generally, if h∈C∞

0 (R
d) and we set


�(T; h)=
∫ T

0
〈h(x)f�(x − y); Zs(dx)Zs(dy)〉 − 2

∫ T

0
〈’�;T−s; Zs〉 ds;

where now

’�; t(z)=
∫ t

0

(∫∫
h(z + x)pr(x)f�(x − y)pr(y) dx dy

)
dr;

then 
�(T; h) converges in L2 for d=2; 3 while if d=4


�(T; h)
lg(1=�)

converges weakly to BMT (h) where

MT (h)=
1
�4

∫ T

0
〈h2; Zs〉 ds:

• Adler and Lewin (1991) have developed a Tanaka-like formula for the renormalized
intersection local time of super-Brownian motion. Formally applying Lemma 1.3 of
Adler and Lewin (1991), (Ito’s formula), as in Lemma 1.4 of Adler and Lewin
(1991) we obtain

〈G�(x − y); ZT (dx)ZT (dy)〉

= 〈G�(x − y); Z0(dx)Z0(dy)〉+
∫ T

0
〈�G�(x − y); Zs(dx)Zs(dy)〉 ds

+2
∫ T

0
〈G�(0); Zs(dx)〉 ds+ 2

∫ T

0
〈G�(x − y); Zs(dx)M (ds; dy)〉; (1.6)

where G(x) (see Eqs. (2.2) and (2.3)), is the 1-potential for Brownian motion in Rd,
G�(x)=f� ∗ G(x) and M (ds; dy) is the martingale measure associated with super-
Brownian motion. Setting


̂(T )= lim
�→0

∫ T

0
〈f�(x − y); Zs(dx)Zs(dy)〉 ds− G�(0)

∫ T

0
|Zs| ds; (1.7)

which is very similar to 
(T ) (see e.g. Eq. (2.8)), and using the fact that (−�=2 +
1)G�=f�, Eq. (1.6) suggests that if d=2 or 3 we will get the Tanaka-like formula

2
̂(T ) = 〈G(x − y); Z0(dx)Z0(dy)〉 − 〈G(x − y); ZT (dx)ZT (dy)〉

+ 2
∫ T

0
〈G(x − y); Zs(dx)Zs(dy)〉 ds

+ 2
∫ T

0
〈G(x − y); Zs(dx)M (ds; dy)〉: (1.8)
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It would be interesting to justify such a formula. (We caution the reader that the
super-Brownian motion in Adler and Lewin (1991) and Adler (1993) is somewhat
di�erent from the super-Brownian motion considered here which follows Dynkin
(1988a).)

• Adler (1993) gives a particle picture interpretation for the renormalized intersection
local time of super-Brownian motion. Using his notation we have for � 6= �; |�|= |�|
and t ∼ �,

G�(X �
t − X �

t ) =G�(X �
|�|=|�| − X �

|�|=|�|) +
∫ t

|�|=|�|
∇G�(X �

s − X �
s ) dX

�
s

−
∫ t

|�|=|�|
∇G�(X �

s − X �
s ) dX

�
s +

∫ t

|�|=|�|
�G�(X �

s − X �
s ) ds: (1.9)

Set


̂�� (T )=
1
�2
∑
�; �

∫ T

0
f�(X �

s − X �
s ) ds−

1
�

∑
�

∫ T

0
1Rd(X �

s ) ds: (1.10)

Arguing as in Adler (1993), Eq. (1.9) leads to

2
̂�� (T ) = 〈G�(x − y); Z�
0 (dx)Z

�
0 (dy)〉 − 〈G�(x − y); Z�

T (dx)Z
�
T (dy)〉

+ 2
∫ T

0
〈G�(x − y); Z�

s (dx)Z
�
s (dy)〉 ds

+ 2
∫ T

0
〈G�(x − y); Z�

s (dx)M
�(ds; dy)〉; (1.11)

where M� is the martingale measure analogous to that which is denoted Z� in Adler
and Lewin (1991) and we used (−� + 2)G�=2f� to handle the case of �= �.
Comparing Eqs. (1.8) and (1.11) suggests that 
̂�� (T )→ 
̂(T ), where, as in Adler
and Lewin (1991), we take �→∞ and �= �−c for appropriate c¿0. If indeed this
could be proven, it would indicate that the renormalization term is needed only to
control the spurious collisions which arise from including �= � in Eq. (1.10).

Theorem 1 will be derived with the aid of the following very explicit theorem.

Theorem 2. Let xt be Brownian motion in Rd killed at an independent exponential
time, and let Xt be the superprocess over xt .
(a) If d=2; then∫ ∞

0
〈f�(x − y); Xs(dx)Xs(dy)〉 ds− 1

� lg
(
1
�

)∫ ∞

0
|Xs| ds (1.12)

converges in L2 as �→ 0:
(b) If d=3, then∫ ∞

0
〈f�(x − y); Xs(dx)Xs(dy)〉 ds− 1

2�
c(f)
�

∫ ∞

0
|Xs| ds (1.13)

where c(f)=
∫
f(x)(1=|x|) dx; converges in L2 as �→ 0.



J. Rosen / Stochastic Processes and their Applications 80 (1999) 25–53 29

(c) If d=4, and


�=
∫ ∞

0
〈f�(x − y); Xs(dx)Xs(dy)〉 ds− a(�)

∫ ∞

0
|Xs| ds; (1.14)

where

a(�)=
1
2�2

(
1
�2

∫
f(y)

1
y2
dy − lg

(
1
�

))
; (1.15)

then 
�= lg(1=�) converges in distribution and we have

E�(e−�(
�= lg(1=�)))→ e|�|(1=2)(1−
√
1−2�2=�4) (1.16)

for � small, as �→ 0:

Remark. Xt is not the same as Zt killed at an independent exponential time!

Theorem 1 can be generalized to nice di�usions in Rd. Let zt be a di�usion with
generator

1
2

d∑
i; j=1

aij(x)
@
@xi

@
@xj

+
d∑

i=1

bi(x)
@
@xi

: (1.17)

If aij; bi are smooth and uniformly bounded together with their derivatives, and

d∑
i; j=1

aij(x)�i�j¿�
d∑

i=1

�2i (1.18)

for some �¿0, uniformly in x and �i; we will say that zt is a smooth uniformly elliptic
di�usion.

Theorem 3. Let Zt denote the superprocess over zt , a smooth uniformly elliptic dif-
fusion in Rd and set


�(T )=
∫ T

0
〈f�(x − y); Zs(dx)Zs(dy)〉 ds− 2

∫ T

0
〈’�;T−s; Zs〉 ds; (1.19)

where

’�; t(z)=
∫ t

0

(∫∫
pr(z; x)pr(z; y)f�(x − y) dxdy

)
dr (1.20)

and ps(x; y) is the transition density for zt .
If d=2 or 3, then 
�(T ) converges in L2 as �→ 0:
If d=4 then 
�(T )= lg(1=�) converges weakly to BMT where

MT =
1
�4

∫ T

0
〈 ; Zs〉 ds (1.21)

and

 (x)=
1

det aij(x)
: (1.22)
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We now generalize Theorem 1 to symmetric stable processes of order � in Rd. As
before, only the case �6d is of interest, since if �¿d; the �→ 0 limit exists.

Theorem 4. Let Yt denote the superprocess over the symmetric stable process yt of
order � in Rd, and


�(T )=
∫ T

0
〈f�(x − y); Ys(dx)Ys(dy)〉ds− 2

∫ T

0
’�(T − s)|Ys| ds; (1.23)

where

’�(t)=
∫ t

0

(∫∫
pr(x)f�(x − y)pr(y) dx dy

)
dr (1.24)

and ps(y) denotes the transition density for yt .
If d=2¡�6d; then 
�(T ) converges in L2 as �→ 0:
If �=d=2; then 
�(T )= lg(1=�) converges weakly to BMT where

MT = a(d)
∫ T

0
|Ys| ds (1.25)

and

a(d)=
24−2d

�d

1
�2(d=2)

Sections 2–6 are devoted to Theorem 2, i.e. the superprocess over killed Brownian
motion. In Section 7, we derive Theorem 1 with the aid of Theorem 2. The necessary
modi�cations for the proofs of Theorems 3 and 4 are explained in Sections 8 and 9.
The present paper is a sequel to Rosen (1992) which studied renormalization and

limit theorems for self-intersections of superprocesses. (Collisions occur at the same
time, while self-intersections of the path can occur at di�erent times.) We have tried to
adhere to the structure of that paper to allow the reader easy reference. Some arguments
needed for the present paper are almost identical to those in Rosen (1992), and in such
cases we have simply referred the reader to that paper.

2. Theorem 2: preliminaries

Our proofs involve the calculation of moments, and in this section we derive a
formula for moments of the approximate renormalized collision local time. Our starting
point is Dynkin’s formula (1988a)

E�

(
n∏

i=1

〈fi; Xti〉
)

=
∑
Dn

∫ ∏
v∈V−

�(dyv)
∏
a∈A

psf(a)−si(a) (yf(a) − yi(a))
∏
v∈V0

dsvdyv

n∏
i=1

fi(zi) dzi: (2.1)
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In Eq. (2.1),

ps(x)= e−s e
−x2=2s

(2�s)d=2 (2.2)

is the transition density for exponentially killed Brownian motion in Rd, where by
convention ps(x)= 0 if s¡0. Dn is the set of directed binary graphs with n exits
marked 1; 2; : : : ; n: Given such a graph, A is the set of arrows, and if the arrow a∈A
goes from the vertex v to w, we write v= i(a); w=f(a): To each vertex v we associate
two variables

(sv; yv)∈R+ × Rd

which we refer to as the time and space coordinates of v. V− denotes the set of
entrances for our graph, and if v∈V−; we set sv ≡ 0: If v is the exit labelled by j,
i6j6n; we set

(sv; yv)
:= (tj; zj):

Finally, V0 denotes the set of internal vertices, i.e. those vertices which are neither
entrances nor exits.
Let

G(x)=
∫ ∞

0
ps(x) ds (2.3)

denote the Green’s function for exponentially killed Brownian motion in Rd. From
Eq. (2.1) we see that

E�

(
n∏

i=1

∫ ∞

0
〈fi; Xti〉 dti

)

=
∑
Dn

∫ ∏
v∈V−

�(dyv)
∏
a∈A

G(yf(a) − yi(a))
∏
v∈V0

dyv

n∏
i=1

fi(zi) dzi: (2.4)

From Eq. (2.1) it follows that

E�

([∫ ∞

0
〈f�(x − y); Xs(dx)Xs(dy)〉 ds

]n)

=
∑
D2n

∫ ∏
v∈V−

�(dyv)
∏
a∈A

psf(a)−si(a) (yf(a) − yi(a))
∏
v∈V0

dsvdyv

×
n∏

i=1

f�(z2i − z2i−1) dz2i dz2v dri; (2.5)

where now the times t2i−1; t2i associated with the exits labeled 2i − 1; 2i are both
replaced by ri, and we integrate ri over [0;∞].
We will say that the pair of exits v; w are coupled if for some k we have

z2k =yv; z2k−1 =yw
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or

z2k =yw; z2k−1 =yv: (2.6)

We will say that a pair of exits v; w are a twin if they have the same immediate
predecessor, i.e., if we can �nd a; b∈A and a vertex u such that

i(a)= i(b)= u (2.7)

and

f(a)= v; f(b)=w:

If a twin v; w are coupled, and e.g. z2k =yv; z2k−1 =yw and Eq. (2.7) holds, then we
get a factor in Eq. (2.5) of the form∫ ∞

s

∫∫
pt−s(yv − yu)pt−s(yw − yu)f�(yv − yw) dyv dyw dt

=
∫ ∞

s

∫∫
pt−s(yv)pt−s(yw)f�(yv − yw) dyv dyw dt

=
∫ ∞

0

∫
p2t(y)f�(y) dy dt

=
1
2

∫
f�(y)G(y) dy: (2.8)

Set

c(�)=
∫

f�(y)G(y) dy: (2.9)

Then it is easy to check that

E�

([∫ ∞

0
〈f�(x − y); Xs(dx)Xs(dy)〉 ds− c(�)

∫ ∞

0
〈1; Xs〉 ds

]n)

=
∑
C2n

∫ ∏
v∈V−

�(dyv)
∏
a∈A

psf(a)−si(a) (yf(a) − yi(a))
∏
v∈V0

dsvdyv

×
n∏

i=1

f�(z2i − z2i−1) dz2i dz2v dri; (2.10)

where C2n is the set of binary graphs with 2n labeled exits; 1; 2; : : : ; 2n; such that no
twin exits are coupled, i.e. no twin exits are labeled 2i − 1; 2i for any i.
Thus, the e�ect of the subtraction term in Eq. (2.10) is to eliminate all coupled

twins. The factor 2 comes from the two possibilities in Eq. (2.6).
We now calculate the asymptotics of c(�): We �rst note that

G ∗ G(y) =
∫
dx
∫ ∞

0

∫ ∞

0
ps(y − x)pt(x) ds dt

=
∫ ∞

0

∫ ∞

0
ps+t(y) ds dt
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=
∫ ∞

0

∫ t

0
pt(y) ds dt

=
∫ ∞

0
tpt(y) dt

=
1
2�

∫ ∞

0
e−t e−|y|2=2r

(2�t)(d−2)=2

:=
1
2�g(y) (2.11)

where g(y); y∈Rd, with obvious notation, corresponds to the Green’s function for
killed Brownian motion in d− 2 dimensions.
If d=2; it is known that for |y|6 1

2 ;

G(y)=
1
�

[
lg
(
1
|y|
)
+ lg(

√
2)− �

]
+O(|y|); (2.12)

where � is Euler’s constant. Hence

c(�) =
∫

f�(y)G(y) dy

=
1
�

∫
f�(y)

(
lg
(
1
|y|
)
dy + lg(

√
2)− �

)
+O(|y|)) dy

=
1
�

(
lg
(
1
�

)
+
∫

f(y) lg
(
1
|y|
)
dy + lg(

√
2)− �

)
+O(�): (2.13)

If d=3, it is known that

G(y)=
1
2�
e−|y|

|y| : (2.14)

Hence

c(�) =
1
2�

∫
f�(y)

e−|y|

|y| dy

=
1
2��

∫
e−�|y|

|y| f(y) dy

=
1
2��

∫
f(y)

dy
|y| −

1
2� +O(�): (2.15)

Finally, for d=4, let us analyze G(x) using G0(x)= (1=2�2)1=|x|2 the zero-potential
for Brownian motion in R4. Iterating the resolvent equation we �nd

G0(x)− G(x) =G ∗ G0(x)

=G ∗ G(x) + G ∗ G ∗ G0(x): (2.16)
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By Eqs. (2.11) and (2.12), we know that

G ∗ G(x)=
1
2�2 lg

(
1
|x|
)
+O(1); |x|¡1 (2.17)

and it is easy to see that

G ∗ G ∗ G0(x)=O(1)

so that for |x|¡ 1
2

G(x) =G0(x)− 1
2�2 lg

(
1
|x|
)
+ 0(1)

=
1
2�2

1
x2

− 1
2�2 lg

(
1
|x|
)
+ 0(1): (2.18)

Hence

c(�) =
∫

f�(y)G(y) dy

=
1
2�2

1
�2

∫
f(y)
y2

dy − 1
2�2 lg

(
1
�

)
+ 0(1); d=4: (2.19)

We also note for future reference that, as in Eq. (2.1),

G ∗ G ∗ G(y) =
∫ ∞

0
·
∫ ∞

0

∫ ∞

0
pr+s+t(y) dr ds dt

=
∫ ∞

0

∫ t

0

∫ s

0
pt(y) dr ds dt

=
∫ ∞

0

t2

2
pt(y) dt: (2.20)

3. Theorem 2: the second moment

In this section, we compute the asymptotics of

I(�)=E�

[(∫ ∞

0
〈f�(x − y); Xs(dx)Xs(dy)〉 ds− c(�)

∫ ∞

0
〈1; Xs〉 ds

)2]
: (3.1)

By Eq. (2.10) we obtain a contribution from each binary graph with four exits, such
that no twin exits are coupled.
We �rst sketch the possible graphs and write down their contribution. Later we will

work out the combinatoric factors. We sometimes use the abbreviation dx : : : to indicate
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integration over all variables.

∫
�(du)pr(z − u)ps−r(x − z)ps′−r(y − z)pt−s(x − z1)pt′−s(x − z3)pt−s′(y − z2)

pt′−s′(y − z4)f�(z1 − z2)f�(z3 − z4) dx dy d �z dr ds ds′ dt dt′

=
∫

pr(z − u) dz d�(u)
∫

ps−r(x)ps′−r(y)pt−s′+t−s ∗f�(x − y)pt′−s′+t′−s

∗f�(x − y) dx : : :

=
∫

pr(z) dz d�(u)
∫

ps−r(x)ps′−r′(y)pt−s′+t−s ∗f�(x − y)pt′−s′+t′−s

∗f�(x − y) dx : : :

= |�|
∫

ps−r(x + y)ps′−r(y)pt−s′+t−s ∗f�(x)pt′−s′+t′−s ∗f�(x) dx : : :

= |�|
∫

ps−r+s′−r(x)pt−s′+t−s ∗f�(x)pt′−s′+t′−s ∗f�(x) dx : : :

=2|�|
∫

p2s+(s′−s)(x)p2(t−s)+(s′−s) ∗f�(x)p2(t′−s)+(s′−s) ∗f�(x) dx : : :

=
1
4
|�|
∫

G ∗pv(x)(G ∗pv ∗f�(x))2 dx dv; (3.2)
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∫
�(du)pr(z − u)pt−r(z1 − z)ps′−r(y − z)ps−s′(x − y)pt−s(x − z2)pt′−s(x − z3)

pt′−s′(y − z4)f�(z1 − z2)f�(z3 − z4) dx dy d �z dr ds ds′ dt dt′

= |�|
∫

ps′(y)ps−s′(x − y)p2(t′−s)+s−s′ ∗f�(x − y)pt−s+t ∗f�(x) dx dy

= |�|
∫

ps′(y)ps−s′(x)p2(t′−s)+s−s′ ∗f�(x)pt−s+t ∗f�(x + y) dx dy

= |�|
∫

ps−s′(x)p2(t′−s)+s−s′ ∗f�(x)pt−s+t+s′ ∗f�(x) dx

= |�|
∫

ps−s′(x)p2(t′−s)+(s−s′) ∗f�(x)p2(t−s)+2s′+(s−s′) ∗f�(x) dx

=
1
8
|�|
∫

pv(x)G ∗pv ∗f�(x)G ∗G ∗pv ∗f�(x) dx dv; (3.3)

∫
�(du)�(dv)ps(u− x)ps′(v− y)pt−s(x − z1)pt′−s(x − z3)pt−s′(y − z2)

×pt′−s′(y − z4)f�(z1 − z2)f�(z3 − z4) dx dy d �z ds ds′ dt dt′

=
∫

�(du)�(dv)ps(u− x)ps′(v− y)pt−s+t−s′ ∗f�(x − y)pt′−s+t′−s′

∗f�(x − y) dx : : :

=
1
4

∫
�(du)�(dv)G ∗pr(x − (u− v))(G ∗pr ∗f�(x))2 dx dr; (3.4)
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∫
�(du)�(dv)pt(u− z1)ps(v− x)pt′−s(x − z3)ps′−s(x − y)pt−s′(y − z2)

×pt′−s′(y − z4)f�(z1 − z2)f�(z3 − z4) dx dy d �z ds ds′ dt dt′

=
∫

�(du)�(dv)ps(v− x)pt−s′+t ∗f�(u− y)ps′−s(x − y)pt′−s+t′−s′

∗f�(x − y) dx : : :

=
1
8

∫
�(du)�(dv)G ∗G ∗pr ∗f�(x − (u− v))pr(x)G ∗pr ∗f�(x) dx dr;

(3.5)

∫
�(du)�(dv)�(dw)ps(x − w)pt−s+t ∗f�(x − u)pt′−s+t′ ∗f�(x − v) dx ds dt dt′

=
1
4

∫
�(du)�(dv)�(dw)ps(x − w)G ∗ps ∗f�(x − u)G ∗ps ∗f�(x − v) dx ds;

(3.6)

1
4

∫
�(du)�(dv)�(dw)�(dz)G ∗f�(u− v)G ∗f�(w − z): (3.7)

Let u�(x) denote a generic measurable function which falls o� exponentially and mono-
tonically in |x|; and such that |x|→∞; and

|u(x)|6c
1
|x|� ;

and let u�; �(x) denote a generic measurable function which falls o� exponentially and
monotonically in |x|; and such that

u�; �(x)6 c|x|−�; |x|¿�;

u�; �(x)6 c�−�; |x|6�:

With uo; � we associate lg(1=|x|) instead of |x|−�.
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We will use the following simple lemma from Rosen (1992):

Lemma 1. If �¡d then u� ∗f�(x) has exponential fallo� as |x|→∞; and

|u� ∗f�(x)|6



�c · 1|x|� ; |x|¿�;

�c · 1
��

; |x|6�;
(3.8)

i.e. u� ∗f�(x)= u�; �(x):

The functions G;G ∗G are of the above form as we saw in Section 2. They all have
exponential fallo� as |x|→∞; while for small x we have the bounds:

G(x)
d=2

c lg( 1|x|)
d=3
cx−1

d=4
cx−2

G ∗G(x) c c c lg
(
1
|x|
) (3.9)

Using Eq. (3.9) and Lemma 4, it is easy to check that all the integrals in formulas
(3.2)–(3.7) are uniformly bounded as �→ 0 when d=2 or 3.
We thus concentrate on d=4. The integrals for graphs 3,5 and 6 are uniformly

bounded as �→ 0, while the above shows that the integral for graph 4 is O(lg(1=�)):
To obtain a similar bound on the integral for Graph 1 we �rst note that

∫ 3∏
i=1

pv(yi) dv6
3∏

i=1

(∫
p3v(yi) dv

)1=3
=

3∏
i=1

u10=3(yi)

and that u10=3 ∗ u2(y)= u4=3(y) hence

1
4
|�|
∫

G ∗pv(x)(G ∗pv ∗f�(x))2dx dv

6c
∫

u4=3(x)u24=3; �(x) dx

6c lg
(
1
�

)
: (3.10)

We now carefully compute the integral (3.3) corresponding to Graph 2. We will
show that it is ∼ c(lg(1=�))2.
Using Eqs. (2.18) and (2.17) we �rst obtain an upper bound:

J (�) =
1
8

∫
pv(x)G ∗pv ∗f�(x)G ∗G ∗pv ∗f�(x) dx dv

6
1
8

∫
G(x)G ∗f�(x)G ∗G ∗f�(x) dx

=
1
8

∫
|x|61=2

G(x)G ∗f�(x)G ∗G ∗f�(x) dx + 0(1)

=
1
8

∫
|x|61=2

1
2�2 x

−2 1
2�2 (x

−2 ∗f�)(x)
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1
2�2

(
lg
(
1
|x|
)
∗f�

)
(x) + 0

(
lg
(
1
�

))

=
1
64�6

∫
2�6|x|61=2

x−2(x−2 ∗f�)(x)(
lg
(
1
|x|
)
∗f�

)
(x) + 0

(
lg
(
1
�

))

=
1
64�6

∫
26|x|61=2�

∫
1
x2

1
|x − z|2 lg

(
1

�|x − y|
)

f(y)f(z) dx dy dz

+0
(
lg
(
1
�

))

=
1
64�6

∫
26|x|61=2�

1
x4

(
lg
(
1
�

)
+ lg

(
1
|x|
))

dx +O
(
lg
(
1
�

))

=
1
64�6 2�

2
∫ 1=2�

2

1
r

(
lg
(
1
�

)
− lg(r)

)
dr +O

(
lg
(
1
�

))

=
1
64�4 lg

2
(
1
�

)
+O

(
lg
(
1
�

))
: (3.11)

We now obtain a lower bound whose leading term is the same as that obtained in
the upper bound.

J (�) =
1
8

∫ ∫ ∞

0
pv(x)G ∗pv ∗f�(x)G ∗G ∗pv ∗f�(x) dv dx

¿
1
8

∫ ∫ �2

0
pv(x)G ∗pv ∗f�(x)G ∗G ∗pv ∗f�(x) dv dx

¿
1
8

∫
G ∗p�2 ∗f�(x)G ∗G ∗p�2 ∗f�(x)

(∫ �2

0
pv(x) dv

)
dx

=
1
8

∫
|x|61=2

G ∗p�2 ∗f�(x)G ∗G ∗p�2 ∗f�(x)

(∫ �2

0
pv(x) dv

)
dx − O(1)

=
1
8

∫
2�6|x|61=2

1
2�2|x|2 ∗p�2 ∗f�(x)

1
2�2 lg

(
1
|x|
)

∗p�2 ∗f�(x)

(∫ �2

0
pv(x) dv

)
dx − O

(
lg
(
1
�

))

=
1
32�4

∫
26|x|61=2�

|x|−2 ∗p1 ∗f(x) lg
(
1

�|x|
)

∗p1 ∗f(x)
(
�2
∫ �2

0
pv(�x) dv

)
dx − O

(
lg
(
1
�

))
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=
1
64�6

∫
26|x|61=2�

|x|−2 ∗p1 ∗f(x) lg
(
1

�|x|
)

∗p1 ∗f(x) 1|x|2 dx − O
(
lg
(
1
�

))

=
1
64�4 lg

2
(
1
�

)
− O

(
lg
(
1
�

))
(3.12)

as in the calculation of Eq. (3.11). Here we have used

�2
∫ �2

0
pv(�x) dv

=
∫ 1

0
e−�2t e

−x2=2t

t2
dt

=
∫ 1

0

e−x2=2t

t2
dt −

∫ 1

0
(1− e−�2t)

e−x2=2t

t2
dt

=G0(x)−
∫ ∞

1

e−x2=2t

t2
dt − O

(
�2
∫ 1

0

e−x2=2t

t2
dt

)

= {G0(x)− O(e−x2=2)}(1 + O(�2))
for 26|x|61=2�.
It can be shown as in Rosen (1992) that the number of graphs in C4 which give

rise to a contribution (3:3) is precisely 43.
Thus

I(�)= 43|�|J (�) + O
(
lg
(
1
�

))
=
1
�4 |�|lg

2
(
1
�

)
+O

(
lg
(
1
�

))
: (3.13)

4. Proof of Theorem 2(a) and (b)

Let


�=
∫ ∞

0
〈f�(x − y); Xs(dx)Xs(dy)〉 ds− c(�)

∫ ∞

0
〈1; Xs〉 ds; (4.1)

where

c(�) =



1
� lg

(
1
�

)
; d=2;

1
2�
1
�

∫
f(y)
|y| dy; d=3:

Almost precisely as in Rosen (1992) we can show that

E�[(
� − 
 ��)2]→ 0 as �; ��→ 0 (4.2)

and this completes the proof of Theorem 2(a) and (b).

5. Proof of Theorem 2(c): Combinatorial aspect

Our proof is by the method of moments.
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Recall that


�=
∫ ∞

0
〈f�(x − y); Xs(dx)Xs(dy)〉 ds− c(�)

∫ ∞

0
〈1; Xs〉 ds; (5.1)

where

c(�) =
∫

f�(x)G(x) dx

=
1
2�2

1
�2

∫
f(y)
y2

dy − 1
2�2 lg

(
1
�

)
+ 0(1): (5.2)

By Eq. (2.10) we know that

E�(
2m� ) (5.3)

is a sum of contributions from the graphs of C4m ; i.e. the set of binary graphs with
4m labeled exits, 1; 2; : : : ; 4m with no twin exits coupled – i.e. no twin exits are ever
labeled 2i − 1; 2i for any i.
The basic idea which we explain in this and the next section is that the dominant

contribution to Eq. (5.3) comes from graphs which e�ectively break Eq. (5.3) up into
a product of m second moments.
Let A4m ⊂C4m denote those binary graphs in C4m for which there is a complete

pairing (i1; j1); : : : ; (im; jm) of the 2m integers 1; 2; : : : ; 2m and such that for each such
pair (i‘; j‘) the exits labeled 2i‘ − 1; 2i‘; 2j‘ − 1; 2j‘ are arranged as in Graph 2 of
Section 3:

(5.4)

or one of its 43 variants as described at the end of Section 3.
We will see later that the dominant contribution to Eq. (5.3) comes from the graphs

in A4m, and is of order lg
2m(1=�); while any other graph in C4m will give a contribution

which is O(lg2m−1(1=�)).
Let us compute the contribution from the graphs in A4m: Consider the subgraph (5:4).

The partial integral with respect to dxdy dz2i‘−1 dz2i‘ dz2j‘−1 dz2j‘−1 is described in
Eq. (3.3). It is crucial that this partial integral is independent of z and r (a consequence
of the translation invariance of Brownian motion), and is simply the constant (see
Eq. (3.11))

J (�)=
1
43�4 lg

2
(
1
�

)
+O

(
lg
(
1
�

))
: (5.5)



42 J. Rosen / Stochastic Processes and their Applications 80 (1999) 25–53

As we saw at the end of Section 3, there are 43 variants of Eq. (5.4). Thus the partial
integration corresponding to all m pairs (i‘; j‘) and all the 43 variants for each pair
gives rise to the factor(

1
�4 lg

2
(
1
�

))m

+O
(
lg2m−1

(
1
�

))
: (5.6)

After this partial integration, we are simply left with a binary graph with m exits. Since
any graph in Dm can arise in this fashion, and since there are (2m)!=m!2m ways to pair
the integers 1; 2; : : : ; 2m we see that (see Eq. (2.4)) the contribution to Eq. (5.3) from
A4m is

(2m)!
m!2m

(
1
�4 lg

2
(
1
�

))m
E�

((∫ ∞

0
〈1; Xs〉 ds

)m)
+O

(
lg2m−1

(
1
�

))
: (5.7)

We will show in the next section that the contribution of all graphs in C4m − A4m is
O(lg2m−1(1=�)): This will give

E�

[(

�

lg(1=�)

)2m]
−→ (2m)!

m!

(
1
2�4

)m
E�

((∫ ∞

0
〈1; Xs〉 ds

)m)
as �→ 0: (5.8)

Furthermore, the next section will show that

E�

[(

�

lg(1=�)

)2m−1]
−→ 0 as �→ 0: (5.9)

Let M2m denote the right-hand side of Eq. (5.8). A simple combinatoric argument
spelled out in Rosen (1992) shows that for |�| small,

∞∑
m=0

�2mM2m

(2m)!
= e|�|(1=2)(1−

√
1−2�2=�4): (5.10)

This shows at once that any limit distribution of 
�=lg(1=�) is determined by its
moments, hence unique, and also shows that its Laplace transform is given by
Eq. (5.10), which establishes Theorem 2(c).

6. Proof of Theorem 2(c): analytic aspect

We recall from Eq. (2.10) that

E�(
n� ) =
∑
C2n

∫ ∏
v∈V−

�(dyv)
∏
a∈A

psf(a)−si(a) (yf(a) − yi(a))
∏
v∈V0

dsvdyv

×
n∏

i=1

f�(z2i − z2i−1) dz2i dz2v dri: (6.1)

In this section, we show that unless n=2m and the graph C is in A4m; then the
contribution of C to Eq. (6.1) is

0
(
lgn−1

(
1
�

))
: (6.2)

As discussed in Section 5, this will complete the proof of Theorem 2(c).
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We can think of the integral in Eq. (6.1) as obtained by assigning a factor psf(a)−si(a)

(yf(a) − yi(a)) to each arrow a∈A. We must integrate out all internal variables dyv;
v∈Vo; all entrances with respect to d�; all exits with

∏n
i=1 f�(z2i − z2i−1) dz2i−1 dz2i ;

as well as all time variables.
Our approach to Eq. (6.2) is to successively integrate out the variables, at each

stage replacing the graph C by a di�erent graph C′ (not necessarily a directed or
binary graph).
The arrows of C′ are associated with factors described below, such that the contri-

bution of C is bounded by that of C′. In this process we will be able to associate a
factor 0(lg(1=�)) to each f� in Eq. (6.1) in such a way that these factors will bound
all divergences as �→ 0, and we will show that unless n=2m and C ⊆A4m, at least
one of the factors associated to some f� will be 0(1):
Here are the details:
We begin by integrating the exit variables z1; : : : ; z2n: We obtain n factors of the

form∫
pti−·(a− z2i−1)f�(z2i − z2i−1)pti−·(b− z2i) dz2i−1 dz2i6cG ∗f�(b− a): (6.3)

We know from the fact that C ⊆C2m; that a 6≡ b. Form a new graph C′ obtained
by putting an edge between i(u) and i(v) whenever f(u)= z2i−1; f(v)= z2i ; i.e. we
connect the vertices associated with a; b in Eq. (6.3). With this new edge, called a
‘leading edge’, we associate the factor G ∗f�:
Assume that C′ has a subgraph of the form

(6.4)

where (x; a); (x; b) are both leading edges. We distinguish three possibilities:
1. a≡ c, or b≡ c (We cannot have both.)
2. a≡ b
3. a; b; c are distinct.
We analyze each in turn:
(i) Assume that b≡ c. This can only have occurred if C contained the subgraph

(6.5)
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Since we think of z2i ; z2i−1 as connected by f�; we refer to the situation in Eq. (6.5)
as a simple loop.
The partial integral over x in this case is bounded by∫

G(c − x)G ∗f�(c − x)G ∗f�(a− x) dx =
∫

G(x)G ∗f�(x)G ∗f�(a− c − x) dx:

(6.6)

We know from Lemma 1 that

G ∗f�6u2; �:

If |x|¿ 1
2 |a− c|, Eq. (6.6) is bounded by

u2; �(a− c)
∫

G(x)G ∗f�(a− c − x) dx= u2; �(a− c)u0; �(a− c) (6.7)

as we see from Eq. (3.9). While if |x|6 1
2 |a − c|, so that |a − c − x|¿(|a − c|)=2;

Eq. (6.6) is bounded by

u2; �(a− c)
∫

G(x)G ∗f�(x) dx= lg
(
1
�

)
u2; �(a− c): (6.8)

In any event, Eq. (6.6) is bounded by lg(1=�)u2; �(a− c): (It is important to recall that
we cannot have a≡ c.) We then form a new graph C′′; with an edge between the
vertices associated with a and c. We consider the factor lg(1=�) as associated with
f�(z2i − z2i−1); and associate u2; � to our new edge, now called a leading edge.
Because Eq. (6.5) refers to a binary graph, in C′′, aside from our new edge con-

necting a and c, there is only one other arrow connecting c, with a factor G(c − d):
We now integrate∫

G(c − d)u2; �(a− c) dc= u0; �(d− a): (6.9)

(This integral was already computed in Eq. (6.7).)
If a≡d; we are in the situation of Section 3, Graph 2, i.e. our subgraph (6.5) was

precisely of the form making up A4m; contributing lg
2(1=�) which we associate with

the two f� factors for that subgraph, which now have no further in
uence.
If a 6≡d; we form a new graph C′′ linking a and d, and with the factor u0; �(d− a):

We have a subgraph

(6.10)

which looks like Eq. (6.4), except that instead of the factor u2; � associated to (d; a);
we have u0; �:
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We will see after analyzing cases (ii) and (iii) that the worst possible case comes
from the two loop subgraph

(6.11)

i.e. h≡ e (so that a 6≡ e) and the partial integral over d is bounded by∫
G(e − d)u2; �(e − d)u0; �(d− a)d(d)=

∫
G(x)u2; �(x)u0; �(a− e − x) dx (6.12)

with a 6≡ e:
As in the analysis of Eq. (6.6) we �nd Eq. (6.12) bounded by

lg
(
1
�

)
uO; �(a− e) + u2; �(a− e) (6.13)

so that the de integral is

O
(
lg
(
1
�

))
: (6.14)

Thus, three factors of f� give rise only to a lg
2(1=�) contribution (as opposed to

lg3(1=�)):
In particular, a subgraph of the form

with i¿2 loops, gives a contribution which is O(lgi−1(1=�)); unless i=2:
(ii) This case arises from the subgraph
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The partial integral with respect to z1; : : : ; z4; x; y is bounded by∫∫
pr(x− c)pt−r+t−s ∗f�(x−y)pt′−r+t′−s ∗f�(x−y)ps(y−d) dx dy dr ds dt dt′

=
∫

pr+s(c − d− x)pt−r+t−s ∗f�(x)pt′−r+t′−s ∗f�(x) dx dr ds dt dt′

=
2
8

∫
G ∗pv(c − d− x)(G ∗pv ∗f�(x))2 dx dv

6u0; �(c − d) (6.15)

as in Eq. (6.7) after using Holder’s inequality in the dv integral as in Eq. (3.10).
If c≡d (which is the situation of Section 3, Graph 1), we have a lg(1=�) for two

factors of f�; while if c 6≡d we can also bound

u0; �(c − d)6lg
(
1
�

)
u(c − d);

where u(c − d) is bounded, and falls o� exponentially as |c − d|→∞. We have a
factor lg(1=�) for the two f�’s, and a new graph with an edge connecting the vertices
associated with c and d, and associated factor u(c − d):
(iii) If a; b; c are distinct, the partial x integral is∫

G(c − x)G ∗f�(x − a)G ∗f�(x − b) dx: (6.16)

If the variable a or b no longer appears in any other factors associated with edges of
our graph – we perform the da or db integral. If, e.g., we �rst do the da integration,
then Eq. (6.16) is bounded by

u0; �(c − b)6lg
(
1
�

)
u(c − b) (6.17)

and as in the discussion of (ii), we associate lg(1=�) with two f� factors.
If both a and b appear in other factors, we use

uv6 1
2 (u

2 + v2)

to bound Eq. (6.16) by

G ∗ u4; �(a− c) + G ∗ u4; �(b− c)6lg
(
1
�

)
(u2; �(a− c) + u2; �(b− c)): (6.18)

We now form two new graphs, one with a new edge connecting a and c, with a factor
u2; �(a− c) – and analogously for the other graph.
It su�ces to consider the �rst graph. Notice that the factor u2; �(a − c) is the type

of factor we obtained from the initial integration over exits – hence we can continue
our analysis as if it arose in the latter manner – with the di�erence that we have
actually used up two f� factors at the cost of one lg(1=�) factor. This could only lead
to problems if our new u2; �(a− c) were part of a two-loop graph, and it is easily seen
that that is impossible because of the dx integration in Eq. (6.16).
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We can now return to the end of our discussion of case (i), and see that indeed the
worst possible case for Eq. (6.10) is as described there – i.e. Eq. (6.11).
By iterating (i)–(iii), applied to leading edges, we see that Eq. (6.2) holds.

7. Proof of Theorem 1

In analogy with Eq. (2.10) we �nd

E�(
n� (T )) =
∑
C2n

∫ ∏
v∈V−

�(dyv)
∏
a∈A

psf(a)−si(a) (yf(a) − yi(a))
∏
v∈Vo

dsv dyv

×1{rj6T;∀j}
n∏

i=1

f�(z2i−1 − z2i) dz2i−1 dz2i dri (7.1)

where now

ps(y)=
e−y2=2t

(2�t)d=2

is the transition density for Brownian motion in Rd.
Note that by inserting factors e−(sf(a)−si(a))¿e−T , we can bound the contribution to

Eq. (7.1) of any graph C, by its contribution to Eq. (2.10). This immediately shows
that if d=2; 3 and n=2, then Eq. (7.1) is uniformly bounded in �, while if d=4,
we can bound the contribution of each graph to Eq. (7.1) by c lgn(1=�), and in fact,
unless n=2m and our graph belongs to A4m, then its contribution can be bounded by
c lgn−1(1=�):
The L2 convergence for d=2; 3 follows easily by using such a domination together

with Eq. (4.2). The case of d=4 is more subtle.
We consider in detail the contribution of a subgraph of the type described by Graph 2

of Section 3. This contribution is

J (r; �) := |�|
∫ ∫

A
ps−s′(x)p2(t′−s)+(s−s′) ∗f�(x)p2(t−s)+2(s′−r)+(s−s′)

∗f�(x) ds′ ds dt dt′ dx

= |�|
∫ ∫

A
ps−s′(x)p2(t′−s) ∗ps−s′ ∗f�(x)p2(t−s) ∗p2(s′−r) ∗ps−s′

∗f�(x) ds′ ds dt dt′ dx

where A= {(s′; s; t; t′) | r6s′6s6t; t′6T}.
Recall from Eqs. (3.11) and (3.12) that

J (�) =
1
8

∫
pv(x)G ∗pv ∗f�(x)G ∗G ∗pv ∗f�(x) dx dv

=
1

64�4 lg
2
(
1
�

)
+ 0
(
lg
(
1
�

))
: (7.2)

We now show that for any �xed �¿0;

J (r; �)= J (�) + 0
(
lg
(
1
�

))
; T − r¿3� (7.3)
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Let

qt =e−tpt(x); Gr(x)=
∫ r

0
e−tpt(x) dt:

Using

|1− e−t |62t
we easily check that

J (r; �) = |�|
∫ ∫

A
qs−s′(x)q2(t′−s) ∗ps−s′ ∗f�(x)q2(t−s) ∗ q2(s′−r) ∗ps−s′

∗f�(x) ds′ ds dt dt′ dx + 0
(
lg
(
1
�

))
: (7.4)

Note that under our assumption that T − r¿3� we have that

A= {(s′; s; t; t′) | r6s′6s6t; t′6T}
⊇ B := {(s′; s; t; t′) | 06s′ − r6�; 06s− s′6�; 06t − s6�; 06t′ − s6�; }:

Using the bound

qr(x)6
ce−x2=2r

�2

if

r¿�;

we see that in Eq. (7.4) we can assume that the integral is over the region B and using
the bound

|G(x)− Gr(x)|6c
∫ ∞

r

e−x2=2t

t2
dt= u(x)

and the methods used to obtain Eq. (7.2) we see that

J (r; �) =
1
8
|�|
∫ ∫ �

0
qv(x)G ∗pv ∗f�(x)G ∗G ∗pv ∗f�(x) dv dx + 0

(
lg
(
1
�

))

= J (�) + 0
(
lg
(
1
�

))
(7.5)

which proves Eq. (7.3).
The rest of the proof now follows as in Rosen (1992).

8. Theorem 3: superprocesses over di�usions

Let zt to a smooth uniformly elliptic di�usion in Rd; with transition density ps(x; y):
It is easy to write down the analogue of Eq. (7.1) for Zt; the superprocess over zt :
simply replace

psf(a)−si(a) (yf(a) − yi(a))
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by

psf(a)−si(a) (yi(a); yf(a)):

Since, for some M; �¿0

ps(x; y)6M
e−�(x−y)2=2t

(2�t)d=2 ; (8.1)

we can apply all the results of the previous sections to obtain bounds on the moments
of 
�(T ):
In particular, if d=2 or 3, E�(
2� (T )) is uniformly bounded in �, and convergence

in L2 follows using Rosen (1987), (2.4), (3.16)).
When d=4, the same reasoning shows that we can bound the contribution of any

graph C to E�(
n� (T ) by lg
n−1(1=�) unless n=2m and C ⊆A4m.

As in the previous section, it su�ces to show that∫
�(du)pr(z; u)pt−r(z1; z)ps′−r(y; z)ps−s′(x; y)pt−s(x; z2)pt′−s(x; z3)pt′−s′(y; z4)

f�(z1 − z2)f�(z3 − z4) dx dy d �z dr ds ds′ dt dt′

= |�| 1
64�4 lg

2
(
1
�

)
+ 0
(
lg
(
1
�

))
: (8.2)

However, using the bounds just described, we know that up to errors of order lg(1=�),
we can restrict integration to the region where z1; x; y; z1; : : : ; z4 are close together. It is
known that for x near y

pt(x; y) =
e−|C−1(x−y)|2=2t

(2�t)d=2det(C) + 0
(

1
td=2−� e

−�|x−y|2=2t
)

(8.3)

for some �¿0, where C =
√

A(x) and A(x) in the matrix aij(x):
We thus see that up to errors 0(lg(1=�)); the integral in Eq. (8.2) is equal to∫

�(du)qr(D(z − u))qt−r(D(z1 − z))qs′−r(D(y − z))qs−s′(D(x − y))

qt−s(D(x − z2))qt′−s(D(x − z3))qt′−s′(D(y − z4))f�(z1 − z2)f�(z3 − z4)

(det(D))7 dx dy d �z dr ds ds′ dt dt′|�|
∫

qr(z)qt−r(z1 − z)qs′−r(y − z)

qs−s′(x − y)qt−s(x − z2)qt′−s(x − z3)qt′−s′(y − z4)fD
� (z1 − z2)

fD
� (z3 − z4) dx dy d �z dr ds ds′ dt dt′; (8.4)

where q denotes the Brownian transition density,

D=
√

A−1(z); A(z)= {aij(z)}

and

fD(x)=f(D−1x)
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Comparing Eq. (8.4) to the calculations in Eq. (3.11) we see that our last integral is

1
64�4 lg

2
(
1
�

)(∫
fD(y) dy

)(∫
fD(z) dz

)
+O

(
lg
(
1
�

))

=
1

64�4 lg
2
(
1
�

)
(det(D))2 + 0 lg

(
1
�

)
; (8.5)

which proves Eq. (8.2); hence Theorem 3.

9. Superstable processes: Theorem 4

Let yt denote the symmetric stable process in Rd of index � with transition density

p(�)t (y)=
1

(2�)d

∫
eipye−tp

�
dp

so that

p(�)1 (o)=
1

(2�)d

∫
e−p�

dp=
1

�2d−1�d=2

�(d=�)
�(d=2)

:

With

G(�)� (y)=
∫ ∞

0
e−�tpt(y) dt;

we have

G(�)0 (y)=
�((d− �)=2)

�(�=2)
1

2��d=2

1
|y|d−� : (9.1)

Our normalization has the property that

G(�)0 ∗G(�)0 =G(�+�)
0 : (9.2)

Notice that with our normalization

p(2)t (y)=p2t(y);

where pt is the Brownian transition density, hence the Brownian Green’s function is
twice G(2)0 :
When � is �xed, we often suppress it and set G1

:=G(�)1 : Theorem 4 will follow
from Theorem 5 in the same manner that Theorem 1 followed from Theorem 2.

Theorem 5. Let Xt be the superprocess over xt , the symmetric stable process in Rd

of index � killed at an independent exponential time.
1. If d=2¡�6d then as �→ 0∫ ∞

0
〈f�(x − y); Xs(dx)Xs(dy)〉 ds− �(�)

∫ ∞

0
|Xs| ds
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converges in L2, where

�(�)= �p1(0)lg
(
1
�

)
if �=d;

�(�)=
1

�d−�

∫
G(2�)0 (x)f(x) dx if �¡d:

(9.3)

2. If �=d=2; then if


�=
∫ ∞

0
〈f�(x − y); Xs(dx)Xs(dy)〉 ds− �(�)

∫ ∞

0
|Xs| ds; (9.4)

where

�(�)=
1
��

∫
G(�)0 (x)f(x) dx − �p1(0)lg

(
1
�

)
:

Then as �→ 0; 
�=lg(1=�) converges in distribution and

E�(e−�
�=lg(1=�))→ e|�|(1=2)(1−
√
1−∧(d)�2)

for � small, where

∧ (d)= 2
8−2d

�d

1
�2(d=2)

(9.5)

Theorem 5 will follow as in the proof of theorem 2 once we have computed the
asymptotics of G and G ∗G; see the appendix of Rosen (1990).
We �rst use the resolvent equation to �nd

G=G0 − G0 ∗G: (9.6)

If d=2¡�¡d; then it is easy to see that the last two terms are continuous, and then
Eq. (9.2) gives that half of Eq. (9.3) referring to �¡d:
If �=d=2; we use G=G0 − G ∗G + G ∗G ∗G0 and proceed as in Eq. (2.11):

G ∗G(x) =
∫ ∞

0
e−ttpt(x) dt

=
∫ 1

0
e−ttpt(x) dt +

∫ ∞

1
e−ttpt(x) dt (9.7)

and ∫ 1

0
e−ttpt(x) dt=

∫ 1

0
tpt(x) dt +

∫ 1

0
(e−t − 1)tpt(x) dt: (9.8)

Then, using scaling∫ 1

0
tpt(x) dt =

1
xd

∫ 1

0
tpt=x�(1) dt

=
∫ 1=x�

0
tpt(1) dt
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=
∫ 1=x�

1
tpt(1) dt +

∫ 1

0
tpt(1) dt

=
∫ 1=x�

1
tpt(0) dt +

∫ 1=x�

1
t(pt(1)− pt(0)) dt +

∫ 1

0
tpt(1) dt (9.9)

and �nally

∫ 1=x�

1
tpt(0) dt=p1(0)

∫ 1=x�

1

1
t
dt= �p1(0)lg

(
1
|x|
)

(9.10)

Thus, from Eqs. (9.7)–(9.10) we �nd that for �=d=2;

G ∗G(x)= �p1(0) lg
(
1
|x|
)

+ terms continuous in x which leads to �(�).
Finally, we need the analogue of Eq. (3.11) when �=d=2:

K(�)∼ 1
23

∫
G(x)G ∗f�(x)G ∗G ∗f�(x)

=
1
23

∫
2�6|x|61=2

G0G0 ∗f�G ∗G ∗f�(x) dx + 0
(
lg
(
1
�

))

=
1
23

C 2(�)�p1(0)
∫
2�6|x|61=2

1
xd−�

1
|x − y|d−� lg

(
1

|x − z|
)

f�(y)f�(z) + O
(
lg
(
1
�

))

=
1
23

C 2(�)�p1(0)
2�d=2

�(d=2)
1
2
lg2
(
1
�

)
+O

(
lg
(
1
�

))
; (9.11)

where C(�) is the coe�cient of 1=X d−� in Eq. (9.1). Putting all this together and
using d=2�, we �nd that

∧ (d) = 2 · 23C 2(�)�p1(0)
2�d=2

�(d=2)
· 1
2

= 23
1

(2�)2�
1

�2d−1�d=2

1
�(d=2)

2�d=2

�(d=2)

=
25−2d

�d

1
�2(d=2)

: (9.12)

We note that for �=2; d=4 this gives

∧(d)= 25−2d 1�4 =
1
23�4 ;

consistent with our normalization as described at the beginning of this section, and the
2=�4 which appears in Theorem 2.
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