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Abstract. Sufficient conditions are obtained for the continuity of renormal-
ized self-intersection local times for the multiple intersections of a large class of

strongly symmetric Lévy processes in Rm, m = 1, 2. In R2 these include Brow-

nian motion and stable processes of index greater than 3/2, as well as many
processes in their domains of attraction. In R1 these include stable processes

of index 3/4 < β ≤ 1 and many processes in their domains of attraction.

Let (Ω,F(t), X(t), P x) be one of these radially symmetric Lévy processes
with 1-potential density u1(x, y). Let G2n

F denote the class of positive finite

measures µ on Rm for which∫ ∫
(u1(x, y))2n dµ(x) dµ(y) < ∞.

For µ ∈ G2n
F , let

αn,ε(µ, λ)
def
=

∫ ∫
{0≤t1≤···≤tn≤λ}

fε(X(t1)− x)

n∏
j=2

fε(X(tj)−X(tj−1)) dt1 · · · dtn dµ(x)

where fε is an approximate δ−function at zero and λ is an random exponential

time, with mean one, independent of X (with probability measure Pλ). The
renormalized self-intersection local time of X with respect to the measure µ is

defined as

γn(µ) = lim
ε→0

n−1∑
k=0

(−1)k
(

n−1

k

)
(u1

ε (0))kαn−k,ε(µ, λ)

where u1
ε (x)

def
=
∫

fε(x−y)u1(y) dy, with u1(x)
def
= u1(x+z, z) for all z ∈ Rm.

Conditions are obtained under which this limit exists in L2(Ω × R+, P y
λ

) for

all y ∈ Rm, where P y
λ

def
= P y × Pλ.

Let {µx, x ∈ Rm} denote the set of translates of the measure µ. The main

result in this paper is a sufficient condition for the continuity of {γn(µx), x ∈
Rm}, namely that this process is continuous P y

λ
almost surely for all y ∈ Rm,

if the corresponding 2n-th Wick power chaos process, {: G2nµx :, x ∈ Rm}
is continuous almost surely. This chaos process is obtained in the following

way. A Gaussian process Gx,δ is defined which has covariance u1
δ(x, y), where

limδ→0 u1
δ(x, y) = u1(x, y). Then

: G2nµx :
def
= lim

δ→0

∫
: G2n

y,δ : dµx(y)

where the limit is taken in L2. (: G2n
y,δ : is the 2n-th Wick power of Gy,δ, that

is, a normalized Hermite polynomial of degree 2n in Gy,δ). This process has

a natural metric

d(x, y)
def
=

1

(2n)!

(
E(: G2nµx : − : G2nµy :)2

)1/2

=

(∫ ∫ (
u1(u, v)

)2n
(d(µx(u)− µy(u))) (d(µx(v)− µy(v)))

)1/2

.

A well known metric entropy condition with respect to d gives a sufficient
condition for the continuity of {: G2nµx :, x ∈ Rm} and hence for {γn(µx), x ∈
Rm}.
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CHAPTER 1

Introduction

We study the continuity of renormalized self-intersection local times for the
multiple intersections of a large class of strongly symmetric Lévy processes in Rm,
m = 1, 2, including symmetric stable processes. We do this by comparing these
processes to Wick power Gaussian chaos processes using an isomorphism theorem
which generalizes an isomorphism theorem of Dynkin.

Intersection local times “measure” the amount of self-intersections of a stochas-
tic process, say, X(t) ∈ Rm. To define the n−fold self-intersection local time, the
natural approach is to set

αn,ε(µ, t)
def
=∫ ∫

{0≤t1≤···≤tn≤t}
fε(X(t1)− x)

n∏
j=2

fε(X(tj)−X(tj−1)) dt1 · · · dtn dµ(x)(1.1)

where fε is an approximate δ−function at zero, and take the limit as ε → 0.
Intuitively, this gives a measure of the set of times (t1, . . . , tn) such that

X(t1) = · · · = X(tn) = x,

where the “n-multiple points” x ∈ Rm are weighted by the measure µ. However,
in general, this limit does not exist because of the effect of the integral in the
neighborhood of the diagonal. The method used to compensate for this is called
renormalization. One subtracts from αn,ε(µ, t) terms involving lower order inter-
sections αk,ε(µ, t) for k < n, in such a way that a finite limit results. This was
originally done by Varadhan [25] for double intersections of Brownian motion in
the plane with µ taken to be Lebesgue measure. Varadhan’s work stimulated a large
body of research which is summarized by Dynkin in [6]. Renormalized intersection
local times have turned out to be the right tool for the solution of certain “classical”
problems such as the asymptotic expansion of the area of the Wiener and stable
sausage in the plane and fluctuations of the range of stable random walks. (See Le
Gall [10, 9], Le Gall-Rosen [12] and Rosen [23]). For a clear account of progress
concerning Brownian intersection local times up to 1990 see Le Gall’s lecture notes
[11]. For more recent results see Bass and Khoshnevisan [2] and Rosen [22].

For Brownian motion in the plane and with µ taken to be Lebesgue measure,
Dynkin [5] introduced the idea of studying αn,ε(µ, λ), where λ is an exponential
random variable with mean one, independent ofX(t), and showed how this random-
ization of time leads to technical simplifications. Also, he introduced the following
renormalization formula

γn(µ)
def
= lim

ε→0

n−1∑
k=0

(−1)k
(
n−1

k

)
(u1
ε(0))kαn−k,ε(µ, λ) (1.2)

1



2 1. INTRODUCTION

where u1
ε(x) =

∫
fε(x − y)u1(y) dy and u1(x) =

∫∞
0
e−tpt(x) dt is the 1-potential

density.
Let

γn,ε(µ) =
n−1∑
k=0

(−1)k
(
n−1

k

)
(u1
ε(0))kαn−k,ε(µ, λ). (1.3)

Heuristically, one may think of γn,ε(µ) as

γn,ε(µ) =
∫ ∫

{0≤t1≤···≤tn}
fε(X(t1)− x)

n∏
j=2

{
fε(X(tj)−X(tj−1))− δ(tj − tj−1)u1

ε(0)
}
dt1 · · · dtn dµ(x).(1.4)

This formulation compensates for the difficulties caused when various of the ti are
close to each other.

In this paper we consider renormalized self-intersection local times γn(µ) for a
large class of radially symmetric Lévy processes in Rm, m = 1, 2 and positive finite
measures µ on Rm. We define µx(·) = µ(x+ ·) to be the measure µ translated by
x ∈ Rm and study the continuity of the stochastic process {γn(µx), x ∈ Rm}.

Let (Ω,F(t), X(t), P x) be a radially symmetric Lévy processes in Rm, m =
1, 2 with 1-potential density u1(x, y). Since intersection local times are trivial for
processes which have an actual local time we only consider Lévy processes for which
u1(0) = ∞. Clearly u1(x, y) = u1(x− y, 0) and since X(t) is radially symmetric we
sometimes write these terms as u1(x − y) or u1(|x − y|). The results obtained in
this paper are valid for a large class of radially symmetric Lévy processes which we
say are in Class A. This class contains the symmetric stable processes and many
processes in their domains of attraction. Class A is defined later in this chapter,
see (1.15) and (1.16), after which we give more details about the range of this class
and the scope of our results.

We use G2n to denote the class of positive measures µ for which∫ ∫
(u1(x, y))2n dµ(x) dµ(y) <∞. (1.5)

It should be understood that when we say µ ∈ G2n, that this is with respect to the
1-potential of some given Lévy process.

As in our recent work [17, 15] in which an isomorphism theorem of Dynkin
enables us to use ideas from the theory of Gaussian processes and Gaussian chaos
processes to study the continuity of Markov local times and additive functionals,
here too we develop an isomorphism theorem and use it to relate renormalized self-
intersection local times to higher order Gaussian chaos processes. We call them
2n-th Wick power chaos processes and denote them by : G2nµx :. These processes
are described rigorously in Chapter 2. But, roughly, here is how one can think of
them. Let us first note that the 1-potential, u1(x, y) of X(t) is positive definite.
This follows because

u1(x, y) =
∫ ∞

0

e−tpt(x, y) dt

and a symmetric transition probability density, here denoted by pt(x, y), is easily
seen to be positive definite for all t > 0 by the Chapman-Kolmogorov equation. (See
also Theorem 3.3, [17]). We would like to be able to consider a Gaussian process
with covariance u1(x, y), however the 1-potentials that interest us are infinite at
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the origin. To deal with this we approximate u1(x, y) by a positive definite function
u1
δ(x, y) such that u1

δ(0) <∞ and limδ→0 u
1
δ(x, y) = u1(x, y). We then consider the

mean zero Gaussian process {Gδ(y), y ∈ Rm} with covariance u1
δ(x, y) and take its

2n-th Wick power : G2n
δ (y) :. (This is the Hermite polynomial of degree 2n in Gδ

with leading coefficient one). We define

: G2nµx := lim
δ→0

∫
: G2n

δ (y) : dµx(y) (1.6)

where the limit is taken in L2. This limit exists for µ ∈ G2n. Thus, given a Lévy
process with 1-potential u1 and a measure µ ∈ G2n we consider the 2n-th order
Gaussian chaos process {: G2nµx :, x ∈ Rm}.

The main result of this paper is the following sufficient condition for the almost
sure continuity of the renormalized self-intersection local time γn(µx) as a function
of x. To be more precise we say that a random variable Y is a version of γn(µ) if

Y = lim
ε→0

γn,ε(µ) (1.7)

in L2(Ω × R+, P
y
λ ) for all y ∈ Rm, where P yλ is the product probability measure

P yPλ, (and Pλ is the probability measure of λ). Often we simply say that a
stochastic process has a property almost surely when we actually mean that the
process has a version with this property almost surely.

Theorem 1.1. Let X = {X(t), t ∈ R+} be a Lévy process in Class A and
µ be a finite positive measure in G2n. Let {: G2nµx :, x ∈ Rm} be the 2n-th
Wick power chaos process associated with X and µ and let {γn(µx), x ∈ Rm} be
the n-fold renormalized self-intersection local time process of X, with respect to
µ. If {: G2nµx :, x ∈ Rm} is continuous almost surely then {γn(µx), x ∈ Rm} is
continuous almost surely.

Theorem 1.1 requires the continuity of the 2n-th Wick power Gaussian chaos
process {: G2nµx :, x ∈ Rm}. Here is a well known sufficient condition for the
continuity of this process. For µ ∈ G2n define a metric on Rm

d(x, y) =
(∫ ∫ (

u1(u, v)
)2n

(d(µx(u)− µy(u))) (d(µx(v)− µy(v)))
)1/2

=
1

(2n)!
(
E(: G2nµx : − : G2nµy :)2

)1/2
. (1.8)

(The last equality is explained in (3.14)). A sufficient condition for the almost sure
continuity of {: G2nµx :, x ∈ Rm} is that∫ ∞

0

(logNd(B, ε))n dε <∞ (1.9)

where B is the unit ball in Rm and Nd(B, ε) is the minimum number of balls of
radius ε, in the metric d, that covers B. ( logNd(B, ·) is called the metric entropy
of B with respect to d). Thus we get the following corollary of Theorem 1.1:

Corollary 1.1. Let X = {X(t), t ∈ R+} be a Lévy process in Class A and µ be
a finite positive measure in G2n. Let {γn(µx), x ∈ Rm} be the n-fold renormalized
self-intersection local time process of X, with respect to µ. If (1.9) holds then
{γn(µx), x ∈ Rm} is continuous almost surely.
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Here is a concrete application of Corollary 1.1. Let τ(ξ) denote the Fourier
transform of (u1(x))2n so that∫

τ(ξ)|µ̂(ξ)|2 dξ =
∫ ∫ (

u1(x, y)
)2n

dµ(x) dµ(y). (1.10)

Corollary 1.2. Let X = {X(t), t ∈ R+} be a Lévy process in Rm, m = 1, 2,
in Class A and {γn(µx), x ∈ Rm} be the n-fold renormalized self-intersection local
time process of X, with respect to a finite positive measure µ on Rm. If∫ ∞

1

(
∫
|ξ|≥x τ(ξ)|µ̂(ξ)|2 dξ)1/2

x
(log x)n−1 dx <∞ (1.11)

then µ ∈ G2n and {γn(µx), x ∈ Rm} is continuous almost surely. In particular, for
Brownian motion in R2, this is the case when

|µ̂(ξ)| = O

(
1

(log |ξ|)2n+ε

)
as |ξ| → ∞. (1.12)

Furthermore for a Lévy process X in R2 in Class A with Lévy exponent asymp-
totic to λ2/(log |λ|)a, a > 0, as λ→∞, (see (1.19) below), the n-fold renormalized
self-intersection local time process of X, with respect to a positive measure µ on
R2, is continuous almost surely if (1.12) holds with 2n replaced by 2n(1 + a/2).

We do not know whether (1.9) is a necessary condition for continuity of the 2n-
th Wick power chaos associated with u1 for any measure µ. Based on Theorem 1.5,
[15] and the results in [19] we suspect that at least for a class of smooth measures
µ a necessary and sufficient condition for continuity of the 2n-th Wick power chaos
associated with u1(·) is the one in (1.9) but with n replaced by 1/2. We do not
know how to prove this. The methods of [19], which prove a result of this nature
for second order Wick power chaos processes do not extend to higher order Wick
power chaos processes.

The isomorphism theorems we develop can be used to obtain other path prop-
erties of renormalized self-intersection local times besides continuity. In [16] and
[15] we used Dynkin’s isomorphism theorem to obtain moduli of continuity re-
sults for continuous additive functionals of Lévy processes. We can do the same
here for {γn(µx), x ∈ Rm}. However, since there is little new involved we will
leave this to the interested reader. Instead, we demonstrate the power of the iso-
morphism theorem approach by obtaining a bound on the exponential moment of
supx∈[−1,1]m |γn(µx)|1/n. The following theorem is proved in Chapter 9:

Theorem 1.2. Assume that all the hypotheses of Theorem 1.1 are satisfied.
This implies, in particular, that {γn(µx), x ∈ Rm} is continuous almost surely.
Assume further that the 1-potential of X, u1(x) = O(1/xm+ε), as x → ∞, for
some ε > 0. Then there exist constants 0 < c,C <∞ such that

Eyλ exp

(
c sup
x∈[−1,1]m

|γn(µx)|1/n
)
< C (1.13)

for all y ∈ Rm.

The next chapter contains a brief survey of properties of Wick products. In
Chapter 3 we define the Wick power chaos processes that enter into the various
isomorphism theorems which are the heart of this paper. In Theorem 3.1 we obtain
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a critical estimate for the behavior of a Wick power chaos in the neighborhood of
its diagonal.

The main isomorphism theorem of this paper, Theorem 4.1, relates renormal-
ized self-intersection local times of Lévy processes in Class A to Wick power chaos
processes. The result we obtain, (4.3) was obtained by Dynkin in [5], for Brownian
motion in R2 with µ taken to be Lebesgue measure. Dynkin’s result inspired this
paper but our proofs are quite different. Since the 1-potential of planar Brownian
motion has a logarithmic singularity, all of its powers are integrable. This simplifies
considerably the proofs of many of the estimates required. On the contrary, when
dealing with processes whose 1-potential has a power type singularity, obtaining
the necessary estimates is very delicate.

In proving the isomprphism theorem, Theorem 4.1, it is natural to work with
a renormalized self-intersection local time Ln(µ) that does not have the same ap-
pearance as γn(µ). Nevertheless, in Chapter 5 we show that the two formulations
of renormalized self-intersection local time are stochastically equivalent and hence
are interchangeable in these theorems. Another difficulty we must deal with is that
in the context of the isomorphism theorem, Theorem 4.1, it is natural to define
γn(µ), P ρλ almost surely for some measure ρ ∈ G1, whereas it is more desireable
to define it P xλ for all x ∈ Rm. We can do this but we have to add an additional
hypothesis on the measures µ, namely

sup
x
|
∫

(u1(x− y))n dµ(y)| <∞. (1.14)

The reader may note that the hypothesis (1.14) does not appear explicitly in Theo-
rem 1.1. This is because (1.14) is implied by the condition that {: G2nµx :, x ∈ Rm}
is locally bounded. This is not easy to see. Indeed it requires two more isomorphism
theorems, Theorems A.2 and A.3 which deal with the intersections of independent
Lévy processes. We relegate all this material to Chapter A, an Appendix to this
paper.

In a brief Chapter 6 we put all the results of Chapters 4 and 5 together and
prove Theorem 1.1 and Corollaries 1.1 and 1.2. In Chapter 7 we describe a large
class of measures which are contained in Class A. In a brief Chapter 8 we give
examples of Lévy processes and corresponding measures µ for which the n-fold self-
intersection local time process, {γn(µx), x ∈ Rm} is continuous. In Chapter 9 we
prove our bound on the exponential moment of supx∈[−1,1]m |γn(µx)|1/n, Theorem
1.2.

* * *

We now describe the Lévy processes in Class A. Let h : Rm → R1 and b ∈ Rm,
m = 1, 2. Define ∆bh(s) = h(s+ b)− h(s) and ∆2

b,ch(s) = ∆b∆ch(s). We say that
a Lévy process belongs to Class A if it is radially symmetric and its 1-potential
density u1(|s|) is regularly varying at the origin with index greater than minus two,
u1 is bounded away from the origin, and there exists an s0 > 0 such that for |s| ≤ s0

|∆bu
1(s)| ≤ C|b|u

1(|s|)
|s|

for |b| ≤ |s|
4

(1.15)

and

|∆2
b,cu

1(s)| ≤ C(|bc|)u
1(|s|)
|s|2

for |b|, |c| ≤ |s|
4
. (1.16)
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Also if u1(|s|) is slowly varying at the origin we require that it is asymptotic to a
decreasing function at the origin. This condition is clearly satisfied when u1(|s|)
is regularly varying at the origin with index less than zero. Finally, let |s| = r
and consider (u1(r))′, the derivative of u1 with respect to r. We require that for
all r0 > 0, (u1(r))′ ∨ (u1(r))′′ ≤ Cr0 for all r ≥ r0 > 0, where Cr0 is a constant
depending only on r0.

Symmetric stable processes in R2, including Brownian motion in R2, are in
Class A, as are symmetric stable processes in R1 with index β ≤ 1, but Class A is
larger than this. Let

EeiλX(t) = e−tψ(|λ|). (1.17)
We refer to ψ as the Lévy exponent of X. We show in Chapter 7 that “stable
mixtures” are in Class A. These are Lévy processes, which we introduced in [18],
which are defined in terms of their characteristic exponents

ψ(|λ|) =
∫ β

a

|λ|s dφ(s) (1.18)

where φ is a probability measure such that support(φ) = [a, β], where 0 < a < β ≤
2. It is easy to see that this is a Lévy exponent since it is the limit of a linear
combination of the Lévy exponents of symmetric stable processes. The class of
function given in (1.18) is fairly general. It follows from Lemma 3, [18] that for any
function g which is regularly varying at infinity with positive exponent or which is
an increasing slowly varying function at infinity we can find a Lévy exponent of the
form of (1.18) for which

ψ(|λ|) ∼ |λ|β

g(log |λ|)
as |λ| → ∞. (1.19)

The condition that µ ∈ G4, an hypothesis that is required by the approach we
take to study double points in Rm, along with our interest only in those processes
for which u1(0) = ∞, restricts our consideration of stable mixtures to the cases
3/2 < β ≤ 2 when m = 2 and 3/4 < β ≤ 1 when m = 1.

If the integral appearing in the definition of G2n, (1.5), is finite for any positive
measure on Rm, it is finite for Lebesgue measure on [−1, 1]m. This shows us that
for n ≥ 2, G2n is empty for positive measures on Rm, m ≥ 3. Note that Lévy
processes do not intersect in R4 but in R3 they can have (at most) double points.
That is, one could consider intersections for Lévy processes in R3 but Theorem 1.1
says nothing in this case. However, in R1 and R2, we get interesting results.

For symmetric β stable processes in R2, β < 2, the requirement that µ ∈ G2n

means that β > 2 − (1/n). However for Brownian motion in R2 and for certain
Lévy processes in R2, in the domain of attraction of Brownian motion, we can
find positive measures µ ∈ G2n for all n. A similar situation exists in R1. In this
case µ ∈ G2n requires that β > 1 − (1/2n). However for the symmetric Cauchy
process in R1 and for certain Lévy processes in R1 in the domain of attraction of
the symmetric Cauchy process, we can find positive measures µ ∈ G2n for all n.

It is well known, [13], [8] that∫ (
u1(x)

)n
dx <∞ (1.20)

is necessary and sufficient for n-fold self-intersections to exist almost surely. Let ν
be Lebesgue measure on [−1, 1]m. It is easy to see that for 1-potentials which are
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bounded away from the origin∫
[−1,1]m

(
u1(x)

)n
dx <∞ (1.21)

if and only if ν ∈ Gn.
The criteria for the existence of γn(µ) are much stronger. We define γn(µ), P xλ

almost surely, as a limit in L2. Consequently we require that E|γn(µ)|2 < ∞. We
show in Lemma 5.1 that for many Lévy processes in Class A and smooth measures
µ, E|γn(µ)|2 <∞ if and only if µ ∈ G2n. Roughly speaking, the sufficient condition
for the continuity of {γn(µx), x ∈ Rm} given in Corollary 1.2 is only slightly stronger
than this.

We now discuss one way to interpret Theorem 1.1 which shows why it is in-
teresting to have this result for a wide class of measures. First let us note that
the 1-potential of a symmetric β-stable process in R2 is asymptotic to 1/|x|2−β ,
at the origin, and is also the density of a measure on R2. This shows that we can
find measures µ on R2, absolutely continuous with respect to Lebesgue measure,
with density asymptotic to 1/|x|2−ε at the origin for any ε > 0, for which (1.12) is
satisfied for all n. Depending on the Lévy process considered, some, or all, of these
measures are admissible in Theorem 1.1. Now, ideally in Theorem 1.1, one might
want to take for the measure µ, the δ−function at some point in the state space of a
Lévy process. Then one could talk about renormalized self-intersection local times
of the Lévy process at this point. But this is infinite. So, instead we ask, how strong
a weight can we put near a point and still obtain a renormalized self-intersection
local time for the process in the neighborhood of the point? We obtain some an-
swers to this question and also show that the renormalized self-intersection local
time process, which is obtained when this weight (measure) is translated through
the state space, is continuous almost surely. Of course, we need not only consider
measures which are absolutely continuous with respect to Lebesgue measure. An-
other interesting application of these results would be for measures supported on a
subspace of R2 with fractional Haussdorff dimension.





CHAPTER 2

Wick products

We begin by giving the definition of Wick products and develop several useful
relations involving them. Let {Gt, t ∈ T} denote a mean-zero Gaussian process
indexed by some set T , and let

g(s, t) = E(GsGt)

denote its covariance. Recall the well known equation

E(
2m∏
i=1

Gti) =
∑
P

m∏
k=1

g(tPk,1 , tPk,2) (2.1)

where the sum runs over all possible pairings P, i.e. partitions of {1, . . . , 2m}, into
two element subsets (pairs). We let (Pk,1,Pk,2) denote the k−th pair of P. Note
that the expectation of a product of an odd number of the terms Gti is zero.

The Wick product of {Gti ; i = 1, . . . , n} which we denote by :
∏n
i=1Gti : is

defined by the equation

:
n∏
i=1

Gti :=
[n/2]∑
j=0

(−1)j
∑
|P̃|=j

j∏
k=1

g(tP̃k,1
, tP̃k,2

)
∏
i∈P̃c

Gti (2.2)

where, for fixed j, the second sum runs over all possible choices P̃ of j pairs of
indices chosen from {1, . . . , n}, and (P̃k,1, P̃k,2) denotes the k−th pair in P̃. Here
|P̃| = j, the number of pairs in P̃.

Let In denote the closed subspace of L2 generated by all products of the form∏m
i=1Gti with 0 ≤ m ≤ n. Let Jn = In 	In−1 denote the orthogonal complement

of In−1 in In. Let Qn denote the orthogonal projection of L2 onto Jn. We claim
that

Qn(
n∏
i=1

Gti) =:
n∏
i=1

Gti : . (2.3)

To verify (2.3) we must show that :
∏n
i=1Gti : satisfies

:
n∏
i=1

Gti : −
n∏
i=1

Gti ∈ In−1

and that :
∏n
i=1Gti : is orthogonal to In−1. The first requirement is obvious from

the definition (2.2). To establish the second let us first note that by (2.1) we have

E(
j∏
i=1

Gt1,i

m∏
i=1

Gt2,i
) (2.4)

9
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=
∑

P=P1∪P2∪P3

|P1|∏
k=1

g(tP1
k,1
, tP1

k,2
)
|P2|∏
k=1

g(tP2
k,1
, tP2

k,2
)
|P3|∏
k=1

g(tP3
k,1
, tP3

k,2
)

where the sum runs over all pairings P of {(1, 1), . . . , (1, j), (2, 1), . . . , (2,m)}, and
P = P1 ∪ P2 ∪ P3. Here P1 denotes the subcollection of pairs in P whose first
components are both 1, P2 denotes the subcollection of pairs in P in which the
first component of one element is 1 and that of other element is 2, and P3 denotes
the subcollection of pairs in P whose first components are both 2. By (2.2)

E(:
n∏
i=1

Gt1,i :
m∏
i=1

Gt2,i) (2.5)

=
[n/2]∑
j=0

(−1)j
∑
|P̃|=j

j∏
k=1

g(t
1,P̃k,1

, t
1,P̃k,2

)E(
∏
i∈P̃c

Gt1,i

m∏
i=1

Gt2,i
).

Now let P be the pairings of {(1, 1), . . . , (1, j), (2, 1), . . . , (2,m)} and define P1, P2

and P3 as above. We see that the left-hand side of (2.5)

=
∑

P=P1∪P2∪P3


[n/2]∑
j=0

(−1)j
(
|P1|
j

)
|P1|∏
k=1

g(tP1
k,1
, tP1

k,2
) (2.6)

|P2|∏
k=1

g(tP2
k,1
, tP2

k,2
)
|P3|∏
k=1

g(tP3
k,1
, tP3

k,2
)

since there are precisely
(|P1|
j

)
terms in the sum

∑
|P̃|=j

j∏
k=1

g(t
1,P̃k,1

, t
1,P̃k,2

)
∏
i∈P̃c

Gt1,i

which give rise to the partition P = P1 ∪ P2 ∪ P3. That is, there are precisely(|P1|
j

)
ways to choose sets P̃ with j pairs from the |P1| pairs of P1.

Since |P1| ≤ [n/2], we have

[n/2]∑
j=0

(−1)j
(
|P1|
j

)
=

|P1|∑
j=0

(−1)j
(
|P1|
j

)
= 0 (2.7)

whenever P1 is not empty. Therefore we need only consider the terms in which P1

is empty. This gives us

E(:
n∏
i=1

Gt1,i
:
m∏
i=1

Gt2,i
) =

∑
P=P2∪P3

|P2|∏
k=1

g(tP2
k,1
, tP2

k,2
)
|P3|∏
k=1

g(tP3
k,1
, tP3

k,2
). (2.8)

If m < n and m+ n is even, P1 can not be empty. Thus we see that

E(:
n∏
i=1

Gt1,i
:
m∏
i=1

Gt2,i
) = 0 (2.9)
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if m < n, i.e. that :
∏n
i=1Gti : is orthogonal to In−1. Furthermore (2.8) also shows

that

E(:
n∏
i=1

Gt1,i
:
n∏
i=1

Gt2,i
) =

∑
P={P2}

|P2|∏
k=1

g(tP2
k,1
, tP2

k,2
). (2.10)

This can be written more suggestively as

E(:
n∏
i=1

Gti : :
n∏
i=1

Gsi
:) =

∑
π

n∏
k=1

g(ti, sπ(i)), (2.11)

where the sum goes over all permutations π of {1, . . . , n}.
The following generalization of (2.11) will be useful.

E(
k∏
j=1

:
nj∏
i=1

Gtj,i
:) =

∑
P

N/2∏
m=1

g(tPm,1 , tPm,2) (2.12)

where the sum runs over all pairings P of the set {(j, i); 1 ≤ j ≤ k; 1 ≤ i ≤ nj}
such that if P = {(Pm,1,Pm,2); 1 ≤ m ≤ N/2} where N =

∑k
j=1 nj and for any

m we have (Pm,1,Pm,2) = ((j, i), (j′, i′)) then j 6= j′. In other words, we never
pair two Gt(·,·) terms from the same Wick product. The equation in (2.12) can be
proved similarly to the proof of (2.11). Consider

E(:
n1∏
i=1

Gt1,i :
k∏
j=2

nj∏
i=1

Gtj,i). (2.13)

We can use the same proof as in (2.5) and (2.6) to see that the terms in {Gt1,i
}n1
i=1

that are paired with themselves contribute nothing to (2.13). Next we consider

E(:
n1∏
i=1

Gt1,i
::
n2∏
i=1

Gt2,i
:
k∏
j=3

nj∏
i=1

Gtj,i
). (2.14)

and see that this is also true for the pairings of {Gt2,i
}n1
i=1 with themselves. Pro-

ceeding recursively we get (2.12).
Using (2.12) we can now establish the expansion formula

(2.15)
k∏
j=1

:
nj∏
i=1

Gtj,i :=
∑

(A1,...,Ak)

∑
P=P(∪k

j=1Aj)

|P|∏
m=1

g(tPm,1 , tPm,2) :
k∏
j=1

∏
i∈Ac

j

Gtj,i :

where the first sum runs over all k-tuples of subsets (A1, . . . , Ak) with Aj ⊆
{(j, i); 1 ≤ i ≤ nj}, and the second sum runs over all pairings P of ∪kj=1Aj such
that if P = {(Pm,1,Pm,2); 1 ≤ m ≤ |P|} and for any m we have (Pm,1,Pm,2) =
((j, i), (j′, i′)), then j 6= j′. In other words, we never pair two indices from the same
Aj . To verify (2.15), it suffices to show that both sides of (2.15) have the same L2

inner product with all Wick products, and that can be done using (2.12).





CHAPTER 3

Wick power chaos processes

In this chapter we define what we mean by a Wick power chaos and a Wick
power chaos process. We also obtain a critical theorem on the behavior of a Wick
product chaos in the neighborhood of the diagonal, that is, the rate at which a Wick
product chaos approaches a Wick power chaos. On a first reading of this paper, we
recommend studying the present chapter up to the statement of Theorem 3.1, and
then going on to the following chapter.

For a given 1-potential u1 and some positive integer p let µ, ν ∈ Gp, i.e. (1.5)
is satisfied with 2n replaced by p. Since u1 is positive definite we can define the
inner product

〈µ, ν〉(p) =
∫ ∫

(u1(x− y))p dµ(x) dν(y). (3.1)

Denote ‖µ‖2(p) = 〈µ, µ〉(p). Let us also note that, trivially, ‖µa‖(p) = ‖µ‖(p) for all
a ∈ Rm.

Lemma 3.1. Let µ ∈ Gp, then for all a1, . . . , ap ∈ Rm∫ ∫ p∏
i=1

u1(x− y + ai) dµ(x) dµ(y) (3.2)

is continuous in (a1, . . . , ap) and is bounded by ‖µ‖2(p).

Proof. Let a = (a1, . . . , ap) and denote the integral in (3.2) by V (a). Taking
Fourier transforms we see that

V (a)− V (b) =
∫ ∫  p∏

j=1

eiajλj −
p∏
j=1

eibjλj

 p∏
j=1

1
1 + ψ(λj)

|µ̂(
p∑
j=1

λj)|2 dλ.

Note that µ ∈ Gp is equivalent to∫ ∫ p∏
j=1

1
1 + ψ(λj)

|µ̂(
p∑
j=1

λj)|2 dλ <∞. (3.3)

Therefore the Lemma follows from the dominated convergence theorem.

Let fδ(y) be a continuous positive symmetric function on (y, δ) ∈ Rm × (0, 1]
with support in the ball of radius δ and such that

∫
fδ(y) dy = 1. That is, fδ is

a smooth approximate identity. We assume that fδ(·) ≤ C/δm for some constant
C. Set fx,δ(y) = fδ(y − x). By u1(δ), for δ > 0, we mean the 1-potential density
evaluated at any element in Rm with absolute value equal to δ. We note the
following simple estimate:

13
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Lemma 3.2. Let u1 be the 1-potential of a Lévy process in Class A, and assume
that it is in Lp with respect to Lebesgue measure on [−1, 1]m. Then for all b ∈ Rm,
m = 1, 2 ∫

(u1(x− b))pfδ(x) dx ≤ C(u1(δ))p. (3.4)

for δ ≤ δ0, for some δ0 sufficiently small.

Proof. Since u1 is radially symmetric and u1(| · |) is regularly varying at the
origin, and hence effectively decreasing in a neighborhood of the origin, it is easy
to see that∫

(u1(x− b))pfδ(x) dx ≤ C

δm

∫
|x|≤δ

(u1(x− b))p dx (3.5)

≤ C

δm

∫
ξ≤δ

(u1(|ξ|))pξm−1 dξ ≤ C(u1(δ))p.

We now define the 2n-th Wick power chaos. Let u1 be the 1-potential of a Lévy
process in Rm. Let θ, φ ∈ G1, with respect to u1. We define {Gρ, ρ ∈ G1} to be the
mean zero Gaussian process with covariance

E(GθGφ) =
∫ ∫

u1(x, y) dθ(x) dφ(y). (3.6)

Set ρδ(dx′) = fδ(x′) dx′ and ρx,δ(dx′) = fx,δ(x′) dx′. It is clear that ρx,δ(dy) ∈ G1.

Let Gx,δ
def
= Gρx,δ

and consider the mean zero Gaussian process {Gx,δ , (x, δ) ∈
Rm × (0, 1]} with covariance

E(Gx,δGy,δ′) =
∫ ∫

u1(x′, y′)ρx,δ(dx′)ρy,δ′(dy′)

=
∫ ∫

u1(x+ x′, y + y′)ρδ(dx′)ρδ′(dy′) (3.7)

def
= u1

δ,δ′(x, y).

Since ρδ(dy) ∈ G1, u1
δ,δ′(0) <∞.

It follows from (2.2) that the 2n-th Wick product formed from Gx,δ satisfies

: G2n
x,δ :=

n∑
j=0

(−1)j
(

2n
2j

)
(2j)!
j!2j

(u1
δ,δ(0))jG2(n−j)

x,δ (3.8)

and, by (2.11), that

E(: G2n
x,δ :: G2n

y,δ′ :) = (2n)!(u1
δ,δ′(x− y))2n. (3.9)

We note, for later use, that it also follows from (2.11) that

E(:
2n∏
i=1

Gvi,δ ::
2n∏
i=1

Gwi,δ′ :) =
∑
π

2n∏
k=1

u1
δ,δ′(vπk

− wk) (3.10)

where the sum runs over all permutations π of {1, . . . , 2n}.
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Let µ ∈ G2n. It follows from (3.9) and Fubini’s theorem that

E

(∫ ∫
: G2n

x,δ :: G2n
y,δ′ : dµ(x) dµ(y)

)
= (2n!)

∫ ∫
(u1
δ,δ′(x, y))

2n dµ(x) dµ(y) (3.11)

= (2n!)
∫
. . .

∫ 2n∏
j=1

u1(vj , wj)
2n∏
j=1

ρx,δ(dvj)ρy,δ′(dwj) dµ(x) dν(y)

= (2n!)
∫
. . .

∫ 2n∏
j=1

u1(x+ vj , y + wj)
2n∏
j=1

ρδ(dvj)ρδ′(dwj) dµ(x) dν(y)

= (2n!)
∫
. . .

∫ ∫ ∫ 2n∏
j=1

u1(x− y + vj − wj) dµ(x) dν(y)


2n∏
j=1

ρδ(dvj)ρδ′(dwj).

By Lemma 3.1 the double integral in parentheses immediately above is continuous
in (v1 − w1, . . . , v2n − w2n) and goes to∫ ∫ 2n∏

j=1

u1(x− y) dµ(x) dν(y) (3.12)

as sup1≤j≤2n |vj − wj | → 0. Hence for any µ ∈ G2n, the 2n-th Wick power chaos

: G2nµ :
def
= lim

δ→0

∫
: G2n

x,δ : dµ(x) (3.13)

exists as a limit in L2 and furthermore

E(: G2nµ :: G2nν :) = (2n!)
∫ ∫

(u1(x, y))2n dµ(x) dν(y) (3.14)

for all µ, ν ∈ G2n. For later use we also define

: G2n
δ µ :=

∫
: G2n

x,δ : dµ(x). (3.15)

We define a 2n-th Wick power chaos process to be the stochastic process {: G2nµx :
, x ∈ Rm}. This process induces a natural metric d on Rm which is given in (1.8).

Our use of the term chaos to describe : G2nµ : and {: G2nµx :, x ∈ Rm} is
consistent with classical usage. A good reference that describes processes of this
sort is [1], in which they are called H-chaos processes. This reference contains
many interesting results about these processes, some of which are used in this
paper. However, since our definition and the representation (2.4), [1] are not easily
seen to be the same, we show how they are related.

An alternate way to define Wick powers, : Y n : of a Gaussian random variable
Y with mean zero, is by the generating function equation

exp
(
λY − λ2EY 2

2

)
=

∞∑
n=0

λn

n!
: Y n : . (3.16)
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One can check that this is the same as (3.8). When g is a normal random variable
with mean zero and variance 1, (N(0, 1)), (1/

√
n!) : gn : is the Hermite polynomial

of g of order n and : gn : is the Hermite polynomial of degree n normalized so that
it has leading coefficient 1.

Let {G(x), x ∈ S} be a real valued Gaussian process with Let {G(x), x ∈ Rm}
be a real valued Gaussian process with Karhunen-Loeve expansion

G(x) =
∑
i

giφi(x) (3.17)

where {gi}∞i=0 is an independent identically distributed sequence of N(0, 1) random
variables. By (3.16) we see that

exp
(
λG(x)− λ2EG2(x)

2

)
=

∏
i

exp
(
λφi(x)gi −

λ2φ2
i (x)
2

)
(3.18)

=
∏
i

∞∑
n=0

λnφni (x)
n!

: gni :

which implies that

:Gm(x) :=
∑

i1,...,im

φi1(x) · · ·φim(x)
∏
j≥1

Hmj(i1,...,im)(gj) (3.19)

where Hm is the Hermite polynomial of degree m normalized so that it has leading
coefficient 1 and mj(i1, . . . , im) =

∑m
r=1 I(ir = j). Using this with an obvious

change of notation we see that∫
: G2n

x,δ : dµy(x)

=
∑

i1,...,i2n

∫
φi1(x, δ) · · ·φi2n

(x, δ) dµy(x)
∏
j≥1

Hmj(i1,...,i2n)(gj) (3.20)

For fixed y ∈ Rm the H-chaos random variables considered in [1] are the closure in
L2 of terms such as the right-hand side of (3.20).

In current parlance chaos generally has a different meaning than to describe
processes such as (3.20). However, its usage in our context is well established. It
dates back to Wiener’s 1938 paper, The homogeneous chaos, [26], in which it is used
to describe multiple stochastic integrals with respect to Brownian motion. (The
expression on the right-hand side of (3.20) is a discrete version of such an integral).
Wiener was motivated by problems in statistical mechanics. The development of
his ideas in this direction is discussed Masani’s biography of Wiener, [20], pages
149-151. Further references as to how his ideas were developed can be found in [20]
and [1].

The next theorem is the principle result in this chapter.

Theorem 3.1. Let X be a Lévy process in Class A and let Gx,δ be a Gaussian
process associated with X as defined in (3.7). Let µ ∈ G2n and k ≤ n, then for all
δ > 0

sup
|xi|≤ε

‖
∫

:
2k∏
i=1

Gx+xi,δ : dµ(x)− : G2k
δ µ : ‖2 (3.21)

= o((u1(ε))−(n−k)) as ε→ 0.
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The following lemmas are used in the proof of Theorem 3.1 although the full
strength of Lemma 3.4 is not used until the proof of Theorem 5.1.

Lemma 3.3. Let µ be a positive measure on Rm and f : Rm → [0,∞) be such
that ∫ ∫

f(x− y)) dµ(x) dµ(y) <∞ (3.22)

Then for each r > 0 there exists a positive decreasing convex function g on [0,∞)
such that limx↓0 g(x) = ∞, xrg(x) is increasing for x ∈ [0,∞) and∫ ∫

g(|x− y|)f(x− y)) dµ(x) dµ(y) <∞. (3.23)

%noindentProof

Proof. (This is elementary without the condition that |x|rg(x) is increasing).
Let {nk}∞k=1 be such that 2nk+1 ≤ nk and∫ ∫

|x−y|≤nk

f(x− y)) dµ(x) dµ(y) ≤ 2−2k

. (3.24)

If limk→∞ nk > 0 the assertion is trivial. Otherwise, define g(nk) = 2ka, k = 1, 2, . . .
where a < log2(r+2)−1, and let g(x) be its linear extension. (Let g(x) = g(n1) for
x > n1.) Since g is piecewise differentiable to show that xrg(x) is increasing it is
enough to show that the derivative of xrg(x) is positive for x > 0. This is implied
by the following inequality:

g(nk) ≥
(g(nk+1)− g(nk))nk

(nk − nk+1)r
k = 1, 2 . . . (3.25)

which follows from the definition of a.

Lemma 3.4. Let X be a Lévy process in Class A with 1-potential u1 and let
µ ∈ G2n. Then for all a1, . . . , ak in Rm and 2 ≤ q ≤ 2n

Ib,c
def
= sup

ai

∫ ∫
|∆2

b,cu
1(x− y + a1)|

q∏
i=2

u1(x− y + ai) dµ(x) dµ(y)

= o((u1(|b|))−(n−q/2)(u1(|c|))−(n−q/2)) as |b|, |c| → 0 (3.26)

and

sup
ai

∫ ∫
|∆bu

1(x− y + a1)|
q∏
i=2

u1(x− y + ai) dµ(x) dµ(y)

= o((u1(|b|))−(2n−q)∧n) as |b| → 0. (3.27)

Furthermore, for 3 ≤ q ≤ 2n

sup
ai

∫ ∫
|∆bu

1(x− y + a1)||∆cu
1(x− y + a2)|

q∏
i=3

u1(x− y + ai)dµ(x)dµ(y)

= o((u1(|b|))−(n−q/2)(u1(|c|))−(n−q/2)) as |b|, |c| → 0. (3.28)
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Proof. We prove (3.26) and (3.27). The proof of (3.28) is similar. We begin
with (3.26). Without loss of generality we assume that |b| ≤ |c|. By the multiple
Hölder inequality and Lemma 3.1

Ib,c ≤ C sup
a1

(∫ ∫
|∆2

b,cu
1(x− y)|p dµa1(x) dµ(y)

)1/p

‖µ‖q−1
(2n) (3.29)

where p = 2n/(2n− q + 1).
By hypothesis µ ∈ G2n. This implies, as we remarked after Theorem 1.1, that

Lebesgue measure on [−1, 1]m is also in G2n. Let z ∈ Rm. Since u1(|z|) is regularly
varying at zero, we see that

|z|u1(|z|))(n−(q/2)) = |z|δ1L(|z|) (3.30)

where δ1 > 0 and L(|z|) is slowly varying at zero. The full range of δ1 is (0, 1]. δ1 > 1
is not possible because we assume u1(0) = ∞. Let g be a function as determined in
Lemma 3.3 for which (3.23) holds with f(x−y) = (u1(|x−y|))2n and with r = δ1p.
Set φ(|z|) = (u1(|z|))−(n−(q/2))g(|z|)−1/2p. Since g(|z|) is decreasing as |z| increases
and u1(|z|) is asymptotic to a decreasing function at the origin, for our purposes,
we can assume that φ(|z|) is increasing on [0, z1] for some z1 > 0.

Consider
|z|/φ(|z|) = |z|δ1/2L(|z|)

(
g(|z|)|z|δ1p

)1/(2p)
. (3.31)

Since |z|δ1/2L(|z|) is regularly varying at zero with a positive index it is asymptotic
to an increasing function on [0, z2], for some z2 > 0. Therefore, we can assume that
|z|δ1/2L(|z|) is increasing on [0, z2]. Also g(|z|)|z|δ1p is increasing by Lemma 3.3.
Thus |z|/φ(|z|) is increasing in |z| for |z| ≤ z2. Finally, we choose some z0 ≤ (z1∧z2)
so that |z0|/φ(|z0|) ≤ 1. Clearly, to establish (3.26), we need only consider |z| close
to zero. Let s0 be as given just before (1.15) and set c̃0 = (s0 ∧ z0)/6. Since
|z|/φ(|z|) is increasing in |z| for |z| ≤ c̃0, it follows from (1.16) that

|∆2
b,cu

1(s)| ≤ Cφ(|b|)φ(|c|)u
1(|s|)
φ2(|s|)

|b|, |c| ≤ |s|
4
≤ c̃0. (3.32)

Without loss of generality we take c ≤ c̃0.
Let D = {(x, y); |x − y| ≥ 4c̃0}. By hypothesis (u1(r))′ ∨ (u1(r))′′ is bounded

on {(x, y); |x− y| ≥ 2c̃0}. Therefore

sup
a1

∫ ∫
D

|∆2
b,cu

1(x− y)|p dµa1(x) dµ(y) ≤ C|b|p|c|p. (3.33)

It follows from (3.30) that |b||c| = o((u1(|b|))−(n−q/2)(u1(|c|))−(n−q/2))as |b|, |c|
→ 0. Thus we see that (3.26) holds if the range of integration is restricted to D.

Consider (3.29) integrated over Dc. Furthermore, without loss of generality we
take |c| ≤ c̃0. We decompose Dc into A1 ∪A2 where A1 = {(x, y); 4|c| ≤ |x− y| ≤
4c̃0} and A2 = {(x, y); 4|c| ≥ |x−y|}, and obtain (3.26) separately for the integrals
over each of these two regions.

Using (3.32), with s replaced by x− y, we have that

sup
a1

∫ ∫
A1

|∆2
b,cu

1(x− y)|p dµa1(x) dµ(y)

≤ Cφp(|b|)φp(|c|) sup
a1

∫ ∫ ∣∣∣∣u1(|x− y|)
φ2(|x− y|)

∣∣∣∣p dµa1(x) dµ(y) (3.34)

≤ Cφp(|b|)φp(|c|)
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sup
a1

∫ ∫
A1

g(|x− y|)(u1(|x− y|))2n dµa1(x) dµ(y)

= o((u1(|b|)u1(|c|))−(n−q/2)p)

sup
a1

∫ ∫
g(|x− y|)(u1(|x− y|))2n dµa1(x) dµ(y).

By construction g(|x|) is convex and hence is a positive definite function on
Rm. This can be shown similarly to the result in R1 starting with the fact that
for a, ξ ∈ Rm, 1 − (|ξ|/|a|) is the characteristic function of a measure on Rm with
density C(1− cos(a ·x))/(|a||x|m+1), for the appropriate constant C. This is easily
seen using polar coordinates and the corresponding result in R1. (See e.g. [7],
pg.478). Furthermore, since the product of positive definite functions is positive
definite g(|x|)(u1(|x|))2n is a positive definite function on Rm. It now follows from
Lemmas 3.1 and 3.3 that∫ ∫

g(|x− y|)(u1(|x− y|))2n dµa1(x) dµ(y)

≤
∫ ∫

g(|x− y|)(u1(|x− y|))2n dµ(x) dµ(y) <∞. (3.35)

Therefore, we see from (3.34) and (3.35) that

sup
a1

(∫ ∫
A1

|∆2
b,cu

1(x− y)|p dµa1(x) dµ(y)
)1/p

= o((u1(|b|)u1(|c|))−(n−q/2)). (3.36)

We next consider the integral over A2. Since

|∆2
b,cu

1(x− y)| ≤ |∆bu
1(x− y + c)|+ |∆bu

1(x− y)| (3.37)

it suffices to consider separately

sup
a1

∫ ∫
A2

|∆bu
1(x− y + c)|p dµa1(x) dµ(y) (3.38)

and

sup
a1

∫ ∫
A2

|∆bu
1(x− y)|p dµa1(x) dµ(y). (3.39)

To bound (3.39) we write A2 = B1 ∪ B2 where B1 = {(x, y); 4|c| ≥ |x− y| ≥ 4|b|}
and B2 = {(x, y); 4|b| ≥ |x − y|} , (recall that |b| ≤ |c|), and bound the integral
separately on each region.

To handle the integral on B1 we note that since |b|/φ(|b|) is increasing for
|b| ≤ c̃0 and (1.15) holds on B1 we have, as above, that

|∆bu
1(x− y)| ≤ Cφ(|b|)u

1(|x− y|)
φ(|x− y|)

(3.40)

on B1. On the other hand, since φ(4r) is increasing on 0 ≤ r ≤ c̃0, we also have
that

4|c| ≥ |x− y| =⇒ φ(4|c|) ≥ φ(|x− y|) (3.41)

on B1. Combining (3.40) and (3.41) we see that

sup
a1

∫ ∫
B1

∣∣∆bu
1(x− y)

∣∣p dµa1(x) dµ(y) (3.42)
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≤ Cφp(|b|) sup
a1

∫ ∫
B1

∣∣∣∣ u1(x− y)
φ(|x− y|)

∣∣∣∣p dµa1(x) dµ(y)

≤ Cφp(|b|)φp(4|c|) sup
a1

∫ ∫ ∣∣∣∣ u1(x− y)
φ2(|x− y|)

∣∣∣∣p dµa1(x) dµ(y).

Proceeding as in (3.34) we get (3.36) but with the range of integration B1.
To handle the integral on B2 we first note that since

|∆bu
1(x− y)| ≤ |u1(x− y + b)|+ |u1(x− y)| (3.43)

it suffices to obtain a bound less than or equal to the last line of (3.42) for both

sup
a1

∫ ∫
B2

|u1(x− y + b)|p dµa1(x) dµ(y) (3.44)

and

sup
a1

∫ ∫
B2

|u1(x− y)|p dµa1(x) dµ(y). (3.45)

The last integral, (3.45) is easily bounded as above using (3.41) for both |b| and
|c|. To bound (3.44) we first note that

{(x, y); 4|b| ≥ |x− y + b|} ⊂ {(x, y); 5|b| ≥ |x− y|}. (3.46)

Consequently, translating by −b in the x variable in (3.44) we obtain

sup
a1

∫ ∫
B2

|u1(x− y + b)|p dµa1(x) dµ(y)

≤ sup
a1

∫ ∫
(B2)b

|u1(x− y)|p dµa1+b(x) dµ(y) (3.47)

≤ sup
a1

∫ ∫
5|b|≥|x−y|

|u1(x− y)|p dµa1(x) dµ(y)

≤ Cφ2p(5|b|) sup
a1

∫ ∫ ∣∣∣∣ u1(x− y)
φ2(|x− y|)

∣∣∣∣p dµa1(x) dµ(y).

where, at the last step we use (3.41) with 4|c| replaced by 5|b|.
Finally to bound (3.38) we translate by −c in the x variable and obtain

sup
a1

∫ ∫
A2

|∆bu
1(x− y + c)|p dµa1(x) dµ(y) (3.48)

≤ sup
a1

∫ ∫
(A2)c

|∆bu
1(x− y)|p dµa1+c(x) dµ(y)

≤ sup
a1

∫ ∫
{5|c|≥|x−y|}

|∆bu
1(x− y)|p dµa1(x) dµ(y)

since

(A2)c = {(x, y); 4|c| ≥ |x− y + c|} ⊂ {(x, y); 5|c| ≥ |x− y|}. (3.49)

Note that (3.48) is the same as (3.39), except that in the region of integration 4|c|
has been replaced by 5|c|. Going over the previous arguments we easily see that
the methods used to bound (3.39) also work for (3.48). This completes the proof
of (3.26).

The proof of (3.27) is similar to the proof of (3.26) except that we take φ(|b|) =
(u1(|b|))−(2n−q)∧ng(|b|)−1/p. Note that the requirement that |b|/φ(|b|) is increasing
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necessitates the condition that the exponent of u1(|b|), in the definition of φ(|b|)
not be smaller than −n.

Proof of Theorem 3.1. Note that the left-hand side of (3.21)

(3.50)

≤
2k∑
j=1

sup
|xi|≤ε

‖
∫ :

j∏
i=1

Gx+xi,δ

2k∏
i=j+1

Gx,δ : − :
j−1∏
i=1

Gx+xi,δ

2k∏
i=j

Gx,δ :

 dµ(x)‖2.

The square of each L2 norm in (3.50) is of the form

‖
∫

:
2k−1∏
i=1

Gx+ci,δ (Gx+c2k,δ −Gx,δ) : dµ(x)‖22 (3.51)

=
∫ ∫

E

(
:

2k−1∏
i=1

Gx+ci,δ (Gx+c2k,δ −Gx,δ) :

:
2k−1∏
i=1

Gy+ci,δ (Gy+c2k,δ −Gy,δ) :

)
dµ(x) dµ(y)

where |ci| ≤ ε, i = 1, . . . , 2k and we use the fact that Q2k is a linear operator, (see
(2.3)). In light of (3.10) the expectation of the Wick products in (3.51) is a sum of
two types of terms. One type is of the form

2k−1∏
i=1

u1
δ,δ(x− y + aj)∆̃2

c2k
u1
δ,δ(x− y) (3.52)

which occurs when the Gaussian process (Gx+c2k,δ −Gx,δ) is paired with (Gy+c2k,δ −Gy,δ),

where ∆̃2
bu

1
δ,δ(x− y)

def
= 2u1

δ,δ(x− y)− u1
δ,δ(x− y + b)− u1

δ,δ(x− y − b). The other
type is of the form

2k−2∏
i=1

u1
δ,δ(x− y + aj)∆c2k−1u

1
δ,δ(x− y + d1)∆c2k

u1
δ,δ(x− y + d2) (3.53)

which occurs when (Gx+c2k,δ −Gx,δ) is not paired with (Gy+c2k,δ −Gy,δ). Here
|ai|, i = 1, . . . , 2k − 2, |d1| and |d2| are all less than or equal to 2ε. Note that

|∆̃2
bu

1
δ,δ(x− y)| = |∆2

b,bu
1
δ,δ(x− y + b)|. (3.54)

Using (3.52) and (3.53) we can estimate the terms in (3.51). In both (3.52)
and (3.53) we replace u1

δ,δ by the second line in (3.7) and interchange the order of
integration, integrating first with respect to dµ(x) dµ(y). We can then use Lemmas
3.1 and 3.4 along with (3.54) to obtain Theorem 3.1. (Actually we get 2ε on the
right-hand side of (3.21) but we can replace this by ε since u1 is assumed to be
regularly varying at zero).

We also need an extended version of Theorem 3.1.

Theorem 3.2. Let X be a Lévy process in Class A and let Gx,δ be a Gauss-
ian process associated with X as defined in (3.7). Let {G(j),x,δ}mj=1 be indepen-
dent copies of Gx,δ. Let {Dk(x, ε), x ∈ Rm} be a stochastic process independent
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of {G(j),x,δ}mj=1 for which ‖Dk(x, ε)‖2 = O((u1(ε))k), k ≥ 1, and D0 ≡ 1. Let
n =

∑m
j=1 nj and µ ∈ G2σ where n ≥ 1 and n+ k ≤ σ, then for all δ > 0

sup
|xi|≤ε

‖
∫  m∏

j=1

:
2nj∏
i=1

G(j),x+xi,δ : −
m∏
j=1

: G2nj

(j),x,δ :

Dk(x, ε) dµ(x)‖2(3.55)

= o((u1(ε))−(σ−(n+k))) as ε→ 0.

Proof. The left-hand side of (3.55)

≤
m∑
p=1

sup
|xi|≤ε

‖
∫ p−1∏

j=1

:
2nj∏
i=1

G(j),x+xi,δ :
m∏

j=p+1

: G2nj

(j),x,δ : (3.56)

(
:

2np∏
i=1

G(p),x+xi,δ : − : G2np

(p),x,δ :

)
Dk(x, ε) dµ(x)‖2.

Proceeding to expand the difference term as in (3.50) we see that the square of each
L2 norm in (3.56) is bounded above by the sum of terms of the form∫ ∫ p−1∏

j=1

2nj∏
i=1

u1
δ,δ(x− y + aij )

m∏
j=p+1

(u1
δ,δ(x− y))2nj

E :
2np−1∏
i=1

Gx+ci,δ

(
Gx+c2np ,δ −Gx,δ

)
::

2np−1∏
i=1

Gy+ci,δ

(
Gy+c2np ,δ −Gy,δ

)
:

E(Dk(x, ε)Dk(y, ε)) dµ(x) dµ(y)

where |c·| ≤ ε. Here we have already taken the expectation with respect to the
probability spaces supporting {G(j),x,δ}, for j = 1, . . . ,m, excluding j = p.

Using the Schwarz inequality on the Dk term in the expression above and the
argument preceding (3.52) on the expectation of the Wick products, we see that
the left-hand side of (3.55) is bounded above by the sum of a finite number of terms
of the form

C

∫ ∫ 2n−1∏
i=1

u1
δ,δ(x− y + aj)∆̃2

c2n
u1
δ,δ(x− y)(u1(ε))2k dµ(x) dµ(y)

or

C

∫ ∫ 2n−2∏
i=1

u1
δ,δ(x− y + aj)∆c2n−1u

1
δ,δ(x− y + d1)∆c2nu

1
δ,δ(x− y + d2)

(u1(ε))2k dµ(x) dµ(y)

where |c·| ≤ ε, |a·| ≤ 2ε and |d·| ≤ 2ε. These are precisely terms of the form we
dealt with in the proof of Theorem 3.1. The same argument used there completes
the proof of this theorem.

In Chapter 5 we will use the following variation of Lemma 3.4:

Lemma 3.5. Let X be a Lévy process in Class A with 1-potential u1 and let
µ ∈ G2n. Assume further that

sup
x
|
∫

(u1(x− y))n dµ(y)| <∞. (3.57)
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Then for all a0, a1, . . . , ak in Rm and 3 ≤ q ≤ 2n

Ĩb,c
def
= sup

ai

∫ ∫
u1(x− a0)|∆2

b,cu
1(x− y + a1)|

q∏
i=3

u1(x− y + ai) dµ(x) dµ(y)

= o((u1(|b|))−(n−q/2)(u1(|c|))−(n−q/2)) as |b|, |c| → 0 (3.58)

and

sup
ai

∫ ∫
u1(x− a0)|∆bu

1(x− y + a1)|
q∏
i=3

u1(x− y + ai) dµ(x) dµ(y)

= o((u1(|b|))−(2n−q)∧n) as |b| → 0. (3.59)

Furthermore, for 4 ≤ q ≤ 2n

sup
ai

∫ ∫
u1(x− a0)|∆bu

1(x− y + a1)||∆cu
1(x− y + a2)|

q∏
i=4

u1(x− y + ai)dµ(x)dµ(y) (3.60)

= o((u1(|b|))−(n−q/2)(u1(|c|))−(n−q/2)) as |b|, |c| → 0.

Proof. We prove (3.58). The proofs of (3.59) and (3.60) are similar. By the
multiple Hölder inequality and Lemma 3.1

Ĩb,c ≤ C sup
a1,a2

(∫ ∫ (
u1(x− a1)u1(x− y + a2)

)n
dµ(x) dµ(y)

)1/n

(∫ ∫
|∆2

b,cu
1(x− y)|p dµa1(x) dµ(y)

)1/p

‖µ‖q−3
(2n) (3.61)

where p = 2n/(2n− q + 1). Integrating first with respect to y we see that∫ ∫ (
u1(x− a1)u1(x− y + a2)

)n
dµ(x) dµ(y)

≤ sup
x

(∫
(u1(x− y))n dµ(y)

)2

(3.62)

which is finite by hypothesis. Thus we get

Ĩb,c ≤ C sup
a1

(∫ ∫
|∆2

b,cu
1(x− y)|p dµa1(x) dµ(y)

)1/p

‖µ‖q−3
(2n). (3.63)

This is precisely the term in (3.29). Thus we get (3.58) just as we obtained (3.26).





CHAPTER 4

Isomorphism theorem

Let ρ ∈ G1 be a compactly supported probability measure. As usual we set

P ρ(·) =
∫
P x(·) dρ(x). (4.1)

Recall that λ is a mean-1 exponential random variable, which is independent of X.
We define the product measure

P ρλ (·) = P ρPλ(·) (4.2)

and use Eρλ to denote expectation with respect to this measure. P ρλ is the probability
measure of the Lévy process X, with initial distribution given by ρ which is killed at
the exponential time λ. We denote expectation with respect to the chaos processes
by EG.

Let f denote a bounded, strictly positive, uniformly continuous integrable func-
tion on Rm and let f · dx denote the measure on Rm with density function f .

We now state an isomorphism theorem which relates the Wick power chaos
: G2nµ : and the renormalized intersection local time γn(µ). This isomorphism
theorem is the main technical result of this paper. Its proof occupies the rest
of this chapter. Immediately after stating this theorem we will define the terms
(: G2(n−k) : ×Lk)(µ·) which appear in it. They will be defined in terms of the Lévy
process X and the associated Gaussian process G defined in the previous chapter.
We eventually show that Lnµ = n!γn(µ), P ρλ a.s.

Theorem 4.1. Let X be a Lévy process in Class A and let {µi}∞i=1 be sequence
of finite positive measures in G2n. Then, for any compactly supported measure
ρ ∈ G1 and C measurable non-negative function F on R∞

EGE
ρ
λ

(
F

(
n∑
k=0

(
n

k

)
1

2n−k
(: G2(n−k) : ×Lk)(µ·)

)
f(Xλ)

)
(4.3)

= EG

(
F

(
1
2n

: G2nµ· :
)
GρGf ·dx

)
where C denotes the σ–algebra generated by the cylinder sets of R∞.

In order to define the terms (: G2(n−k) : ×Lk)(µ·) we first define the ‘chain
factors’

chεj
def
=
∫ j∏

k=2

u1(xk − xk−1)
j∏
i=1

fε(xi) dxi (4.4)

25
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for j ≥ 2, and set chε1 = 1. (The reason for the name ‘chain factor’ will become
clear in the course of proving Theorem 4.1). Let

Bεn,k =
n!
k!

∑
j1,...,jk∑k

b=1
jb=n

k∏
b=1

chεjb . (4.5)

By convention, we set Bε0,0 = 1 and Bεn,0 = Bε0,n = 0, n = 1, . . .. We note that
{Bεj,k}nj,k=0 is a lower triangular matrix with Bεj,j = 1 for all 0 ≤ j ≤ n. Let

Lx,ε =
∫ λ

0

fε(X(t)− x) dt. (4.6)

We recursively define Lx,εn , n = 0, 1, 2, . . . by

(Lx,ε)n =
n∑
k=0

Bεn,kL
x,ε
k . (4.7)

It is easy to see that Lx,ε0 = 1 and Lx,εn is a polynomial of degree n in Lx,ε with
leading term (Lx,ε)n. Furthermore for each ε > 0, Lx,εk is continuous almost surely.

We now define the terms (: G2(n−k) : ×Lk)(µ·) which appear in the isomorhism
theorem as

(: G2(n−k) : ×Lk)(µ)
def
= lim

ε→0

∫
: G2(n−k)

x,ε : Lx,εk dµ(x). (4.8)

In Lemma 4.2 below we will show that the limit in (4.8) exists in L2(f(Xλ) dP
ρ
λ dPG)

for each k = 0, 1, . . . , n. Here we use the convention that : G0
x,ε := 1. In particular

Lnµ
def
= lim

ε→0

∫
Lx,εn dµ(x) (4.9)

exists in L2(f(Xλ) dP
ρ
λ ). Lnµ is a renormalized n-fold self-intersection local time

which we will show in the following chapter can be taken to be n!γn(µ).
Our isomorphism therem, Theorem 4.1, will be derived as a consequence of

the much simpler isomorphism theorem, Theorem 2.2, [15] which relates continu-
ous additive functionals of strongly symmetric Markov processes to second order
Gaussian chaos processes. For the precise hypotheses of this theorem we refer the
reader to [15]. It does apply to the Lévy processes X in Class A that we are con-
sidering in this paper. We use Lµt to denote the continuous additive functional of
X with Revuz measure µ and Rev(X) to denote the class of Revuz measures of X.

Let µ ∈ G2. To simplify the notation and in keeping with the notation of [15]
we will often denote the second order Wick power chaos : G2µ :, defined in (3.13),
by H(µ). H(µ) is the second order Gaussian chaos associated with Lµλ in [15]. Let
GF denote the set of finite measures in G. It follows by Hölder’s inequality, that,
GjF ⊆ GkF for j ≤ k.

The following is Theorem 2.2, [15] adapted to the needs of this paper:

Theorem 4.2. Let {µi}∞i=1 be a sequence of finite measures in G2∩Rev(X). Set
Lµ· = (Lµ1

λ , L
µ2
λ , . . .) and H(µ·) = (H(µ1),H(µ2), . . .). Then, for any compactly

supported ρ ∈ G1 and C measurable non-negative function F on R∞

(4.10)

EGE
ρ
λ

(
F

(
Lµ· +

1
2
H(µ·)

)
f(Xλ)

)
= EG

(
F

(
1
2
H(µ·)

)
GρGf ·dx

)
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where C denotes the σ-algebra generated by the cylinder sets of R∞.

LetM(H) denote the set of functions measurable with respect toH def
= σ(H(µ); µ ∈

G2 ∩Rev(X)). We define the ring homomorphism

Φ : M(H) 7→ M(H×F) (4.11)

as the measurable extension of the mapping Φ such that Φ(1) = 1 and

Φ(
n∏
i=1

H(µi)) =
n∏
i=1

(H(µi) + 2Lµi

λ ) , n = 1, . . . , (4.12)

where F is the σ-algebra generated by X. With this notation Theorem 4.2 can be
reformulated as follows: Let (h1, h2, . . .) be a sequence of H measurable functions.
Then for any C measurable non-negative function F on R∞

EGE
ρ
λ (F (Φ(h1),Φ(h2), . . .)f(Xλ)) = EG (F (h1, h2, . . .)GρGf ·dx) . (4.13)

This will be explained in greater detail in the proof of Theorem 4.1.
Motivated by [5] we will obtain our isomorphism therem, Theorem 4.1, from

(4.13) by taking : G2nµi : for hi and then finding Φ(: G2nµi :). This is accomplished
in a series of lemmas. As a first step, we show that : G2nµi : is H measurable, a
point that is not at all obvious. We begin by defining the ‘cycle factors’

cyεj
def
=

1
2j

∫
u1(x1 − xj)

j∏
k=2

u1(xk − xk−1)
j∏
i=1

fε(xi) dxi (4.14)

for j ≥ 2, with the convention that cyε1 = 0. (The reason for the name ‘cycle factor’
should also become clear in the course of proving Theorem 4.1). We next define

Aεn,k
def
=

n!
k!

∞∑
r=0

1
r!

∑
i1,...,ir, j1,...,jk∑r

a=1
ia+
∑k

b=1
jb=n

r∏
a=1

cyεia

k∏
b=1

chεjb . (4.15)

By convention, we set Aε0,0 = 1 and Aεn,0 = Aε0,n = 0, n = 1, . . .. Note that for
each n ≥ 0, {Aεj,k}nj,k=0 is a lower triangular matrix with Aεj,j = 1 for all 0 ≤ j ≤ n

and hence is invertible. Let H(x, ε)
def
= H(fx,ε · dx′). We now inductively define

Ψk(x, ε) , k = 0, 1, . . . , n by the formula

Hn(x, ε)
2n

=
n∑
k=0

Aεn,kΨk(x, ε). (4.16)

Let {Λεj,k}nj,k=0 be the inverse of {Aεj,k}nj,k=0, then

Ψn(x, ε) =
n∑
k=0

Λεn,k
Hk(x, ε)

2k
. (4.17)

This shows us that Ψ0(x, ε) = 1 and for each n, Ψn(x, ε) is an n−th degree poly-
nomial in H(x, ε). In particular Ψn(x, ε) ∈M(H).

Define

Ψk,εµ =
∫

Ψk(x, ε) dµ(x). (4.18)
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Lemma 4.1. If µ ∈ G2σ, then

: G2kµ :
2k

= lim
ε→0

Ψk,εµ (4.19)

in L2( dPG), for all 1 ≤ k ≤ σ.

This shows that for µ ∈ G2n we do indeed have that the 2n-th Wick power
chaos : G2nµ :∈M(H). Furthermore, by Theorem 4.2

Φ(
: G2nµ :

2n
) = lim

ε→0
Φ(Ψn,εµ). (4.20)

in L2. The proof of Lemma 4.1 will be given later in this chapter.
The next lemma shows that the limit in (4.8) exists in L2(f(Xλ) dP

ρ
λ dPG) for

each k = 1, . . . , n and identifies Φ(Ψn,εµ).

Lemma 4.2. If µ ∈ G2n, then

(: G2(n−k) : ×Lk)(µ)
def
= lim

ε→0

∫
: G2(n−k)

x,ε : Lx,εk dµ(x) (4.21)

exists in L2(f(Xλ) dP
ρ
λ dPG) for each k = 0, 1, . . . , n, and

Φ(
1
2n

: G2nµ :) =
n∑
k=0

(
n

k

)
1

2(n−k) (: G
2(n−k) : ×Lk)(µ). (4.22)

The proof of Lemma 4.2 is also given later in this chapter. We will now use
these two lemmas to complete the proof of our isomorphism theorem, Theorem 4.1.

Proof of Theorem 4.1. Let xi; i = 1, 2, . . . be a countable dense set in Rm

and let H1,H2, . . . be an enumeration of H(xi, j−1); i, j = 1, 2, . . .. Let L1, L2, . . .
be the associated continuous additive functionals. (Recall that H(xi, j−1) is an
alternate notation for H(fxi,1/j(x

′) · dx′)). The continuous additive functional
associated with H(fxi,1/j(x

′) · dx′) in Theorem 4.2 is denoted by L
xi,1/j
λ , (see

(4.6))). Let L1, L2, . . . be the continuous additive functionals associated with

H1,H2, . . .. We note that for fixed ε > 0, H
def
= {H(x, ε), x ∈ Rm} can be

taken to be continuous almost surely. This is easy to see since, similarly to (3.7),
EH(x, ε)H(y, ε) = u1

ε,ε(x, y). We can choose a nice approximate identity fε, so
that (1.11) holds when n = 1. This is a sufficient condition for the continuity
of H. (See the proof of Theorem 1.6, [15]). Therefore H = σ(H1,H2, . . .). Let
{µi, i = 1, 2, . . .} be a sequence of finite measures in G2n. By Lemma 4.1, : G2nµi :
is H measurable for each i, hence by a theorem of Doob, [4], page 12, we can write

1
2n

: G2nµi := Di(H1,H2, . . .) (4.23)

for some C measurable random variableDi where C denotes the σ–algebra generated
by the cylinder sets of R∞. By our previous isomorphism theorem, Theorem 4.2, for
any compactly supported measure ρ ∈ G1, and C measurable non-negative function
F on R∞

EGE
ρ
λ (F (D·(H1 + 2L1,H2 + 2L2, . . .))f(Xλ))
= EG (F (D·(H1,H2, . . .)GρGf ·dx) . (4.24)
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By the definition of Φ in (4.11) we have that (4.23) implies

Φ(
1
2n

: G2nµi :) = Di(H1 + 2L1,H2 + 2L2, . . .).

Thus (4.23), (4.24) and (4.22) immediately imply the isomorphism theorem, The-
orem 4.1.

It remains to prove Lemmas 4.1 and 4.2.
Proof of Lemma 4.1:

Proof of Lemma 4.1. Recall thatH(µ) is an alternate expression for : G2(µ) :.
Therefore, consistent with (3.15)

H(x, ε)
def
= H(fx,ε · dx′) = lim

δ→0

∫
: G2

x′,δ : fx,ε(x′) dx′ (4.25)

where the limit is taken in L2. Since fx,ε · dx′ ∈ G1
F , and hence G2

F , H(x, ε) is
one of the basic random variables that generates H. As explained above in the
proof of Theorem 4.1, for fixed ε > 0, H

def
= {H(x, ε), x ∈ Rm} can be taken to

be continuous almost surely. The same argument shows that the integral in (4.25)
is continuous in x almost surely. Furthermore, the convergence in (4.25) is almost
sure and in Lp, for all p, since Gaussian chaos processes have all moments.

In order to prove Lemma 4.1, we begin by deriving a formula for
∫
Hn(x, ε) dµ(x).

Clearly

Hn(x, ε) = lim
δ→0

n∏
i=1

∫
: G2

xi,δ : fx,ε(xi) dxi. (4.26)

We define

Hn
ε µ =

∫
Hn(x, ε) dµ(x). (4.27)

Since the right-hand side of (4.26) converges in L2 uniformly in x as, δ → 0, we see
that

Hn
ε µ = lim

δ→0

∫ ∫ n∏
i=1

: G2
xi,δ : fx,ε(xi) dxi dµ(x) (4.28)

in L2. (In fact by Lemma 3.3, [1], it also converges almost surely and in Lp for all
p ≥ 0).

Expand
∏n
i=1(: G

2
xi,δ

: /2) as a sum of Wick products. Using (2.15) we can
write

n∏
i=1

: G2
xi,δ

:
2

(4.29)

=
∑
R,S,T

1
2|R|

∑
pairingsP

of (R×{1,2})∪S

P̃k,1 6=P̃k,2

|R|+|S|/2∏
k=1

u1
δ,δ(xP̃k,1

− xP̃k,2
) :
∏
i∈T

G2
xi,δ

2

∏
j∈S

Gxj ,δ :

where the first sum runs over all partitions R∪S∪T = {1, 2, . . . , n}, with |S| even,
and the second sum runs over all pairings P of the set (R × {1, 2}) ∪ S such that
P̃k,1 6= P̃k,2, where letting (Pk,1,Pk,2) denote the k−th pair of the pairing P, we
set P̃k,1 = i if either Pk,1 = i × 1 or i × 2 for i ∈ R, or Pk,1 = i for i ∈ S, and
similarly for P̃k,2.. Here we use the fact that for i ∈ S one of the two Gxi,δ terms is
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allocated to the u1
δ,δ terms and the other to the Wick product. Since there are two

ways to do this the 1/2 is cancelled. The last formula, (4.29), will be abbreviated
as

n∏
i=1

: G2
xi,δ

:
2

=
∑
R,S,T

Eδ(x1, . . . , xn;R,S) :
∏
i∈T

G2
xi,δ

2

∏
j∈S

Gxj ,δ : (4.30)

where

Eδ(x1, . . . , xn;R,S)
def
=

1
2|R|

∑
pairingsP

of (R×{1,2})∪S

P̃k,1 6=P̃k,2

|R|+|S|/2∏
k=1

u1
δ,δ(xP̃k,1

− xP̃k,2
). (4.31)

Note that by an argument similar to the one used in (3.11) and (3.12) we see
that for all x ∈ Rm

lim
δ→0

∫
Eδ(x1, . . . , xn;R,S)

n∏
k=1

fε(xk) dxk (4.32)

=
1

2|R|
∑

pairingsP
of (R×{1,2})∪S

P̃k,1 6=P̃k,2

∫ |R|+|S|/2∏
k=1

u1(xP̃k,1
− xP̃k,2

)
n∏
k=1

fε(xk) dxk

Using this, (4.28), Fubini’s theorem and the definition of fx,ε we have

Hn
ε µ

2n
=

∑
R,S,T

lim
δ→0

∫
Eδ(x1, . . . , xn;R,S)

∫ :
∏
i∈T

G2
x+xi,δ

2

∏
j∈S

Gx+xj ,δ : dµ(x)

 n∏
k=1

fε(xk) dxk.(4.33)

Let us now consider∫
Eδ(x1, . . . , xn;R,S)

n∏
k=1

fε(xk) dxk (4.34)

=
1

2|R|
∑

pairingsP
of (R×{1,2})∪S

P̃k,1 6=P̃k,2

∫ |R|+|S|/2∏
k=1

u1
δ,δ(xP̃k,1

− xP̃k,2
)
n∏
k=1

fε(xk) dxk.

Suppose |R|+ |S|/2 = p. Then by the multiple Hölder inequality and (3.7), (4.34)
is bounded above by

C

∫ ∫
|u1
δ,δ′(|x− y|)|pfε(x)fε(y) dx dy

≤ C

∫ ∫
|u1(|x− y + (x′ − y′)|)|pfε(x)fε(y) dx dyρδ(dx′)ρδ(dy′).(4.35)

It follows from this and Lemma 3.2 that (4.34) is O((u1(ε))(|R|+|S|/2)) for all δ > 0.
Using the last statement and Theorem 3.1 we see that for µ ∈ G2σ

‖
∫
Eδ(x1, . . . , xn;R,S)
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∫

:
∏
i∈T

G2
x+xi,δ

2

∏
j∈S

Gx+xj ,δ : dµ(x)−
: G2|T |+|S|

δ µ :
2|T |


n∏
k=1

fε(xk) dxk‖2

≤
∫
Eδ(x1, . . . , xn;R,S)

n∏
k=1

fx,ε(xk) dxk

sup
|xi|≤ε

‖
∫

:
∏
i∈T

G2
x+xi,δ

2

∏
j∈S

Gx+xj ,δ : dµ(x)−
: G2|T |+|S|

δ µ :
2|T |

‖2

≤ o((u1(ε))−(σ−(|T |+|S|/2))
∫
Eδ(x1, . . . , xn;R,S)

n∏
k=1

fε(xk) dxk

= o((u(ε))−(σ−n))

for all δ > 0. Using this, (4.32) and (4.33) we see that for µ ∈ G2σ

Hn
ε µ

2n
=

∑
R,S,T

lim
δ→0

∫
Eδ(x1, . . . , xn;R,S)

∏
i∈R∪S

fε(xi) dxi :
G

2|T |+|S|
δ

2|T |
µ : +o((u(ε))−(σ−n)) (4.36)

=
n∑
k=0

∑
R,S,T

2|T |+|S|=2k

lim
δ→0

∫
Eδ(x1, . . . , xn;R,S)

∏
i∈R∪S

fε(xi) dxi
1

2|T |
: G2k

δ µ : +o((u(ε))−(σ−n))

=
n∑
k=0

∑
R,S,T

2|T |+|S|=2k

1
2|R|

∑
pairingsP

of (R×{1,2})∪S

P̃k,1 6=P̃k,2

∫ |R|+|S|/2∏
k=1

u1(xP̃k,1
− xP̃k,2

)

∏
i∈R∪S

fε(xi) dxi
1

2|T |
: G2kµ : +o((u(ε))−(σ−n)).

in L2, as ε→ 0.
We now reorganize this in a form which is more useful. Fix some pairing P

in the sum and pick any factor u1(xi − xj) in the product corresponding to P. If
both i, j ∈ S we think of i, j as forming a two element chain. u1(xi − xj) is the
factor associated with this chain. If say j ∈ R, there will be one other factor in the
product corresponding to P which contains xj , say u1(xj − xk). If both i, k ∈ S,
we think of i, j, k as forming a three element chain. u1(xi − xj)u1(xj − xk) is the
factor associated with this chain. If either i or k or both are in R, we continue to
find the other factors containing them, and continue in this manner until we can
go no further. Two possibilities arise. Either we end up with a chain of elements
i1, i2, . . . , iv with end points i1, iv ∈ S and intermediate points i2, . . . , iv−1 ∈ R and
associated factor

v∏
j=2

u1(xij − xij−1) (4.37)
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(such a chain is said to be of length v ), or we have, what we call, a cycle i1, i2, . . . , iv
with all elements in R and associated factor

u1(xi1 − xiv )
v∏
j=2

u1(xij − xij−1) (4.38)

(such a cycle is also said to be of length v).
In this way the product

|R|+|S|/2∏
k=1

u1(xP̃k,1
− xP̃k,2

) (4.39)

in (4.36) associated with P breaks up into a product of factors associated with the
chains and cycles of P. Note that each P appearing in (4.36) will necessarily have
precisely |S|/2 chains. For simplicity let |S|/2=p.

When P decomposes into ml cycles of length l, l = 2, . . . and m̄l chains of
length l, l = 2, . . ., we write P → (m2, . . . ; m̄2, . . .). In this notation, recalling the
definitions (4.4), (4.14) of the chain and cycle factors chεj and cyεj , we have

1
2|R|

∑
pairingsP

of (R×{1,2})∪S

P̃k,1 6=P̃k,2

∫ |R|+p∏
k=1

u1(xP̃k,1
− xP̃k,2

)
∏

i∈R∪S
fε(xi) dxi (4.40)

=
1

2|R|
∑

m2,...; m̄2,...

∑
pairingsP

of (R×{1,2})∪S

P→(m2,...; m̄2,...)

∞∏
l=2

(2lcyεl )
ml(chεl )

m̄l .

Note that when P → (m2, . . . ; m̄2, . . .) and P is a pairing of (R×{1, 2})∪S we
must have

∑∞
l=1mll+

∑∞
l=1 m̄ll = |R|+ |S|. We now further simplify (4.40) by ob-

serving that the number of pairings P of (R×{1, 2})∪S with P → (m2, . . . ; m̄2, . . .)
is

(4.41)

|R|!∏∞
l=2(l!)ml(ml!)((l − 2)!)m̄l(m̄l!)

∞∏
l=2

(
(l − 1)!

2
)ml((l − 2)!)m̄l

|S|!

2
∑∞

l=2
m̄l

2|R|.

Here, the first factor gives the number of ways to partition R into ml cycles of
length l, l = 2, . . . and m̄l mid-chains (i.e. chains with end points deleted) of length
l− 2, l = 2, . . .. To get the remainder of (4.41) we note that in each cycle of length
l we can permute the points of the cycle in (l − 1)! distinct ways, except that we
must divide by 2 to take into account the mirror image if l > 2, (we will explain
shortly where the factor 1/2 for cycles of length l = 2 comes from), while for each
chain of length l we can permute the elements of the mid-chain in (l − 2)! ways,
and the |S| end points can be permuted among themselves in |S|! ways, except that
for any of the

∑∞
l=2 m̄l given chains we mustn’t count an interchange of the end

points of the same chain, since that has already been counted when we considered
the permutations of the mid-chain. Finally, recall that the pairings are actually
parings of (R × {1, 2}) ∪ S, not of R ∪ S, so that for any given pairing we can get
analogous but distinct pairings by interchanging i×1 with i×2 for each i ∈ R. The
only exception is that for any cycle of length l = 2 we get 2 rather than 4 distinct
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pairings. Altogether this gives rise to 2|R|/2m2 distinct pairings. (This explains
where the factor 1/2 for cycles of length l = 2 in (4.41) comes from). Therefore,
combining (4.40) and (4.41) we see that

1
2|R|

∑
pairingsP

of (R×{1,2})∪S

P̃k,1 6=P̃k,2

∫ |R|+p∏
k=1

uα(xP̃k,1
− xP̃k,2

)
∏

i∈R∪S
fε(xi) dxi

= 2−
∑∞

l=2
m̄l

∑
m2,...; m̄2,...∑∞

l=2
mll+

∑∞
l=2

m̄ll=|R|+|S|

|R|!∏∞
l=2(l!)ml(ml!)((l − 2)!)m̄l(m̄l!)

(4.42)

∞∏
l=2

(
(l − 1)!

2
)ml((l − 2)!)m̄l |S|!

∞∏
l=2

(2lcyεl )
ml(chεl )

m̄l

= 2−
∑∞

l=2
m̄l

∑
m2,...; m̄2,...∑∞

l=2
mll+

∑∞
l=2

m̄ll=|R|+|S|

|R|!|S|!∏∞
l=2(ml!)(m̄l!)

∞∏
l=2

(cyεl )
ml(chεl )

m̄l .

Instead of writing the last expression in terms of m2, . . . ; m̄2, . . . it will be
more convenient to write this expression in terms of ordered sequences of integers
i1, . . . , ir, j1, . . . , jp such that ml = |{v; v = 1, . . . , r| iv = l}| and m̄l = |{v; v =
1, . . . , f | jv = l}|. Since there are

r!∏∞
l=2(ml!)

p!∏∞
l=2(m̄l!)

such sequences which can be associated with a given m2, . . . ; m̄2, . . ., and noting
that r =

∑∞
l=2ml, p =

∑∞
l=2 m̄l and

∑∞
l=2mll+

∑∞
l=2 m̄ll =

∑r
a=1 ia+

∑p
b=1 jb we

see from (4.42) that

1
2|R|

∑
pairingsP

of (R×{1,2})∪S

P̃k,1 6=P̃k,2

∫ |R|+p∏
k=1

uα(xP̃k,1
− xP̃k,2

)
∏

i∈R∪S
fε(xi) dxi (4.43)

= 2−p
∑

r,i1,...,ir, j1,...,jp
jb≥2, ∀b∑r

a=1
ia+
∑p

b=1
jb=|R|+|S|

|R|!|S|!
r!p!

r∏
a=1

cyεia

p∏
b=1

chεjb .

Combining this with (4.36), and noting that for each 0 ≤ p ≤ k there are(
n

|S|, |T |, |R|

)
=
(

n

|S|, k − p, |R|

)
=

n!
|S|!(k − p)!|R|!

ways to partition {1, . . . , n} = S ∪ T ∪ R into three parts with |S| = 2p, |T | =
k − p, |R| = n− k − p we obtain

Hn
ε µ

2n
=

n∑
k=0

∑
R,S,T

2|T |+|S|=2k

∑
r,i1,...,ir, j1,...,jp

jb≥2, ∀b∑r

a=1
ia+
∑p

b=1
jb=|R|+|S|
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|R|!|S|!
r!p!

r∏
a=1

cyεia

p∏
b=1

chεjb :
G2k

2k
µ : +o((u1(ε))−(σ−n)) (4.44)

=
n∑
k=0

∑
r

1
r!

k∑
p=0

n!
(k − p)!p!

∑
i1,...,ir, j1,...,jp

jb≥2, ∀b∑r

a=1
ia+
∑p

b=1
jb=n−(k−p)

r∏
a=1

cyεia

p∏
b=1

chεjb :
G2k

2k
µ : +o((u1(ε))−(σ−n))

=
n∑
k=0

n!
k!

∑
r

1
r!

k∑
v=0

(
k

v

) ∑
i1,...,ir, j1,...,jk−v

jb≥2, ∀b∑r

a=1
ia+
∑k−v

b=1
jb=n−v

r∏
a=1

cyεia

k−v∏
b=1

chεjb :
G2k

2k
µ : +o((u1(ε))−(σ−n))

in L2, as ε→ 0, where in the last equality we write v = k − p.
Recall that chε1 = 1 and note that

(4.45)

∑
i1,...,ir, j1,...,jk

jb≥1, ∀b∑r

a=1
ia+
∑k

b=1
jb=n

r∏
a=1

cyεia

k∏
b=1

chεjb =
k∑
v=0

(
k

v

) ∑
i1,...,ir, j1,...,jk−v

jb≥2, ∀b∑r

a=1
ia+
∑k−v

b=1
jb=n−v

r∏
a=1

cyεia

k−v∏
b=1

chεjb

since the summation on the left hand side allows us to include v factors of chε1 = 1
among the k factors of chε· , 0 ≤ v ≤ k. From now on all summation is over jb ≥ 1.
Consequently, we can write

Hn
ε µ

2n
=

n∑
k=0

n!
k!

∑
r

1
r!

∑
i1,...,ir, j1,...,jk∑r

a=1
ia+
∑k

b=1
jb=n

r∏
a=1

cyεia

k∏
b=1

chεjb :
G2k

2k
µ :

+o((u1(ε))−(σ−n)). (4.46)

Recalling the definition (4.15) of Aεn,k we can write (4.46) as

Hn
ε µ

2n
=

n∑
k=0

Aεn,k :
G2k

2k
µ : +o((u1(ε))−(σ−n)). (4.47)

Comparing (4.47) and (4.16) we see that
n∑
k=0

Aεn,k(
: G2kµ :

2k
−Ψk,εµ) = o((u1(ε)−(σ−n)) (4.48)

in L2.
It follows from the multiple Hölder inequality and Lemma 3.2 that

cyεi = O((u1(ε))i) (4.49)
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and
chεj = O((u1(ε))(j−1)) (4.50)

which implies that
Aεn,k = O((u1(ε))(n−k)). (4.51)

Using (4.48) and arguing inductively for k = 1, . . . , n we now see that

Ψk,εµ =
: G2kµ :

2k
+ o((u1(ε)−(σ−k)). (4.52)

This completes the proof of Lemma 4.1.

In preparation for the verification of (4.8) and (4.22) of Lemma 4.2, we first
prove the following purely combinatorial lemma

Lemma 4.3.

Φ(Ψn(x, ε)) =
n∑
k=0

(
n

k

)
Ψn−k(x, ε)Lx,εk . (4.53)

Proof of Lemma 4.3. Using the definition of Φ together with (??) and (4.7)
we see that

Φ(
Hn(x, ε)

2n
) = (

H(x, ε)
2

+ Lx,ε)n

=
n∑

m=0

(
n

m

)
Hm(x, ε)

2m
(Lx,ε)n−m (4.54)

=
n∑

m=0

(
n

m

)
(AεΨ(x, ε))m(BεLx,ε)n−m,

using the abbreviations (AεΨ(x, ε))m =
∑m
k=0A

ε
m,kΨk(x, ε) and (BεLx,ε)m =

∑m
k=0B

ε
m,kL

x,ε
k .

On the other hand, by the defining relation (4.16), we have

Φ(
Hn(x, ε)

2n
) =

n∑
k=0

Aεn,kΦ(Ψk(x, ε)). (4.55)

Comparing (4.54) and (4.55) we see that we can verify (4.53) recursively for n =
0, 1, . . . by showing that

n∑
k=0

Aεn,k

k∑
j=0

(
k

j

)
Ψj(x, ε)Lx,εk−j =

n∑
m=0

(
n

m

)
(AεΨ(x, ε))m(BεLx,ε)n−m (4.56)

for all n ≥ 0.
To simplify notation, we drop the terms x and ε and rewrite (4.56) as

n∑
k=0

An,k

k∑
j=0

(
k

j

)
ΨjLk−j =

n∑
m=0

(
n

m

)
(AΨ)m(BL)n−m. (4.57)

In the following set of equations we use the convention that the sum over an
empty set of indices is one. We note that for any 0 ≤ v ≤ k by (4.15) and (4.5)

An,k
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=
n!
k!

∑
r

1
r!

n∑
m=0

 ∑
i1,...,ir, j1,...,jv∑r

a=1
ia+
∑v

b=1
jb=m

r∏
a=1

cyia

v∏
b=1

chjb




∑
jv+1,...,jk∑k

b=v+1
jb=n−m

k∏
b=v+1

chjb


=
(
k

v

)−1 n∑
m=0

(
n

m

)
Am,vBn−m,k−v.

Using this we have
n∑
k=0

An,k

k∑
v=0

(
k

v

)
ΨvLk−v = =

n∑
k=0

k∑
v=0

n∑
m=0

(
n

m

)
Am,vBn−m,k−vΨvLk−v

=
n∑

m=0

(
n

m

) n∑
v=0

Am,vΨv

n∑
k=v

Bn−m,k−vLk−v

=
n∑

m=0

(
n

m

)
(AΨ)m(BL)n−m (4.58)

which is (4.57). This completes the proof of Lemma 4.3.

Proof of Lemma 4.2. For the proof, we introduce n+1 independent copies of
the Gaussian chaos processes considered in Theorem 4.1. LetG(0),ρ, G(1),ρ, . . . , G(n),ρ

denote independent Gaussian processes distributed like Gρ, ρ ∈ G1. For each of
these we define and construct all the processes that are defined and constructed
in Theorem 4.1 from Gρ, ρ ∈ G1. These different independent processes will be
denoted by the subscript (j) j = 0, . . . , n. We use the notation Φ(0) to denote the
ring homeomorphism defined in (4.11) applied (only) to the processes defined and
constructed from G(0),ρ, ρ ∈ G1. Using this notation it follows from (4.53) that

Φ(0)(
m∏
j=1

Ψ(j),nj
(x, ε)Ψ(0),n0(x, ε)) =

n0∑
k=0

(
n0

k

) m∏
j=1

Ψ(j),nj
(x, ε)Ψ(0),n0−k(x, ε)L

x,ε
k .

(4.59)
where Ψ(j),n(x, ε) is the analog of Ψn(x, ε) built up from G(j).

We now verify that when µ ∈ G2n, then for any m and n0, . . . , nm such that
n =

∑m
j=0 nj and k = 0, . . . , n0

lim
ε→0

∫ m∏
j=1

Ψ(j),nj
(x, ε)Ψ(0),n0−k(x, ε)L

x,ε
k dµ(x) (4.60)

exists in L2. Here the probability space is the product probability space generated
by {G(j),ρ)}mj=0, ρ ∈ G1 and f(Xλ) dP

ρ
λ . (Without loss of generality we can consider

the last measure as a probability measure). To do this we need to generalize (4.47).
We first remark that it is easy to check that

‖(Lx,ε)k‖2 = O((u1(ε))k). (4.61)

Also, since
Bεn,k = O((u1(ε))(n−k)) (4.62)

by (4.50), we can use induction in (4.7) to see that

‖Lx,εn ‖2 = O((u1(ε))n). (4.63)
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In (4.61) and (4.63) we take the norm to be that of L2(f(Xλ) dP
ρ
λ ).

Analogous to (4.33) we expand
m∏
j=1

H
nj

(j)(x, ε)

2nj

in terms of the corresponding Wick products and then integrate with respect to
Lx,εk dµ(x). We then use Theorem 3.2 and proceed to follow all the steps up to
(4.47), using also (4.63), to obtain∫ m∏

j=1

H
nj

(j)(x, ε)

2nj
Lx,εk dµ(x)

=
∑

k1,...,kj

0≤kj≤nj

m∏
j=1

Aεnj ,kj

∫ m∏
j=1

: G2kj

(j),x,ε :

2kj
Lx,εk dµ(x) + o(u1(ε)−(σ−(n+k)))

where the Aεnj ,kj
are given in (4.15) and we set L0 ≡ 1. Recall that in this formula

n =
∑m
j=1 nj and µ ∈ G2σ with σ ≥ n+k. Define Ψ(j),kj

(x, ε) in terms of Hkj

(j)(x, ε)
analogously to (4.16), as follows:

(4.64)∫ m∏
j=1

H
nj

(j)(x, ε)

2nj
Lx,εk dµ(x) =

∑
k1,...,kj

0≤kj≤nj

m∏
j=1

Aεnj ,kj

∫ m∏
j=1

Ψ(j),kj
(x, ε)Lx,εk dµ(x).

We now take k = 0 and by the same arguments as those leading up to (4.19) we
get

lim
ε→0

∫ m∏
j=1

Ψ(j),nj
(x, ε) dµ(x) = lim

ε→0

∫ m∏
j=1

: G2nj

(j),x,ε :

2nj
dµ(x). (4.65)

By the same argument we used at (3.13) we see that the limit on the right-hand
side of (4.65) exists in L2. Hence the limit on the left-hand side of (4.65) also exists
in L2. Thus, with a slight change of notation, we obtain that when µ ∈ G2n, (4.60)
converges in L2 in the case k = 0 for all m as long as n =

∑m
j=0 nj . We proceed to

obtain this for all k by induction.
Assume that (4.60) has been established for all m and n0, . . . , nm such that

n =
∑m
j=0 nj , k = 0, . . . , n0 and n0 ≤ ν − 1. We now show that it also holds when

n0 = ν. Let G̃ρ, ρ ∈ G1 denote another independent Gaussian process distributed
like Gρ, ρ ∈ G1, and let Ψ̃·(x, ε) denote the analog of Ψ·(x, ε) built up from G̃ρ, ρ ∈
G1. By (4.59), with an obvious change of notation,

Φ
G̃

∫ m∏
j=1

Ψ(j),nj
(x, ε)Ψ(0),n0−v(x, ε)Ψ̃v(x, ε) dµ(x)


=

v∑
k=0

(
v

k

)∫ m∏
j=1

Ψ(j),nj
(x, ε)Ψ(0),n0−v(x, ε)Ψ̃v−k(x, ε)Lx,εk dµ(x)(4.66)

where Φ
G̃

denotes the ring homeomorphism defined in (4.11) applied to the pro-
cesses defined and constructed from G̃ρ, ρ ∈ G1. By the induction hypothesis the
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integrals on the right-hand side of (4.66) for k = 0, . . . , v − 1 all converge in L2.
The k = 0 integral is the argument of Φ

G̃
. Hence the right-hand side of (4.66) also

converges in L2 since Φ
G̃

is a L2 isometry. Thus, we verify the assertion about
(4.60).

We return to (4.64). Again, by the same arguments leading up to (3.13) we
get, analogously to (4.65), that for µ ∈ G2n

lim
ε→0

∫ m∏
j=1

: G2nj

(j),x,ε :

2nj

: G2(n0−k)
(0),x,ε :

2n0−k
Lx,εk dµ(x)

= lim
ε→0

∫ m∏
j=1

Ψ(j),nj
(x, ε)Ψ(0),n0−k(x, ε)L

x,ε
k dµ(x). (4.67)

Now we know that the limit on the right-hand side of (4.67) exists in L2 and
therefore so does the limit on the left-hand side. In particular, we have established
(4.8).

Using (4.20), (4.53) and (4.67) we have

Φ(
: G2nµ :

2n
) = lim

ε→0
Φ(Ψn,εµ) (4.68)

= lim
ε→0

n∑
k=0

(
n

k

)∫
Ψn−k(x, ε)Lx,εk dµ(x)

= lim
ε→0

n∑
k=0

(
n

k

)∫
: G2(n−k)

x,ε :
2(n−k) Lx,εk dµ(x)

which gives us (4.22). This completes the proof of Lemma 4.2, and hence of Theorem
4.1.

We have actually proved a more general isomorphism than Theorem 4.1 which
will be used in Chapter 5. For any m and n0, . . . , nm such that n =

∑m
j=0 nj and

k = 0, . . . , n0 define

(×mj=1 : G2nj

(j) : × : G2(n0−k)
(0) : ×Lk)(µ) (4.69)

= lim
ε→0

∫ m∏
j=1

: G2nj

(j),x,ε :: G2(n0−k)
(0),x,ε : Lx,εk dµ(x).

We have just shown that when µ ∈ G2n, the right-hand side of (4.69) converges in
L2. Therefore by (4.67) and the fact that Φ(0) is an L2 isometry we have that

Φ(0)((×mj=1 : G2nj

(j) : × : G2n0
(0) :)(µ)) (4.70)

= lim
ε→0

Φ(0)(
∫

2n
m∏
j=1

Ψ(j),nj
(x, ε)Ψ(0),n0(x, ε) dµ(x)).

We next use (4.59), (4.67) and (4.69) to see that the left-hand side of (4.70) is equal
to

= lim
ε→0

n0∑
k=0

(
n0

k

)
2n
∫ m∏

j=1

Ψ(j),nj
(x, ε)Ψ(0),n0−k(x, ε)L

x,ε
k dµ(x)
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=
n0∑
k=0

(
n0

k

)
2k(×mj=1 : G2nj

(j) : × : G2(n0−k)
(0) : ×Lk)(µ) (4.71)

Using (4.70) and (4.71) we get the following extension of Theorem 4.1:

Theorem 4.3. Let X be a Lévy process in Class A and let {µi}∞i=1 be sequence
of finite positive measures in G2n. Then for any m and n0, . . . , nm such that n =∑m
j=0 nj, and any compactly supported measure ρ ∈ G1 and C measurable non-

negative function F on R∞

EGE
ρ
λ(F (

n0∑
k=0

(
n0

k

)
1

2n0−k
(×mj=1 : G2nj

(j) : × : G2(n0−k)
(0) : ×Lk)(µ·))f(xλ))

= EG(F (
1

2n0
(×mj=1 : G2nj

(j) : × : G2n0
(0) :)(µ·))G(0),ρG(0),f ·dx) (4.72)

where C denotes the σ–algebra generated by the cylinder sets of R∞, and G denote
the product probability space that generated by G(0),ρ, . . . , G(m),ρ, ρ ∈ G1.





CHAPTER 5

Renormalized self-intersection local times

The renormalized self-intersection local times that appear in the isomorphism
theorems, Theorems 4.1 and 4.3 are defined for each n ≥ 0 in (??) and (4.9) as the
following limits

Ln(µ) = lim
ε→0

Ln,ε(µ) = lim
ε→0

∫
Lx,εn dµ(x) (5.1)

where Lx,εn is defined implicitly in (4.7). Let

Ln,ε(µ)
def
=
∫

(Lx,ε)n dµ(x). (5.2)

It follows from (4.7) that

Ln,ε(µ) = (BεLε(µ))n =
n∑
k=0

Bεn,kLk,ε(µ) (5.3)

where Bεn,k is given in (4.5).
That we can not explicitly state what Ln(µ) is, seems to diminish the signifi-

cance of the isomorphism theorems. However, this is not a problem because we can
show that Ln(µ) can be taken to be n!γn(µ) where γn(µ) is given in (1.2).

Theorem 5.1. Let X be a Lévy process in Class A and let µ ∈ G2n. Let γn,ε(µ)
be as defined in (1.3) and Ln(µ) be the n-fold renormalized self-intersection local
time of X as defined in (5.1). Then for any ρ ∈ G1

γn(µ)
def
= lim

ε→0
γn,ε(µ) (5.4)

exists in L2(f(Xλ)dP
ρ
λ ) and

Ln(µ) = n!γn(µ) (5.5)

in L2(f(Xλ)dP
ρ
λ ).

Proof. We show that µ ∈ G2n implies that

In(µ, ρ, f)
def
= 2

∫
U1ρ(x)(u1(x− y))2n−1U1f(y) dµ(x) dµ(y) <∞ (5.6)

and that
Eρλ({Ln(µ)− n!γn,ε(µ)}2 f(Xλ)) = o(1ε). (5.7)

The limit in (5.7) is a consequence of the following three assertions:

Eρλ({Ln(µ)}2 f(Xλ)) = (n!)2In(µ, ρ, f) (5.8)
Eρλ(Ln(µ)γn,ε(µ)f(Xλ)) = n!In(µ, ρ, f) + o(1ε) (5.9)

Eρλ({γn,ε(µ)}2 f(Xλ)) = In(µ, ρ, f) + o(1ε). (5.10)

41
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We now prove (5.8). We first show by induction on k = 0, 1, . . . , n that for any
m = 0, 1, . . . and ni ≥ 0, i = 1, . . . ,m with

∑m
i=1 ni = n− k

EρλEG(
{

(×mi=1 : G2ni

(i) : ×Lk)(µ)
}2

f(Xλ)) =
m∏
i=1

(2ni)!(k!)2In(µ, ρ, f) (5.11)

from which (5.8) follows when m = 0. To begin the induction first observe that
when

∑m
i=0 ni = n, that is, when k = 0, we have

EρλEG(
{

(×mi=0 : G2ni

(i) :)(µ)
}2

f(Xλ))

= EG(
{

(×mi=0 : G2ni

(i) :)(µ)
}2

)Eρλ(f(Xλ)) (5.12)

= EG(
{

(×mi=0 : G2ni

(i) :)(µ)
}2

)
∫
u1(x− y) dρ(x)f(y) dy

= EG(
{

(×mi=0 : G2ni

(i) :)(µ)
}2

)EG(GρGf ·dx).

Using Theorem 4.3, one of the isomorphism theorems, with F (x) = x2, for x ∈ R1,
and observing that Wick powers of different orders are orthogonal, we see that when∑m
i=0 ni = n

(5.13)

EG(
{

1
2n0

(×mi=1 : G2ni

(i) : × : G2n0
(0) :)(µ)

}2

G(0),ρG(0),f ·dx)

=
n0∑
k=0

(
n0

k

)2

EρλEG(
{

1
2n0−k

(×mi=1 : G2ni

(i) : × : G2(n0−k)
(0) : ×Lk)(µ)

}2

f(Xλ)).

In evaluating the expectation on the left-hand side, note that either G(0),ρ is paired
with G(0),f ·dx, or necessarily G(0),ρ is paired with one of the Wick powers and
G(0),f ·dx is paired with the other Wick power. Therefore, it follows from (2.12)
that

EG(
{

1
2n0

(×mi=0 : G2ni

(i) :)(µ)
}2

G(0),ρG(0),f ·dx) (5.14)

= EG(
{

1
2n0

(×mi=0 : G2ni

(i) :)(µ)
}2

)EG(GρGf ·dx)

+
1

22n0

m∏
i=1

(2ni)!(2n0)2(2n0 − 1)!In(µ, ρ, f).

Note that taking m = 0 shows that In(µ, ρ, f) <∞.
The first term on the right-hand side of (5.14) is, by (5.12), precisely the k = 0

term of the right-hand side of (5.13). Thus we see that

(5.15)

1
22n0

m∏
i=1

(2ni)!(2n0)!2n0In(µ, ρ, f)

=
n0∑
k=1

(
n0

k

)2

EρλEG(
{

1
2n0−k

(×mi=1 : G2ni

(i) : × : G2(n0−k)
(0) : ×Lk)(µ)

}2

f(Xλ)).
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Taking n0 = 1 we obtain (5.11) when k = 1.
Assume now that for some n0 ≤ n we have proved (5.11) for all k < n0. Then

(5.15) can be written as

1
22n0

m∏
i=0

(2ni)!2n0In(µ, ρ, f) (5.16)

=
n0−1∑
k=1

(
n0

k

)2 1
22(n0−k)

m∏
i=1

(2ni)!(2(n0 − k))!(k!)2In(µ, ρ, f)

+EρλEG(
{

(×mi=1 : G2ni

(i) × Ln0)(µ)
}2

f(Xλ)).

Thus, to establish (5.11) for k = n0 we need only show that

1
22n0

m∏
i=0

(2ni)!2n0 =
n0∑
k=1

(
n0

k

)2 1
22(n0−k)

m∏
i=1

(2ni)!(2(n0 − k))!(k!)2 (5.17)

or equivalently, that

1
22n0

(2n0)!2n0 =
n0∑
k=1

(
n0

k

)2 1
22(n0−k)

(2(n0 − k))!(k!)2. (5.18)

Writing (
n0

k

)2

(k!)2 =
(n0!)2

((n0 − k)!)2

we see that (5.18) is equivalent to

1
22n0

2n0

(
2n0

n0

)
=

n0∑
k=1

1
22(n0−k)

(
2(n0 − k)
n0 − k

)
(5.19)

which we rewrite as
1

22n0
2n0

(
2n0

n0

)
=
n0−1∑
j=0

1
22j

(
2j
j

)
. (5.20)

This, in turn, is equivalent to the combinatorial identity

1
22n0

(2n0 + 1)
(

2n0

n0

)
=

n0∑
j=0

1
22j

(
2j
j

)
. (5.21)

This identity is well known, see e.g. [21], page 131. This completes the proof of
(5.8).

We next prove (5.10). Note that

Eρλ(αn1,ε(µ, λ)αn2,ε(µ, λ)f(Xλ))

= Eρλ(
∫ ∫

{0≤s1≤···≤sn1≤λ}

{0≤t1≤···≤tn2≤λ}
fε,x1(Xs1)

n1∏
j=2

fε(Xsj
−Xsj−1) (5.22)

fε,x2(Xt1)
n2∏
j=2

fε(Xtj −Xtj−1)

ds1 · · · dsn1 dt1 · · · dtn2 dµ(x1) dµ(x2)f(Xλ)).
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Considering the different ways in which we can arrange the n1+n2 terms s1, . . . , sn1

and t1, . . . , tn2 in increasing order and taking the expectation we see that the above
equation

=
∑
v∈V

∫
U1ρ(zv(1))

n1+n2∏
p=2

u1(zv(p) − zv(p−1))U1f(zv(n1+n2))

2∏
i=1

fε,xi
(zi,1)

ni∏
j=2

fε(zi,j − zi,j−1) dzi,j dµ(xi) (5.23)

where V is the set of bijections

v : {1, . . . , n1 + n2} 7→ {(i, j); i = 1, 2; 1 ≤ j ≤ ni}

such that when v(p) = (i, j) and v(p̃) = (i, j̃) then p < p̃ if and only if j < j̃. We
make the change of variables yi,1 = zi,1 − xi and yi,j = zi,j − zi,j−1, i = 1, 2, j ≥ 2
which leads to

Eρλ(αn1,ε(µ)αn2,ε(µ)f(Xλ)) =
∑
s∈S

∫
U1ρ(xs(1) + ys(1),1)

n1+n2∏
p=2

u1(xs(p) +
c(p)∑
j=1

ys(p),j − xs(p−1) −
c(p−1)∑
j=1

ys(p−1),j) (5.24)

U1f(xs(n1+n2) +
c(n1+n2)∑
j=1

ys(n1+n2),j)
2∏
i=1

ni∏
j=1

fε(yi,j) dyi,j dµ(xi)

where S is the set of mappings

s : {1, . . . , n1 + n2} 7→ {1, 2}

such that |s−1(i)| = ni, i = 1, 2 and c(p) = |{m ≤ p| s(m) = s(p)}|, 1 ≤ p ≤ n1+n2.
For a fixed s ∈ S we say that p is ‘good’ if s(p) 6= s(p − 1), while p is ‘bad’ if

s(p) = s(p − 1). Here p ≥ 2, and s(1) is always ‘good’. Note that when p is bad,
the corresponding u1 term in (5.24) is

u1(ys(p),c(p)) (5.25)

and when p is ‘good’ xs(p) 6= xs(p−1). For each s ∈ S we set Bs = {p| s(p) =
s(p− 1)}, the set of ‘bad’ points p.

Let us analyze the changes which occur in (5.24) when we replace one of the
factors αni,ε(µ) by

(
ni−1
ki

)
(u1
ε(0))kiαni−ki,ε(µ). We claim that

(5.26)

Eρλ(
(
n1 − 1
k1

)
(u1
ε(0))k1αn1−k1,ε(µ, λ)αn2,ε(µ, λ)f(Xλ))

=
∑

D1⊆{2,...,n1}
|D1|=k1

∑
s∈SD1

∫
U1ρ(xs(1) + ys(1),1)

∏
l∈D1

u1(y1,l)
n1+n2∏

p=2
(s(p),c(p))/∈(1,D1)

u1(xs(p) +
c(p)∑
j=1

(s(p),j)/∈(1,D1)

ys(p),j − xs(p−1) −
c(p−1)∑

j=1
(s(p−1),j)/∈(1,D1)

ys(p−1),j)
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U1f(xs(n1+n2) +
c(n1+n2)∑

j=1
(s(p),j)/∈(1,D1)

ys(n1+n2),j)
2∏
i=1

ni∏
j=1

fε(yi,j) dyi,j dµ(xi).

where SD1 is the subset of S such that {p | (s(p), c(p)) ∈ (1, D1)} ∈ Bs.
Here is how we obtain (5.26). The analogue of (5.24) with n1 replaced by

n1 − k1 will be a sum over the set of mappings s̃ : {1, . . . , n1 − k1 + n2} 7→ {1, 2}
such that |s̃−1(1)| = n1 − k1 and |s̃−1(2)| = n2. For each of the

(
n1−1
k1

)
subsets

D1 ⊆ {2, . . . , n1} with |D1| = k1 there is a unique way to ‘extend’ s̃ to a map
s : {1, . . . , n1 + n2} 7→ {1, 2} with |s−1(1)| = n1 and |s−1(2)| = n2, in such a way
that s ∈ SD1 . (Think of s̃ as defining a coloring of n1−k1+n2 balls lined up in a row.
We color the p’th ball red if s̃(p) = 1, and color it white otherwise. Now label the
red balls successively with the numbers in Dc

1 = (j1, . . . , jn1−k1). Then, succesively
place a new red ball with label i ∈ D1 = (i1, . . . , ik1) immediately after the red ball
with label i − 1. We obtain n1 red and n2 white balls lined up in a row. Finally,
set s(p) = 1 if the p’th ball is red, and s(p) = 2 if the p’th ball is white). The u1

terms corresponding to the set of phantom ‘bad’ points {p | (s(p), c(p)) ∈ (1, D1)}
are

∏
l∈D1

u1(y1,l). Note that the integral in (5.26) with respect to these bad points
gives ∏

l∈D1

∫
fε(y1,l)u1(y1,l) dy1,l = (u1

ε(0))k1 . (5.27)

Thus we get (5.26).
There may be other ‘bad’ points in the various s ∈ SD1 in (5.26) besides the

phantom ‘bad’ points. Including these ‘bad’ points in with the phantom ‘bad’ points
we can write (5.26) as

(5.28)

Eρλ(
(
n1 − 1
k1

)
(u1
ε(0))k1αn1−k1,ε(µ, λ)αn2,ε(µ, λ)f(Xλ))

=
∑

D1⊆{2,...,n1}
|D1|=k1

∑
s∈SD1

∫
U1ρ(xs(1) + ys(1),1)

∏
p∈Bs

u1(ys(p),c(p))

∏
p∈Bc

s

u1(xs(p) +
c(p)∑
j=1

(s(p),j)/∈(1,D1)

ys(p),j − xs(p−1) −
c(p−1)∑

j=1
(s(p−1),j)/∈(1,D1)

ys(p−1),j)

U1f(xs(n1+n2) +
c(n1+n2)∑

j=1
(s(p),j)/∈(1,D1)

ys(n1+n2),j)
2∏
i=1

ni∏
j=1

fε(yi,j) dyi,j dµ(xi).

Generalizing (5.28) we can we can write out

(5.29)

Eρλ(
(
n1 − 1
k1

)(
n2 − 1
k2

)
(u1
ε(0))k1+k2αn1−k1,ε(µ, λ)αn2−k2,ε(µ, λ)f(Xλ))

for which (5.28) is modified by summing also over the sets D2 ⊆ {2, . . . , n2} of
cardinality k2 and s ∈ SD1,D2 where SD1,D2 is the subset of S such that (1, D1) ∪
(2, D2) ⊆ {(s(p), c(p)) : p ∈ Bs}. We also introduce an additional k2 phantom ‘bad’
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points and now, after the symbol
∏
p∈Bc

s
, sum only over j such that (s(p), j) /∈

(1, D1) ∪ (2, D2).
Recall the definition of γn,ε(µ) in (1.3). Let h(x) be a function of the variable

x. We use the notation

Dxh ≡ h(x)− h(0).

We claim that

Eρλ(γn,ε(µ)γn,ε(µ)f(Xλ))

=
∑
s∈S

∫
U1ρ(xs(1) + ys(1),1)

∏
p∈Bs

u1(ys(p),c(p))
∏
p∈Bs

Dys(p),c(p) (5.30) ∏
p∈(Bs∪{1})c

u1(xs(p) +
c(p)∑
j=1

ys(p),j − xs(p−1) −
c(p−1)∑
j=1

ys(p−1),j)


U1f(xs(2n) +

c(2n)∑
j=1

ys(2n),j)
2∏
i=1

n∏
j=1

fε(yi,j) dyi,j dµ(xi).

Here is how we obtain (5.30). Abbreviate yp ≡ ys(p),c(p) and set

F (y1, . . . , yn1+n2) = ∏
p∈(Bs∪{1})c

u1(xs(p) +
c(p)∑
j=1

ys(p),j − xs(p−1) −
c(p−1)∑
j=1

ys(p−1),j)

(5.31)

U1f(xs(2n) +
c(2n)∑
j=1

ys(2n),j).

Write the difference operator Dyp = Iyp − Ryp where Dyph = 0 if the function h
does not contain the variable yp and otherwise, that is if h contains the variable yp,
Iyp

h leaves h unchanged and Ryp
h sets the variable yp to 0. Thus∏

p∈Bs

Dys(p),c(p) =
∑
D⊆Bs

∏
p∈Bs−D

Iyp

∏
p∈D

(−Ryp
). (5.32)

It follows that ∏
p∈Bs

Dys(p),c(p)F (y1, . . . , yn1+n2)

=
∑
D⊆Bs

(−1)|D|F (y1, . . . , yn1+n2)|yp=0 if p∈D. (5.33)

Let D = D1 ∪ D2 such that s|D1 = 1 and s|D2 = 2 and let k1 = |D1| and
k2 = |D2|. Assume, initially, that k2 = 0. Fix s ∈ SD1∫

U1ρ(xs(1) + ys(1),1)
∏
p∈Bs

u1(ys(p),c(p))

F (y1, . . . , yn1+n2)|yp=0 if p∈D1

2∏
i=1

ni∏
j=1

fε(yi,j) dyi,j dµ(xi) (5.34)
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is precisely the term in (5.28) corresponding to this s ∈ SD1 . Considering the
expansion of (5.29) the same argument gives the corresponding term when |D1| = k1

and |D2| = k2. Thus, substituting (5.33) into (5.30) we verify (5.30).
We now show that except in the case Bs = ∅ the terms in (5.30) are all

o(1ε). If |Bs| = j, j ≥ 2, we use two of the difference operators in (5.30) and
replace all the other differences by sums. This gives us an upper bound for the
left-hand side of (5.30) since the u1 terms are all positive. By (3.26) and (3.28) the∏
p/∈Bs

dys(p),c(p) dµ(x1) dµ(x2) integral is bounded by

o((u1(|ε|))−j)
∫ ∏

p∈Bs

u1(ys(p),c(p))fε(ys(p),c(p)) dys(p),c(p),

while ∫ ∏
p∈Bs

u1(ys(p),c(p))fε(ys(p),c(p)) dys(p),c(p) ≤ C(u1(|ε|))j (5.35)

by Lemma 3.2. Thus the terms in (5.30) for which |Bs| ≥ 2 are o(1ε). We get the
same conclusion when |Bs| = 1 if we use (3.27). Therefore, up to an error which is
o(1ε), we can restrict the sum in (5.30) to s ∈ S0 where

S0 ≡ {s ∈ S|Bs = ∅} = {s ∈ S| s(p) 6= s(p− 1), ∀p}. (5.36)

Using (3.27) once again we now see that

Eρλ(γn,ε(µ)γn,ε(µ)f(Xλ)) =
∑
s∈S0

∫
U1ρ(xs(1))

2n∏
p=2

u1(xs(p) − xs(p−1))

U1f(xs(2n)) dµ(x1) dµ(x2) + o(1ε). (5.37)

There are only two members in S0, s1 and s2, where s1(2j) = 1, s1(2j + 1) = 2 for
all j and s2(2j) = 2, s2(2j + 1) = 1 for all j. Consequently, (5.37) implies (5.10).

Lastly, we turn to the proof of (5.9). Note that

Ln,ε(µ) = n!
∫
{0≤t1≤···≤tn}

n∏
j=1

fε,x(Xtj ) dt1 · · · dtn dµ(x). (5.38)

As in the transition from (5.22) to (5.23) we see that

Eρλ(Ln1,ε(µ)αn2,ε(µ, λ)f(Xλ))

= n1!E
ρ
λ(
∫
{0≤s1≤···≤sn1}

{0≤t1≤···≤tn2}

n1∏
j=1

fε,x1(Xsj
)fε,x2(Xt1)

n2∏
j=2

fε(Xtj −Xtj−1)(5.39)

ds1 · · · dsn1 dt1 · · · dtn2 dµ(x1) dµ(x2)f(Xλ))

= n1!
∑
v∈V

∫
U1ρ(zv(1))

n1+n2∏
p=2

u1(zv(p) − zv(p−1))U1f(zv(n1+n2))

n1∏
j=1

fε,x1(z1,j)fε,x2(z2,1)
n2∏
j=2

fε(z2,j − z2,j−1)
2∏
i=1

ni∏
j=1

dzi,j dµ(xi)

where, as above, V is the set of bijections

v : {1, . . . , n1 + n2} 7→ {(i, j); i = 1, 2; 1 ≤ j ≤ ni}
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such that when v(p) = (i, j) and v(p̃) = (i, j̃) then p < p̃ if and only if j < j̃.
We make the change of variables y2,1 = z2,1 − x2, y2,j = z2,j − z2,j−1, j ≥ 2 and
y1,j = z1,j − x1, j ≥ 1. This leads to

Eρλ(Ln1,ε(µ)αn2,ε(µ)f(Xλ)) = n1!
∑
s∈S

∫
U1ρ(xs(1) + ys(1),1)

n1+n2∏
p=2

u1(xs(p) +
∑
j∈Dp

ys(p),j − xs(p−1) −
∑

j∈Dp−1

ys(p−1),j) (5.40)

U1f(xs(n1+n2) +
∑

j∈Dn1+n2

ys(n1+n2),j)
2∏
i=1

ni∏
j=1

fε(yi,j) dyi,j dµ(xi)

where S is the set of mappings

s : {1, . . . , n1 + n2} 7→ {1, 2}

such that |s−1(i)| = ni, i = 1, 2. Furthermore, Dp = {c(p)} if s(p) = 1 and
Dp = {1, . . . , c(p)} if s(p) = 2. As above, c(p) = |{m ≤ p| s(m) = s(p)}|.

Arguing as above, we see that for n ≥ n1

Eρλ(Ln1,ε(µ)γn,ε(µ)f(Xλ)) = n1!
∑
s∈S

∫
U1ρ(xs(1) + ys(1),1)∏

p∈Bs,1

u1(ys(p),c(p) − ys(p−1),c(p−1))
∏

p∈Bs,2

u1(ys(p),c(p)) (5.41)

∏
p∈Bs,2

Dys(p),c(p)

∏
p∈Bc

s

u1(xs(p) +
∑
j∈Dp

ys(p),j − xs(p−1) −
∑

j∈Dp−1

ys(p−1),j)

U1f(xs(n1+n) +
∑

j∈Dn1+n

ys(n1+n),j)
2∏
i=1

ni∏
j=1

fε(yi,j) dyi,j dµ(xi)

where Bs,i
def
= Bs ∩ s−1(i).

When |Bs,2| ≥ 2 the term in (5.41) corresponding to s is o((u(ε))−(n−n1)). This
is obtained using Lemma 3.4, keeping in mind that µ ∈ G2n. Note that |Bs,1| ≤
n1−1 so when |Bs,2| = 1, |Bs,1|+|Bs,2| ≤ n1. Thus it follows from (3.27) that when
|Bs,2| = 1 the term in (5.41) corresponding to s is also o((u(ε))−(n−n1)). Hence in
(5.41), up to an error which is o((u(ε))−(n−n1)), we can restrict the summation to

S2
def
= {s ∈ S|Bs,2 = ∅}. Arguing as in (5.37), using (3.27), we see that

Eρλ(Ln1,ε(µ)γn,ε(µ)f(Xλ)) = n1!
∑
s∈S2

∫
U1ρ(xs(1))∏

p∈Bs,1

u1(ys(p),c(p) − ys(p−1),c(p−1))
∏
p∈Bc

s

u1(xs(p) − xs(p−1)) (5.42)

U1f(xs(n1+n))
n1∏
j=1

fε(y1,j) dy1,j
2∏
i=1

dµ(xi) + o((u(ε))−(n−n1)).

Note that S2 = ∅ when n1 ≤ n− 2. Therefore

Eρλ(Ln1,ε(µ)γn,ε(µ)f(Xλ)) = o((u(ε))−(n−n1)) n1 ≤ n− 2. (5.43)
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When n1 = n−1, note that S2 consists of the single element s̃ such that s̃(2j−1) = 2,
s̃(2j) = 1, j = i, . . . , n− 1, and s̃(2n− 1) = 2. In this case we get

Eρλ(Ln−1,ε(µ)γn,ε(µ)f(Xλ)) = (n− 1)!Jn(µ, ρ, f) + o((u(ε))−1) (5.44)

where

Jn(µ, ρ, f)
def
=
∫
U1ρ(x)(u1(y − x))2n−2U1f(y) dµ(x) dµ(y). (5.45)

When n1 = n, S2 = S0 ∪ S1, where S0 is defined in (5.36) and S1 contains the
n− 1 elements with |Bs,1| = 1. The right-hand side of (5.42), with n1 = n and the
sum restricted to S0, is equal to n!In(µ, ρ, f)+ o(1ε), similarly to the calculation in
(5.37). The right-hand side of (5.42), with n1 = n and the sum restricted to S1, is
equal to (n− 1)n!chε2Jn(µ, ρ, f) + o(1ε), (chε2 is defined in (4.4)). Consequently we
have

(5.46)
Eρλ(Ln,ε(µ)γn,ε(µ)f(Xλ)) = n!In(µ, ρ, f) + (n− 1)n!chε2Jn(µ, ρ, f) + o(1ε).

It follows from (5.3) and (4.62), that

Ln,ε(µ) = Ln,ε(µ)−Bεn,n−1Ln−1,ε(µ) +
n−2∑
k=1

akLk,ε(µ) (5.47)

where
ak = O((u1(ε))(n−k)). (5.48)

Using (5.43), (5.44), and (5.46) and the fact that Bεn,n−1 = n(n−1)chε2, (see (4.5)),
we now see that

Eρλ(Ln,ε(µ)γn,ε(µ)f(Xλ)) = n!In(µ, ρ, f) + o(1ε). (5.49)

By (5.1) this gives (5.9) which completes the proof of this theorem.

Using (5.7) and the triangle inequality we see that

lim
ε,ε′→0

Eρλ((γn,ε(µ)− γn,ε′(µ))2f(Xλ)) = 0. (5.50)

and, by techniques used in Chapter 9, that

lim
ε,ε′→0

Eρλ(γn,ε(µ)− γn,ε′(µ))2 = 0. (5.51)

Thus we can find a limit for {γn,ε}, P ρλ almost surely and consequently P xλ almost
surely for q.e. x ∈ Rm. However, we need more than this, specifically we want
the limit to exist P xλ almost surely for all x ∈ Rm. We can do this if we impose
an additional condition on the measures µ ∈ G2n, namely that (3.57) holds. This
condition does not restrict the scope of Theorem 1.1. We show in the Appendix
that if {: G2nµx :, x ∈ Rm} is locally bounded then (3.57) is satisfied.

Theorem 5.2. Let X be a Lévy process in Class A and let µ ∈ G2n also satisfy
(3.57). Let γn,ε(µ) be as defined in (1.3). Then for all x ∈ Rm

γn(µ)
def
= lim

ε→0
γn,ε(µ) (5.52)

exists in L2(Ω×R+, P xλ ). Furthermore

lim
ε→0

Exλ(γn,ε(µy)− γn(µy))2 = 0 (5.53)
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uniformly in y ∈ Rm and

lim
y→y′

Exλ(γn(µy)− γn(µy′))2 = 0 (5.54)

for all x ∈ Rm.

Note that we can’t simply prove Theorem 5.1 with ρ replaced by δx, the delta
function at x, and f · dy replaced by dy, Lebesgue measure on Rm. In the proof
of (5.8) we use the isomorphism theorem, Theorem 4.1. This requires that both
measures ρ and f ·dy are in G1. Neither δx, nor dy are in G1. However, in the proof
of (5.10), we do not use Theorem 4.1. The proof of (5.10) can be adapted to prove
Theorem 5.2.

Proof of Theorem 5.2. We show that the proof of (5.10) goes through with
ρ replaced by δx and f(Xλ) replaced by one. The proof of (5.10) begins with (5.22).
In place of (5.22) and (5.23) we now get

Exλ(αn1,ε(µ, λ)αn2,ε(µ, λ)) =
∑
v∈V

∫
u1(zv(1) − x)

n1+n2∏
p=2

u1(zv(p) − zv(p−1))

2∏
i=1

fε,xi(zi,1)
ni∏
j=2

fε(zi,j − zi,j−1) dzi,j dµ(xi). (5.55)

We continue to trace the proof of Theorem 5.1, step by step, and in place of (5.30)
we get

Exλ(γn,ε(µ)γn,ε(µ)))

=
∑
s∈S

∫
u1(xs(1) + ys(1),1 − x)

∏
p∈Bs

u1(ys(p),c(p))
∏
p∈Bs

Dys(p),c(p) (5.56) ∏
p∈(Bs∪{1})c

u1(xs(p) +
c(p)∑
j=1

ys(p),j − xs(p−1) −
c(p−1)∑
j=1

ys(p−1),j)


2∏
i=1

n∏
j=1

fε(yi,j) dyi,j dµ(xi).

In the proof of Theorem 5.1 we applied Lemma 3.4 to (5.30) to get (5.10). In
a similar fashion we use Lemma 3.5 to obtain

(5.57)

Exλ(γn,ε(µ)γn,ε′(µ)) = 2
∫
u1(w − x)(u1(w − y))2n−1 dµ(w) dµ(y) + o(1ε)

where ε > ε′. (Actually, in the proof of Theorem 5.1 we took ε = ε′. It follows from
Lemma 3.1 that we can also prove this more general result). Using the multiple
Hölder inequality and (3.62) we see that∫

u1(x)(u1(x− y))2n−1 dµ(x) dµ(y)

≤
(∫ ∫

(u1(x)u1(x− y))n dµ(x) dµ(y)
)1/n

‖µ‖2n−2
(2n) (5.58)
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≤ sup
x

(∫
(u1(x− y))n dµ(y)

)2/n

‖µ‖2n−2
(2n) .

Since this is finite by hypothesis we see that

lim
ε,ε′→0

Exλ(γn,ε(µ)− γn,ε′(µ))2 = 0 (5.59)

which establishes (5.53) and also (5.52).
The above analysis is clearly true with µ replaced by µy. Thus to obtain (5.54)

all we need to show is that the o(1ε) term can be taken to be independent of y.
This error term is estimated in (3.34) and (3.35) . It is clear that (3.35) remains
the same when µ is replaced by µy.

Using the facts that the o(1ε) term can be taken to be independent of y and
that γn( · ) is linear we see from (5.57) and (5.58) that

Exλ(γn(µy)− γn(µy′))2 ≤ C sup
x

(∫
(u1(x− y))n dµ(y)

)2/n

‖µy − µy′‖2n−2
(2n) .

It is easy to see from the Fourier transform of ‖µy − µy′‖2n(2n) that limy→y′ ‖µy −
µy′‖(2n) = 0. Thus we obtain (5.54).

It follows from (5.57) that when the hypotheses of Theorem 5.2 are satisfied

(5.60)

Exλ |γn(µ)|2 = 2
∫
u1(w − x)(u1(w − y))2n−1 dµ(w) dµ(y) ∀x ∈ Rm.

Thus we see that the finiteness of this integral is a necessary condition for
γn(µ) to exist P x almost surely and to have a second moment. (It is not clear
that one may be able to define a renormalized self-intersection local time without
a second moment, under weaker conditions, or that one would want to). The next
Lemma gives a smoothness condition on the Lévy exponent and measure µ that
makes the condition µ ∈ G2n and the finiteness of the integral in (5.60) equivalent.
This smoothness condition might seem rather strong and even arbitrary but it is
satisfied by all the examples in Chapter 8. In general it is satisfied when the relevant
functions are regularly varying at infinity.

Lemma 5.1. Let µ̂ ≥ 0. Assume that

θ2n(τ) ≈ θ2n−1(τ)
∫ |τ |/2

0

dξ

1 + ψ(ξ)
as |τ | → ∞ (5.61)

and ∫
µ̂(ξ) dξ

1 + ψ(τ − ξ)
≈ µ̂(τ)

∫ |τ |/2

0

dξ

1 + ψ(ξ)
as |τ | → ∞. (5.62)

Then µ ∈ G2n if and only if∫
u1(x)(u1(x− y))2n−1 dµ(x) dµ(y) <∞. (5.63)

(We write f(x) ≈ g(x), as |x| → ∞, to indicate that there exists constants 0 < C ≤
C ′ <∞ such that Cf(x) ≤ g(x) ≤ C ′f(x) for all |x| sufficiently large).
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Proof. (Note that û1(ξ) = (1 + ψ(ξ))−1 and θk(τ) = ((1 + ψ(ξ))−1)∗(k),
the k-fold convolution of (1 + ψ(ξ))−1). The proof is immediate since the Fourier
transform of the integral in (5.63) is∫

θ2n−1(τ)
∫

µ̂(ξ)
1 + ψ(τ − ξ)

dξµ̂(−τ) dτ (5.64)

whereas the Fourier transform of (1.5), the defining condition that µ ∈ G2n, is∫
θ2n(τ)|µ̂(τ)|2 dτ. (5.65)

In light of the above Lemma, we may say that µ ∈ G2n is a necessary condition
for γn(µ) to exist P x almost surely. (As we have seen it is a sufficient condition to
define γn(µ), P ρ almost surely).

It is interesting to note that the proof of (5.10) alone gives (5.4), without having
to consider Ln(µ) or the isomorphism theorem, as long as we can show (5.6). The
statement in (5.4) is an interesting result in its own right. The next lemma gives a
simple proof of (5.6) and hence, together with the proof of (5.10), a simpler proof
of (5.4).

Lemma 5.2. Let ρ ∈ G1 and µ ∈ G2n. Let U1ρ(x) · dµ(x) denote the measure
which has Radon Nykodym derivative U1ρ(x) with respect to µ(x). Then

‖U1ρ(x) · dµ(x)‖(2n−1) ≤ ‖ρ‖(1)‖µ‖(2n) (5.66)

where ‖ · ‖( · ) is defined right after (3.1).

Note that by the Schwarz inequality

In(µ, ρ, f) = 〈U1ρ(x) · dµ(x), U1f(y) · dµ(y)〉(2n−1)

≤ ‖U1ρ(x) · dµ(x)‖1/2(2n−1)‖U
1f(y) · dµ(y)‖1/2(2n−1). (5.67)

Since both ρ and f · dx are assumed to be in G1, Lemma 5.2 states that µ ∈ G2n

implies that In(µ, ρ, f) <∞.

Proof of Lemma 5.2. Let θk(τ) denote the Fourier transform of (u1(x))k.
Taking the Fourier transform we see that

‖U1ρ(x) · dµ(x)‖2(2n−1) =
∫
θ2n−1(τ)

ρ̂(ξ)
1 + ψ(ξ)

ρ̂(η)
1 + ψ(η)

µ̂(τ − ξ)µ̂(−τ − η)dξdηdτ

(5.68)
where û1(ξ) = (1 + ψ(ξ))−1 and θ2n−1(τ) = ((1 + ψ(ξ))−1)∗(2n−1), the 2n− 1-fold
convolution of (1 + ψ(ξ))−1. By the Schwarz inequality∫

ρ̂(ξ)µ̂(τ − ξ)
1 + ψ(ξ)

dξ ≤ ‖ρ‖1/2(1)

(∫
|µ̂(τ − ξ)|2

1 + ψ(ξ)
dξ

)1/2

(5.69)

Using (5.69), the Schwarz inequality and the fact that ψ is symmetric we see that

‖U1ρ(x) · dµ(x)‖2(2n−1) ≤ ‖ρ‖(1)
∫
θ2n−1(τ)|µ̂(τ − ξ)|2

1 + ψ(ξ)
dξ dτ (5.70)

= ‖ρ‖(1)
∫
θ2n−1(τ)|µ̂(ξ)|2

1 + ψ(ξ − τ)
dξ dτ
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= ‖ρ‖(1)
∫
θ2n(ξ)|µ̂(ξ)|2 dξ

which is the right-hand side of (5.66).





CHAPTER 6

Continuity

In this chapter we prove Theorem 1.1 and Corollaries 1.1 and 1.2.

Proof of Theorem 1.1. It will be convenient to work with an explicit ver-
sion of {γn(µx); x ∈ Rm}. Recall that, in our usage, a random variable Y is called
a version of γn(µ) if Y = limε→0 γn,ε(µ) in L2(Ω×R+, P

y
λ ) for all y ∈ Rm. Here Ω

is the disjoint union
Ω =

⋃
y∈Rm

Ωy

where Ωy denotes the set of cadlag paths ω : R+ 7→ Rm with ω(0) = y. The
measure P yλ is concentrated on Ωy ×R+ and we have∫

h(ω, s) dP y+zλ (ω, s) =
∫
h(z + ω, s) dP yλ (ω, s) (6.1)

for all measurable functions h on Ωy+z ×R+.
To begin, for each x ∈ Rm and ω ∈ Ω0 we choose γ̃n(µx)(ω) to be some version

of limε→0 γn,ε(µx) in L2(Ω × R+, P
0
λ), which we know exists by Theorem 5.2. We

then set
γ̃n(µx)(ω) = γ̃n(µx+y)(−y + ω), ω ∈ Ωy (6.2)

which defines γ̃n(µx) for paths ω ∈ Ωy. Note that since

γn,ε(µx)(ω) = γn,ε(µx+y)(−y + ω), ω ∈ Ωy (6.3)

we see from (6.1) that
γ̃n(µx) = lim

ε→0
γn,ε(µx) (6.4)

in L2(Ω×R+, P
y
λ ) for all y ∈ Rm so that {γ̃n(µx); x ∈ Rm} is indeed a version of

{γn(µx); x ∈ Rm}. We also observe by (6.2) that for any x, y, z ∈ Rm we have

(6.5)

γ̃n(µx)(ω) = γ̃n(µx+z)(−z + ω) = γ̃n(µx−y+z)(y − z + ω), ω ∈ Ωz.
By Theorem 5.2 convergence in (6.4) in L2(Ω×R+, P

0
λ) is uniform in x ∈ Rm,

and hence from the definition (6.2) we see that for fixed x the convergence in (6.4)
in L2(Ω× R+, P

y
λ ) is uniform in y ∈ Rm. Therefore we have that (6.4) holds also

in L2(Ω×R+, P
ρ
λ ) for any probability measure ρ, in particular for any probability

measure ρ ∈ G1. Theorem 5.1 now shows that γ̃n(µx) = Ln(µx) as random variables
in L2(Ω × R+, P

ρ
λ ) for any probability measure ρ ∈ G1. Hence the isomorphism

theorem, Theorem 4.1 holds with {Ln(µx); x ∈ Rm} replaced by {γ̃n(µx); x ∈ Rm}.
Let K ⊂ Rm be compact and let {xi}∞i=1 be a countable dense subset of K.

Consider Theorem 4.1, with {γ̃n(µx); x ∈ Rm} replaced by {Ln(µx); x ∈ Rm}, and
take F to be a norm on C(K), the space of continuous functions on K. Note that
by the convexity of F and the fact that the Wick power chaos processes of order
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2k, k = 1, . . . , n, all have mean zero and are independent of the {γ̃kµ·}nk=1, (and
that γ̃0 = : G0 : = 1 by definition) we have that

F (γ̃nµ·) ≤ EG

(
F

(
n∑
k=0

(
n

k

)
1

2n−k
(: G2(n−k) : ×γ̃k)(µ·)

))
. (6.6)

Therefore, by (4.3), and the Schwarz inequality

EρλF (γ̃nµ·)f(Xλ) ≤ (EGF (: G2nµ· :)2)1/2(EGG4
ρEGG

4
f ·dx)

1/4. (6.7)

By hypothesis, {: G2nµx :, x ∈ Rm} is continuous almost surely. Since, in
general, a Banach space valued Gaussian chaos has all moments, it follows that
E supx∈K | : G2nµx : | <∞. Therefore, by the dominated convergence theorem

lim
ε→0

E sup
x,y≤ε

x,y∈K

| : G2nµx : − : G2nµy : | = 0. (6.8)

Taking F to be this ‘uniform modulus’ norm and f > 0, it follows from (6.7) and
(6.8) that {γ̃nµxi

, {xi} ∈ K} is continuous almost surely with respect to P ρ.
Let D ⊆ Rm be a countable dense set. We have shown that {γ̃n(µx); x ∈ D} is

P ρλ almost surely locally uniformly continuous in x ∈ D for any probability measure
ρ ∈ G1. This implies that {γ̃n(µx); x ∈ D} is P y0λ almost surely locally uniformly
continuous in x ∈ D for some y0 ∈ Rm. Let {Γn(µx); x ∈ Rm} denote the P y0λ
almost surely continuous extension of {γ̃n(µx); x ∈ D}. Thus

Γn(µx)(ω), ω ∈ Ωy0
is continuous in x ∈ Rm for P y0λ almost every ω. Define {Γn(µx); x ∈ Rm} for
paths ω ∈ Ωz by

Γn(µx)(ω) = Γn(µx−y0+z)(y0 − z + ω), ω ∈ Ωz. (6.9)

With this definition we see that {Γn(µx); x ∈ Rm} is continuous P zλ almost surely
for all z ∈ Rm. It remains to show that {Γn(µx); x ∈ Rm} is a version of
{γn(µx); x ∈ Rm}.

Note that from (6.5) and (6.9) we see that Γn(µx) is a P zλ almost surely con-
tinuous extension of {γ̃n(µx); x ∈ D + y0 − z}. If x ∈ Rm is arbitrary, choose a
sequence xj ∈ D + y0 − z such that xj → x. By the last remark we have

Γn(µx) = lim
j→∞

γ̃n(µxj ) (6.10)

P zλ almost surely. On the other hand, by Theorem 5.2 we see that

γ̃n(µx) = lim
j→∞

γ̃n(µxj ) (6.11)

in L2(P zλ ). These two facts complete the proof.

Proof of Corollary 1.1. It follows from Lemmas 3.2 and 3.3, [1] and the
remarks between them that there exists a λ > 0 such that

E exp

(
λ

(
| : G2nµx : − : G2nµy : |

d(x, y)

)1/n
)
≤ 1. (6.12)

(The fact that the Wick power chaos and the formulation in [1] are the same
in pointed out in Chapter 3). The proof is an immediate consequence of (6.12),
Theorem 11.6 [14], and the last paragraph on page 300 of [14].
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Proof of Corollary 1.2. Corollary 1.2 holds because (1.11) implies (1.9).
The proof of this fact is completely analogous to the proof of Theorem 1.6, [15]
where this is proved in the case n = 1.





CHAPTER 7

Stable mixtures

In this chapter we show that stable mixtures which are of interest to us in this
paper are Lévy processes in Class A. (See Chapter 1, in particular the comments
after (1.19).) We first note that the characteristic exponents of stable mixtures are
quite regular.

Lemma 7.1. Let |λ| = ρ in (1.18). Then ψ(ρ) is regularly varying at infinity
with index β and is regularly varying at zero with index a. Furthermore, for 1 <
β ≤ 2

ρψ′(ρ) ∼ βψ(ρ) (7.1)
ρ2ψ′′(ρ) ∼ β(β − 1)ψ(ρ)

as ρ→∞, and for 0 < β ≤ 1

ρψ′(ρ) ∼ βψ(ρ) (7.2)
|ρ2ψ′′(ρ)| ≤ (1/4)ψ(ρ)

as ρ→∞. In general, for all k ≥ 1

|ψ(k)(ρ)| ≤ Ck
ψ(ρ)
ρk

as ρ→∞ (7.3)

for some constant Ck depending on k.

Proof. Let a < β′ < β. Since φ(s) is supported on [a, β] it puts positive mass
on [b, β] where b = (β + β′)/2. Thus

ψ(ρ) ∼
∫ β

b

ρs dφ(s) as ρ→∞. (7.4)

Taking β′ arbitrarily close to β shows that ψ(2ρ) ∼ 2βψ(ρ) as ρ → ∞, which, by
definition, means that ψ(ρ) is regularly varying at infinity with index β. By similar
reasoning we see that

ρψ′(ρ) ∼
∫ β

b

sρs dφ(s) ∼ βψ(ρ) as ρ→∞. (7.5)

The rest of this lemma is proved similarly.

In order to show that stable mixtures belong to Class A we first need estimates
for the 1-potential of these processes near the origin.

Theorem 7.1. Let X be a stable mixture in R2 with 1-potential density u1(|x|).
When 3/2 < β < 2

u1(|x|) =
∫

cos(p · x)
1 + ψ(|p|)

d2p ∼ Cβ
1

|x|2ψ(|1/x|)
as |x| → 0 (7.6)
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where

Cβ =
4πΓ(1− (β/2))

2βΓ(β/2)
. (7.7)

Let X be a stable mixture in R1 with 1-potential density u1(|x|). When 3/4 <
β < 1

u1(|x|) =
∫

cos(px)
1 + ψ(|p|)

dp ∼ C ′β
1

|x|ψ(|1/x|)
as |x| → 0 (7.8)

where

C ′β = Γ(1− β) cos
(

(1− β)π
2

)
. (7.9)

The next lemma is used in the proof of Theorem 7.1.

Lemma 7.2. Let h : R+ → R+ be of the form h(y) = L(y)/yβ where L is a
quasi-monotone slowly varying function at infinity and 1 < β < 2. Then∫

cos(p · x)h(|p|) d2p ∼ Cβ
L(1/|x|)
|x|2−β

as |x| → 0. (7.10)

Proof. Changing to polar coordinates and performing one integral, we can
write the left hand side of (7.10) as

2π
|x|2−β

∫ ∞

0

J0(s)
sβ−1

L(s/|x|) ds (7.11)

where J0 is the zero-th order Bessel function. We now use Theorem 4.1.5, [3] to
get (7.10). (Note that (7.4.1) of [24] implies that the two integrals at the bottom
of page 200, [3] exist. This shows that the hypotheses of Theorem 4.1.5, [3] are
satisfied).

Proof of Theorem 7.1. The asymptotic relationship in (7.6) follows imme-
diately from Lemma 7.2 once we show that

L(|p|) =
|p|β

1 + ψ(|p|)
(7.12)

is non-decreasing, as |p| → ∞, since this is a sufficient condition for L to be quasi-
monotone. (See [3] page 105). This is easy to see. Setting |p| = ρ and treating
L(|p|) and ψ(|p|) as functions of the positive real value ρ we have by (1.18) that

ρψ′(ρ) =
∫ β

a

sρs dµ(s) ≤ βψ(ρ) (7.13)

which shows that L(ρ) is strictly increasing.
The asymptotic relationship in (7.8) follows similarly, and more simply, from

Theorem 4.1.5, [3], than the one in (7.6). It is also stated explicitly in (4.3.7),
[3].

Estimates of the 1-potential in the borderline cases of β = 2 in R2 and β = 1
in R1 are more complicated, as we see from the next theorem.

Theorem 7.2. Let X be a stable mixture in R2 with 1-potential density u1(|x|).
When β = 2 there exist constants 0 < C1 ≤ C2 <∞ such that for all |x| sufficiently
small

C1

∫ 1/|x|

0

1
1 + ψ(|p|)

d2p ≤ u1(|x|) ≤ C2

∫ 1/|x|

0

1
1 + ψ(|p|)

d2p. (7.14)
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Let X be a stable mixture in R1 with 1-potential density u1(|x|). When β = 1
there exist constants 0 < C1 ≤ C2 <∞ such that for all |x| sufficiently small

C1

∫ 1/|x|

0

1
1 + ψ(p)

dp ≤ u1(|x|) ≤ C2

∫ 1/|x|

0

1
1 + ψ(p)

dp. (7.15)

Proof. Changing to polar coordinates and using the fact that ψ is radially
symmetric, we can write

u1(|x|) =
∫ 1

0

1√
1− u2

∫ ∞

0

cos(uρ|x|) ρ

1 + ψ(ρ)
dρ du

= −
∫ 1

0

1√
1− u2

∫ ∞

0

sin(uρ|x|)
u|x|

d

dρ

ρ

1 + ψ(ρ)
dρ du. (7.16)

Note that
∫ π
π/3

sin v
v dv > −

∫ 2π

π
sin v
v dv. This inequality is easy to verify. ¿Consider

the intervals (π/3, π/2), (π/2, 3π/4), and the remaining intervals of length π/4.
Bound sin v above and below as required and integrate 1/v. Use a calculator to
verify the inequality. Also, it is straightforward, using (7.1) with β = 2, to check
that (−ρ d

dρ
ρ

1+ψ(ρ) ) is decreasing for ρ sufficiently large. Considering these observa-
tions and the fact that 1/v is decreasing on [0,∞), we see that for all |x| sufficiently
small and 0 < u ≤ 1∫ ∞

π/(3u|x|)

sin(uρ|x|)
u|x|ρ

(
−ρ d

dρ

ρ

1 + ψ(ρ)

)
dρ ≥ 0. (7.17)

Consequently ∫ ∞

0

sin(uρ|x|)
u|x|ρ

(
−ρ d

dρ

ρ

1 + ψ(ρ)

)
dρ ≥

C

∫ π/(3u|x|)

0

(
−ρ d

dρ

ρ

1 + ψ(ρ)

)
dρ. (7.18)

Using (7.1) to estimate the derivative in (7.18) and the fact that 0 ≤ u ≤ 1, we
obtain the left-hand side of (7.14).

To obtain the upper bound in (7.14) we write (x · p) = x1p1 + x2p2. Without
loss of generality we can assume that |x1| ≥ |x2|. Integrating by parts with respect
to p1, we have

u1(|x|) = − 1
x1

∫
sin(x · p) d

dp1

(
1

1 + ψ(|p|)

)
d2p

≤ C

|x|

∫
|p|≤1/|x|

|xp| ψ′(|p|)
(1 + ψ(|p|))2

d2p (7.19)

+
C

|x|

∫
|p|≥1/|x|

ψ′(|p|)
(1 + ψ(|p|))2

d2p

≤ C

∫ 1/|x|

0

ρ2ψ′(ρ)
(1 + ψ(ρ))2

dρ+
C

|x|

∫ ∞

1/|x|

ρψ′(ρ)
(1 + ψ(ρ))2

dρ.

Using the regular variation of ψ(ρ) at infinity and (7.1) we see that for all |x|
sufficiently small

u1(|x|) ≤ C

∫ 1/|x|

0

ρ

(1 + ψ(ρ))
dρ+

C

|x|2ψ(1/|x|)
. (7.20)
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Since ψ(ρ) is effectively increasing for ρ sufficiently large we also see that

1
|x|2ψ(1/|x|)

≤ C

∫ 1/|x|

0

ρ

(1 + ψ(ρ))
dρ (7.21)

for all |x| sufficiently small. (Actually, in general, the left-hand side of (7.21) is
little “o” of the right-hand side). This completes the proof of (7.14).

The proof of (7.15) is similar to the proof of (7.14) and simpler. We will not
repeat the arguments but only note for future use that in this case, parallel to
(7.21), we have

1
|x|ψ(1/|x|)

≤ C

∫ 1/|x|

0

1
(1 + ψ(ρ))

dρ (7.22)

for all |x| sufficiently small.

We can now show that the stable mixtures are in Class A.

Theorem 7.3. A stable mixture in R2, which is regularly varying at infin-
ity with index 3/2 < β ≤ 2, belongs to Class A. In particular, symmetric stable
processes in R2 with index 3/2 < β ≤ 2 are in Class A.

Proof. To avoid confusing notation in this proof we set u1 ≡ u. Let r ≥ 0 and
consider u(r) as a function on R1. Let r = |x| and note that |∇u(|x|)| = |u′(r)|.
In polar coordinates, for radially symmetric functions, ∆ ≡ ∂2/∂ρ2 + (1/ρ)∂/∂ρ.
Since ∆(1/(1 + ψ(|p|))) ∈ L1(R2) we can write

u(|x|) = − 1
|x|2

∫
cos(p · x)∆ 1

1 + ψ(|p|)
d2p (7.23)

= −C
r2

∫ ∞

0

∫ 1

0

cos(uρr)√
1− u2

∆
1

1 + ψ(|p|)
ρ du dρ

where, in the last line, we consider ∆(1/(1 + ψ(|p|))) as a function of ρ = |p|. By
(7.3) we see that ρ2∆(1/(1+ψ(|p|))) ∈ L1(R1). Thus we can differentiate u(r) with
respect to r and obtain

u′(r) = −Cu(r)
r

− C

r2

∫ ∞

0

∫ 1

0

u sin(uρr)√
1− u2

ρ2∆
1

1 + ψ(|p|)
du dρ. (7.24)

Therefore,

|u′(r)| ≤ C|u(r)|
r

+
∣∣∣∣Cr2

∫ ∞

0

∫ 1

0

u sin(uρr)√
1− u2

ρ2∆
1

1 + ψ(|p|)
du dρ

∣∣∣∣ . (7.25)

The last term in (7.25)

≤ C

r2

∫ ∞

0

∫ 1

0

u√
1− u2

(ρr ∧ 1)ρ2|∆ 1
1 + ψ(|p|)

| du dρ (7.26)

≤ C

r2

(∫ 1/r

0

rρ3|∆ 1
1 + ψ(|p|)

| dρ+
∫ ∞

1/r

ρ2|∆ 1
1 + ψ(|p|)

| dρ

)
.

Since ∣∣∣∣∆ 1
1 + ψ(|p|)

∣∣∣∣ ≤ C

ρ2(1 + ψ(ρ))
(7.27)
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and the latter function is regularly varying at infinity, we see that for r ≤ r0, for
some r0 > 0

|u′(r)| ≤ C|u(r)|
r

+
C

r3(1 + ψ(1/r)

<
C|u(r)|

r
(7.28)

where, at the last step we use (7.6) when 3/2 < β ≤ 2 and (7.14) along with (7.21)
when β = 2. This shows that ∆bu satisfies condition (1.15). Also, by (7.23), (7.25),
(7.26) and (7.27), |u′(r)| is bounded for r ≥ r0 > 0 for all r0 > 0.

When r = |x|∣∣∣∣ ∂2

∂xi∂xj
u(|x|)

∣∣∣∣ ≤ |u′′(r)|+ |u′(r)|
r

i, j = 1, 2. (7.29)

Therefore, by (7.28), to show that ∆2
b,cu satisfies (1.16) we need only consider

|u′′(r)|. We first integrate (7.24) by parts and then differentiate with respect to r
and use (7.28) to get

|u′′(r)| ≤ C|u(r)|
r2

+∣∣∣∣Cr3
∫ ∞

0

∫ 1

0

u sin(uρr)√
1− u2

(ρ
d

dρ
(ρ2∆

1
1 + ψ(|p|)

)) du dρ
∣∣∣∣ . (7.30)

This is possible since both d
dρ (ρ

2∆ 1
1+ψ(|p|) ) and ρ d

dρ (ρ
2∆ 1

1+ψ(|p|) ) are in L1(R1).
Since

ρ
d

dρ
(ρ2∆

1
1 + ψ(|p|)

) ≤ C

(1 + ψ(ρ)
(7.31)

we can proceed as in (7.26) and what follows to see that for r ≤ r0, for some r0 > 0

|u′′(r)| ≤ C

r4(1 + ψ(1/r)
≤ C|u(r)|

r2
. (7.32)

This shows that ∆2
b,cu satisfies condition (1.15). Similarly, we can show that |u′′(r)|

is bounded for r ≥ r0 > 0 for all r0 > 0.

Theorem 7.4. A stable mixture in R1 which is regularly varying with index
3/4 < β ≤ 1 belongs to Class A. In particular, symmetric stable processes in R1

with index 3/4 < β ≤ 1 are in Class A.

Proof. To avoid confusing notation we set u1(p) = u(p). The 1-potential of
these processes is given by

u(x) = 2
∫ ∞

0

cosxp
1 + ψ(p)

dp (7.33)

Without loss of generality we can assume x > 0. Writing (7.33) as the limit, as
N → ∞, of the integral, we can integrate by parts and then pass to the limit to
obtain

u(x) =
2
x

∫ ∞

0

sinxp
ψ′(p)

(1 + ψ(p))2
dp. (7.34)
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Splitting the range of integration in (7.34) into two parts and then integrating the
integral over [π/(2x),∞) by parts we obtain

(7.35)

u(x) =
2
x

∫ π/(2x)

0

sinxp
ψ′(p)

(1 + ψ(p))2
dp− 2

x2

∫ ∞

π/(2x)

cosxp
d

dp

ψ′(p)
(1 + ψ(p))2

dp.

It follows from (7.3) that the last integral is absolutely integrable as well as all the
integrals that follow in this proof. Differentiating (7.35) we get

u′(x) = −u(x)
x

+
2
x3

∫ ∞

π/(2x)

cosxp
d

dp

ψ′(p)
(1 + ψ(p))2

dp

+
2
x

∫ π/(2x)

0

cosxp
pψ′(p)

(1 + ψ(p))2
dp (7.36)

+
2
x2

∫ ∞

π/(2x)

(sinxp)p
d

dp

ψ′(p)
(1 + ψ(p))2

dp

− π

x3

(
ψ′(π/(2x))

(1 + ψ(π/(2x)))2

)
.

Using Theorem 7.1 we see that∣∣∣∣∣− 2
x3

∫ ∞

π/(2x)

cosxp
d

dp

ψ′(p)
(1 + ψ(p))2

dp

∣∣∣∣∣ ≤ C

x3

∫ ∞

π/(2x)

ψ(p)
p2(1 + ψ(p))2

dp

≤ C

x2ψ(1/x)
. (7.37)

Similarly

2
x

∫ π/(2x)

0

cosxp
pψ′(p)

(1 + ψ(p))2
dp ≤ C

x

∫ π/(2x)

0

ψ(p)
(1 + ψ(p))2

dp

≤ C

x

∫ π/(2x)

0

1
(1 + ψ(p))

dp (7.38)∣∣∣∣∣ 2
x2

∫ ∞

π/(2x)

(sinxp)p
d

dp

ψ′(p)
(1 + ψ(p))2

dp

∣∣∣∣∣ ≤ C

x2ψ(1/x)
(7.39)

and
π

x3

(
ψ′(π/(2x))

(1 + ψ(π/(2x)))2

)
≤ C

x2ψ(1/x)
(7.40)

for x sufficiently small. When β < 1 the last line in (7.38) is O(1/(x2ψ(1/x))).
Therefore, it follows from (7.8), (7.15) and (7.22) that |u′(x)| ≤ C|u(x)/x| for x
sufficiently small and also that u′(x) is bounded away from the origin.

Proceeding we first integrate the last integral in (7.36) by parts and then dif-
ferentiate the resulting expression for u′(x). There are many terms but they are
all easy to estimate using the techniques of the proceeding paragraph. Doing this
we see that |u′′(x)| ≤ C|u(x)/x2| for x sufficiently small and also that u′′(x) is
bounded away from the origin.



CHAPTER 8

Examples

Using Corollary 1.2 we give some examples of Lévy processes in Class A and
measures µ ∈ G2n, described by their Fourier transforms, for which {γn(µx), x ∈
Rm}, m = 1, 2 is continuous almost surely. We use û1(|ξ|) = 1/(1 + ψ(|ξ|), the
Fourier transform of u1(x), to estimate τ(ξ). Thus for Lévy processes in Class A
in R2, when

ψ(|ξ|) ∼ |ξ|2

(log |ξ|)a
as |ξ| → ∞ (8.1)

where a ≥ 0, we have

τ(|ξ|) =
(

1
1 + ψ(|ξ|)

)∗2n
= O(

(log |ξ|)2n(1+a)−1

|ξ|2
) as |ξ| → ∞. (8.2)

Substituting this in (1.11) gives (1.12), (a = 0 for Brownian motion), and the
assertions in the paragraph following (1.12). Recall that in (1.19) we pointed out
that stable mixtures include Lévy processes for which (8.1) is satisfied. The same
is true for all the other Lévy exponents mentioned in this chapter.

Continuing to consider Lévy processes in R2, let 2− 1/n < β < 2. If

ψ(|ξ|) ∼ |ξ|β

(log |ξ|)a
as |ξ| → ∞ (8.3)

for a ≥ 0, then

τ(|ξ|) =
(

1
1 + ψ(|ξ|)

)∗2n
= O

(
(log |ξ|)2na

|ξ|2nβ−2(2n−1)

)
as |ξ| → ∞. (8.4)

Substituting this in (1.11) shows that for Lévy process with characteristic exponent
given by (8.3), {γn(µx), x ∈ R2} is continuous almost surely if

|µ̂(ξ)| = O

(
1

|ξ|n(2−β)(log |ξ|)n(a+1)+1/2+ε

)
as |ξ| → ∞ (8.5)

for some ε > 0.
For Lévy processes in Class A in R1, when

ψ(|ξ|) ∼ |ξ|
(log |ξ|)a

as |ξ| → ∞ (8.6)

where a ≥ 0, we have

τ(|ξ|) = O

(
(log |ξ|)2n(1+a)−1

|ξ|2

)
as |ξ| → ∞. (8.7)

Substituting this in (1.11) shows that for Lévy process in Class A, with charac-
teristic exponent ψ given by (8.1), {γn(µx), x ∈ R1} is continuous almost surely
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when

|µ̂(ξ)| = O

(
1

(log |ξ|)2n(1+a/2)+ε

)
as |ξ| → ∞ (8.8)

for some ε > 0.
Continuing to consider Lévy processes in R1, let 1− 1/(2n) < β < 1. When

ψ(|ξ|) ∼ |ξ|β

(log |ξ|)a
as |ξ| → ∞ (8.9)

for a > 0, then

τ(|ξ|) = O

(
(log |ξ|)2na

|ξ|2nβ−(2n−1)

)
as |ξ| → ∞. (8.10)

Consequently, {γn(µx), x ∈ R2} is continuous almost surely if

|µ̂(ξ)| = O

(
1

|ξ|n(1−β)(log |ξ|)n(a+1)+1/2+ε

)
as |ξ| → ∞ (8.11)

for some ε > 0.



CHAPTER 9

Large Deviations

We first prove Theorem 1.2. This theorem applies to Lévy processes in Class
A with an additional condition on their 1-potential at infinity. We next show that
stable mixtures satisfy this additional condition.

Proof of Theorem 1.2. It follows from Corollary 4.4 [1] that whenever {:
G2nµx :, x ∈ Rm} is continuous almost surely, there exists a constant d > 0 such
that

II
def
= E exp

(
d sup
x∈[−2,2]m

| : G2nµx : |1/n
)
<∞. (9.1)

We now show how to use (9.1) and an isomorphism theorem, Theorem 4.1 to obtain
(1.13).

By the hypothesis, when X takes values in Rm, there exists a δ > m such
that u1(x) = O(1/xδ). Let q > 1 be such that δ/q > m. Set c = d/(2p), where
1/p + 1/q = 1. It is easy to see that there is a convex function Φ on [0,∞] such
that exp(c(x)1/n) ≤ Φ(x) ≤ C exp(c(x)1/n) for some constant C depending on c.
Let ‖ · ‖ denote supx∈[−2,2]m | · |. By the Hölder inequality

EρλΦ(‖Lnµ·‖)f(Xλ) ≤ (EρλΦ
p(‖Lnµ·‖)f(Xλ))

1/p (Eρλf(Xλ))
1/q

. (9.2)

By (6.7), which only depends on the convexity of F , we see that

EρλΦ
p(‖Lnµ·‖)f(Xλ) ≤ (EΦ2p(‖ : G2nµ· : ‖))1/2(9EG2

ρEG
2
f ·dx)

1/4. (9.3)

Let fk(u)
def
= I(k−1<u≤k]. In this case, for all −∞ < k <∞

EG2
fk·dx =

∫ ∫
u1(x− y)fk(x)fk(y) dx dy (9.4)

=
∫ 1

0

∫ 1

0

u1(x− y) dx dy
def
= III.

Thus we get

EρλΦ
p(‖Lnµ·‖)fk(Xλ) ≤ (9 · III · EG2

ρ)
1/4(II)1/2. (9.5)

Using (9.2) we see that

EρλΦ(‖Lnµ·‖) =
∞∑

k=−∞

EρλΦ(‖Lnµ·‖)fk(Xλ)

≤
∞∑

k=−∞

(EρλΦ
p(‖Lnµ·‖)fk(Xλ))1/pP 1/q(k − 1 < Xλ ≤ k) (9.6)
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≤ (9 · III · EG2
ρ)

1/(4p)(II)1/(2p)
∞∑

k=−∞

P 1/q(k − 1 < Xλ ≤ k).

We now note that the sum in the last line of (9.6) is finite. Since the probability
density of Xλ is u1(x) this comes down to showing that

∞∑
k=N

km−1(u1(k))1/q <∞ (9.7)

where u1(k) = u1(|x|) for |x| = k, which is true by hypothesis. Thus we see that

Eρλ exp
(
c‖γn(µx)‖1/n

)
<∞. (9.8)

Furthermore, we can actually give an upper bound for (9.8), in terms of µ, ρ and
u1.

Let y ∈ Rm and let ρy be Lebesgue measure on Ay
def
= y+[−1/2, 1/2]m. Then,

since EG2
ρy

is independent of y, we can write

E
ρy

λ exp
(
c‖γn(µx)‖1/n

)
< C (9.9)

for some constant C, which depends on µ, u1 and ρ0 but is independent of y.
Recalling the definition of Eρ in (4.1), we see that it follows from (9.9) that there
exists a z ∈ Ay such that

Ezλ exp
(
c‖γn(µx)‖1/n

)
< C. (9.10)

To complete the proof we simply note that

Eyλ exp

(
c sup

[−1,1]m
|γn(µx)|1/n

)
= Ezλ exp

(
c sup

[−1,1]m
|γn(µx+z−y)|1/n

)

= Ezλ exp

(
c sup

[−1,1]m+z−y
|γn(µx)|1/n

)
(9.11)

which is bounded by (9.10). Thus we obtain (1.13).

The next lemma shows that the 1-potential of stable mixtures satisfy the hy-
potheses of Theorem 1.2.

Lemma 9.1. Let u1(|x|) be the 1-potential of a stable mixture in R2 with a > 1.
Then for |x| ≥ |x0|, for some |x0| sufficiently large

u1(|x|) ≤ C

|x|3
. (9.12)

Let ũ1(|x|) be the 1-potential of a stable mixture in R1 with 0 < a < β ≤ 1. Then
for |x| ≥ |x0|, for some |x0| sufficiently large

ũ1(|x|) ≤ C1
1

|x|1+ε
(9.13)

for some ε > 0.
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Proof. Set x = (x1, x2) and p = (p1, p2) in the first line of (7.23). Without
loss of generality we may assume that |x1| ≥ |x2|. Integrate by parts with respect
to p1 in (7.23) to obtain

u1(|x|) =
1

|x2||x1|

∫
sin(p · x) d

dp1

(
∆

1
1 + ψ(|p|)

)
d2p. (9.14)

(Recall that in (7.23), u(x) is an abbreviation for u1(x)). Using (7.3) one can check
that d

dp1

(
∆ 1

1+ψ(|p|)

)
∈ L1(R2). Since 2|x1| ≥ |x| we get (9.12).

To get (9.13) we use (7.34). It suffices to take x > 0. We note that since
ψ′(p)/(1 + ψ(p))2 is decreasing and regularly varying at zero with index a > 0, we
have

u(x) ≤ β

∫ (2π)/x

0

pψ′(p)
(1 + ψ(p))2

dp

≤ C

∫ (2π)/x

0

ψ(p) dp ∼ C
1
x
ψ(

1
x

) (9.15)

as x→∞. Thus we obtain (9.13).





APPENDIX A

Necessary conditions

In this Appendix we prove the following theorem which enables us to exclude
the important condition (3.57) in the statement of Theorem 1.1.

Theorem A.1. Let µ ∈ G2n
F .

(i) If {: G2nµx :, x ∈ Rm} is locally bounded almost surely then∫
(u1(y − x))n dµ(x) (A.1)

is bounded on Rm

(ii) If {: G2nµx :, x ∈ Rm} is continuous almost surely then (A.1) is continu-
ous on Rm.

This theorem is actually a corollary of a line of work which uses yet another
version of Dynkin’s isomorphism theorem. This version relates an intersection local
time for n independent identically distributed Lévy processes to a 2n-th order
Gaussian chaos process on the space of measures G2n. This process is not the same
as the one we have been studying. However, an applicaiton and generalization of a
decoupling theorem of Arcones and Gine [1] shows that the two are closely related.
In a future paper we plan to study intersections of independent Lévy processes in
detail. Here we will concentrate on proving Theorem A.1.

For ρ ∈ G1 let G(1),ρ, . . . , G(n),ρ denote n independent copies of Gρ as defined
on page 14. Set Hj(x, ε) = G2

(j),ρx,ε
− EG2

(j),ρx,ε
, j = 1, . . . , n. For ε > 0 and

µ ∈ G2n define

(×nj=1Hj)(ε, µ) =
∫ n∏

j=1

Hj(x, ε) dµ(x). (A.2)

Because of the independence it is easy to see that

EG(1),...,G(n)((×
n
j=1Hj)(ε, µ)(×nj=1Hj)(ε′, ν))

= 2n
∫ ∫ n∏

j=1

(u1(vj , wj))2
n∏
j=1

ρx,ε(dvj)ρy,ε′(dwj) dµ(x) dν(y) (A.3)

= 2n
∫ ∫ n∏

j=1

(u1(x+ vj , y + wj))2
n∏
j=1

ρε(dvj)ρε′(dwj) dµ(x) dν(y).

Here EG(1),...,G(n) denotes expectation with respect to the product probability space
generated by ×nj=1{G(j),ρ, ρ ∈ G1} and we use ρε to denote ρ0,ε, etc. Since µ, ν ∈
G2n, a slight generalization of Lemma 3.1 implies that

(v1, w1, . . . , vn, wn) 7→
∫ ∫ n∏

j=1

(u1(x+ vj , y + wj))2 dµ(x) dν(y) (A.4)
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is continuous. By an argument similar to the one in the paragraph containing (3.11)
we see that

(×nj=1Hj)(µ)
def
= lim

ε→0
(×nj=1Hj)(ε, µ) (A.5)

exists as a limit in L2 and satisfies

EG(1),...,G(n)((×
n
j=1Hj)(µ)) = 0 (A.6)

(A.7)

EG(1),...,G(n)((×
n
j=1Hj)(µ)(×nj=1Hj)(ν)) = 2n

∫ ∫
(u1(x, y))2n dµ(x) dν(y)

for all µ, ν ∈ G2n, and(
EG(1),...,G(n)((×

n
j=1Hj)(µ)− (×nj=1Hj)(ν))2

)1/2
=
(

2n
∫ ∫

(u1(x, y))2n (d(µ(x)− ν(x))) (d(µ(y)− ν(y)))
)1/2

(A.8)

for all µ, ν ∈ G2n.
We now show how Theorem 4.2 can be extended to give an isomorphism the-

orem for the intersections of independent Lévy processes. Recall that in Theorem
4.2, given a Lévy process (Ω,F(t), X(t), P x, λ) and a measure µ ∈ G2, we consider
the additive functional Lµλ. Let (Ω1,F1(t), X1(t), P x1 , λ1), . . . ,
(Ωn,Fn(t), Xn(t), P xn , λn) denote n independent copies of (Ω,F(t), X(t), P x, λ),
and Lµ1

1,λ1
, . . . , Lµn

n,λn
denote the corresponding additive functionals. It follows from

the definition of Lµλ that

Lx,εj
def
= L

ρx,ε

j =
∫ λj

0

fε(Xj(t)− x) dt. (A.9)

For ρ1, . . . , ρn ∈ G1 we use P ρ1,...,ρn

λ1,...,λn
to denote the product measure P ρ11,λ1

×
· · · × P ρn

n,λn
. Let Φ be as given in (4.11) and let Φj denote the copy of Φ as-

sociated with Hj and Xj . As noted in Chapter 4, we can take continuous ver-
sions of H1(x, ε), . . . ,Hn(x, ε). From this it is easy to see that when µ ∈ G2n,
(×nj=1Hj)(ε, µ) ∈M(

⊗n
j=1Hj) and

Φ̃((×nj=1Hj)(ε, µ)) =
∑
A

∫ ∏
i∈Ac

Hi(x, ε)
∏
j∈A

2Lx,εj dµ(x) (A.10)

where the sum runs over all subsets A ⊆ {1, . . . , n} and Φ̃ is the natural extension
of ×nj=1Φj to M(

⊗n
j=1Hj). Let

(×i∈AcHi ×j∈A 2Lj)(ε, µ)
def
=
∫ ∏

i∈Ac

Hi(x, ε)
∏
j∈A

2Lx,εj dµ(x).

It follows from Theorem 4.2 that

EG(1),...,G(n)E
ρ1,...,ρn

λ1,...,λn

F (∑
A

(×i∈AcHi ×j∈A 2Lj)(ε, µ·)

)
n∏
j=1

f(Xj(λj))


= EG(1),...,G(n)

F ((×nj=1Hj)(ε, µ·)
) n∏
j=1

G(j),ρj
G(j),f ·dx

 . (A.11)
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where f is as given in Theorem 4.2. Note that

(×i∈AcHi ×j∈A Lj)(ε, µ)

=
∫ ∏

i∈Ac

Hi(x, ε)

∫ λ1

0

· · ·
∫ λn

0

∏
j∈A

fε(Xj(tj)− x)
∏
j∈A

dtj

 dµ(x).(A.12)

In particular

(×nj=1Lj)(ε, µ) =
∫
×nj=1L

x,ε
j dµ(x)

=
∫ ∫ λ1

0

· · ·
∫ λn

0

n∏
j=1

fε(Xj(tj)− x)
n∏
j=1

dtj

 dµ(x).(A.13)

The same reasoning that leads to (A.10) shows that, more generally, for any
B ⊆ {1, . . . , n}

EG(1),...,G(n)E
ρB

λB

F
∑
A⊆B

(×i∈AcHi ×j∈A 2Lj)(ε, µ·)

∏
j∈B

f(Xj(λj))


= EG(1),...,G(n)

F ((×nj=1Hj)(ε, µ·)
) ∏
j∈B

G(j),ρj
G(j),f ·dx

 (A.14)

where Ac is the complement of A in {1, . . . , n} and P ρB

λB
denotes the product measure

×j∈BP
ρj

j,λj
.

This allows us to show inductively, using (A.5), that

(×i∈AcHi ×j∈A 2Lj)(µ)
def
= lim

ε→0
(×i∈AcHi ×j∈A 2Lj)(ε, µ) (A.15)

exists as a limit in L2(dPG(1),...,G(n)

⊗
f ·dP ρ1,...,ρn

λ1,...,λn
) where f ·dP ρ1,...,ρn

λ1,...,λn

def
=
∏n
j=1 f(Xj(λj))·

dP ρ1,...,ρn

λ1,...,λn
. In particular

(×nj=1Lj)(µ)

= lim
ε→0

∫ 
∫ λ1

0

· · ·
∫ λn

0

n∏
j=1

fε(Xj(tj)− x)
n∏
j=1

dtj

 dµ(x) (A.16)

is a (total) intersection local time for the independent processes X1, . . . , Xn.
We can now state an isomorphism theorem for n independent processes.

Theorem A.2. Let {µi}∞i=1 be finite measures in G2n. Then, for any com-
pactly supported measures ρ1, . . . , ρn ∈ G1, C measurable non-negative function F
on R∞,and for any B ⊆ {1, . . . , n} we have

EG(1),...,G(n)E
ρB

λB

F
∑
A⊆B

(×i∈AcHi ×j∈A 2Lj)(µ·)

∏
j∈B

f(Xj(λj))


= EG(1),...,G(n)

F ((×nj=1Hj)(µ·)
) ∏
j∈B

G(j),ρj
G(j),f ·dx

 . (A.17)
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where Ac is the complement of A in {1, . . . , n} and C denotes the σ–algebra gener-
ated by the cylinder sets of R∞.

Clearly Theorem A.2 is easier to prove than Theorem 4.1. It does not require
that the Lévy processes are in Class A. In fact this theorem is valid for strongly
symetric Markov processes, as defined in [17].

Theorem A.2 refers to n independent Markov processes starting at arbitrary
points. We will need version of this theorem in which the independent processes all
start from the same point. To accomplish this we return to (A.11) which we write
as ∫ ∫

EG(1),...,G(n)E
y1,...,yn

λ1,...,λnF (∑
A

(×i∈AcHi ×j∈A 2Lj)(ε, µ)

)
n∏
j=1

f(Xj(λj))

 n∏
j=1

ρj(dyj)(A.18)

= EG(1),...,G(n)

F ((×nj=1Hj)(ε, µ·)
) n∏
j=1

G(j),ρj
G(j),f ·dx

 .

Let ρj = ρx,δ, j = 1, . . . , n and integrate the resulting equation with respect to a
measure ν ∈ Gn. This gives us

(A.19)∫ ∫
EG(1),...,G(n)E

y1,...,yn

λ1,...,λnF (∑
A

(×i∈AcHi ×j∈A 2Lj)(ε, µ·)

)
n∏
j=1

f(Xj(λj))
n∏
j=1

ρx,δ(dyj) dν(x)


= EG(1),...,G(n)

F ((×nj=1Hj)(ε, µ·)
)∫ n∏

j=1

G(j),ρx,δ
dν(x)

 n∏
j=1

G(j),f ·dx

 .

Let

(×nj=1G(j))(δ, ν)
def
=
∫ n∏

j=1

G(j),ρx,δ
dν(x) (A.20)

for δ > 0 and ν ∈ Gn. Similarly to (A.3) and (A.4) we see that

EG(1),...,G(n)((×
n
j=1G(j))(δ, µ)(×nj=1G(j))(δ′, ν))

=
∫ ∫ n∏

j=1

u1(vj , wj)
n∏
j=1

ρx,δ(dvj)ρy,δ′(dwj) dµ(x) dν(y) (A.21)

=
∫ ∫ n∏

j=1

u1(x+ vj , y + wj)
n∏
j=1

ρδ(dvj)ρδ′(dwj) dµ(x) dν(y)

and

(v1, w1, . . . , vn, wn) 7→
∫ ∫ n∏

j=1

u1(x+ vj , y + wj) dµ(x) dν(y) (A.22)
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is continuous. Consequently

(×nj=1G(j))(ν)
def
= lim

δ→0
(×nj=1G(j))(δ, ν) (A.23)

exists as a limit in L2.
Let µ1, . . . , µN ∈ G2n and let F be a bounded continuous function on RN .

Recall (A.12) and the fact that the functions fε and f are bounded and uniformly
continuous. We see that

Ey1,...,yn

λ1,...,λn

F (∑
A

(×i∈AcHi ×j∈A 2Lj)(ε, µ·)

)
n∏
j=1

f(Xj(λj))

 (A.24)

is a bounded uniformly continuous function of (y1, . . . , yn). Also note that the
following set of measures on Rn, indexed by δ∫ n∏

j=1

ρx,δ(dyj) dν(x) (A.25)

converge weakly as δ → 0, to a measure which we denote by ∆?ν, defined by the
equations ∫

h(y1, . . . , yn) d∆?ν(y1, . . . , yn) =
∫
h(y, . . . , y) dν(y) (A.26)

for all bounded uniformly continuous functions h on Rn.
Thus we can take the limit of (A.19) as δ → 0 and obtain

(A.27)

∫
EG(1),...,G(n)E

y,...,y
λ1,...,λn

F (∑
A

(×i∈AcHi ×j∈A 2Lj)(ε, µ·)

)
n∏
j=1

f(Xj(λj)) dν(y)


= EG(1),...,G(n)

F ((×nj=1Hj)(ε, µ·)
)
(×nj=1G(j))(ν)

n∏
j=1

G(j),f ·dx

 .

It is straight forward to take limits in (A.27) as ε → 0 and to extend the re-
sulting equation so that it holds for a countable collection of measures µ1, . . . ∈
G2n, all C measurable non-negative function F on R∞, and arbitrary subsets
B ⊆ {1, . . . , n}. Doing this gives the next theorem. (When the Lévy processes
X1, . . . , Xn all have the same initial point y ∈ S, we abbreviate P y1,...,yn

λ1,...,λn
by

P yλ1,...,λn
, and use analogous notation when considering arbitrary B ⊆ {1, . . . , n}.)

Theorem A.3. Let {µi}∞i=1 be finite measures in G2n. Then for any compactly
supported ν ∈ Gn, C measurable non-negative function F on R∞,and for any B ⊆
{1, . . . , n} we have∫

EG(1),...,G(n)E
y
λB

F
∑
A⊆B

(×i∈AcHi ×j∈A 2Lj)(µ·)

∏
j∈B

f(Xj(λj))

 dν(y)

= EG(1),...,G(n)

F ((×nj=1Hj)(µ·)
)
(×nj=1G(j))(ν)

∏
j∈B

G(j),f ·dx

 (A.28)
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where Ac is the complement of A in {1, . . . , n} and C denotes the σ–algebra gener-
ated by the cylinder sets of R∞.

We now need a simple extension of Lemma 3.1. Let

Iµ,ν(z1, . . . , zk) =
∫ ∫ k∏

j=1

u1(x− y + zj) dµ(x) dν(y) (A.29)

Jµ,ν(v1, . . . , vk) =
∫ k∏

j=1

u1(x+ vj) d(µ ∗ ν)(x) (A.30)

and

Kµ,ν,ρ(v1, . . . , vn, z1, . . . , zn)

=
∫ ∫ n∏

j=1

u1(x+ vj)
n∏
j=1

u1(x− y + zj) d(µ ∗ ν)(x) dρ(y). (A.31)

Lemma A.1. (i) When µ, ν ∈ Gk, Iµ,ν(z1, . . . , zk) is bounded and uni-
formly continuous.

(ii) When µ, ν ∈ Gk, Jµ,ν(v1, . . . , vk) is bounded and uniformly continuous.
(iii) When µ, ν ∈ G2n, and ρ is a finite measure, Kµ,ν,ρ(v1, . . . , vn, z1, . . . , zn)

is bounded and uniformly continuous.

Proof. That Iµ,ν(z1, . . . , zk) is bounded and uniform continuous follows from
the proof of Lemma 3.1. For (ii) note that

Jµ,ν(v1, . . . , vk) =
∫ ∫ k∏

j=1

u1(x+ y + vj) dµ(x) dν(y)

= Iµ̄,ν(v1, . . . , vk) (A.32)

where µ̄(A) = µ(−A). Since µ ∈ Gk implies µ̄ ∈ Gk, (ii) follows from (i).
Finally, by (A.30)

Kµ,ν,ρ(v1, . . . , vn, z1, . . . , zn)

=
∫

(Jµ,ν(v1, . . . , vn, z1 − y, . . . , zn − y)) dρ(y). (A.33)

Consequently we obtain (iii) because Jµ,ν(v1, . . . , vn, z1− y, . . . , zn− y) is bounded
and uniform continuous and ρ is a finite measure.

We now use Theorem A.3 to obtain the results of Theorem A.1 but for the
Gaussian chaos {(×nj=1Hj)(µx), x ∈ Rm}.

Theorem A.4. Let µ ∈ G2n
F .

(i) If {(×nj=1Hj)(µx)x ∈ Rm} is locally bounded almost surely then∫
(u1(y − x))n dµ(x) (A.34)

is bounded on Rm.
(ii) If {(×nj=1Hj)(µx), x ∈ Rm} is continuous almost surely then (A.34) is

continuous on Rm.
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Proof. For simplicity we prove this with Rm replaced by the torus Tm. The
easy modifications necessary to adapt the proof to Rm are carefully explained in
[15]. Note that by working on the torus we can set f ≡ 1 in Theorem A.3. We
first assume only that {(×nj=1Hj)(µx), x ∈ Tm} is bounded almost surely. Let
µτ = fτ ∗ µ, that is, dµτ (x) = (

∫
fτ (x− y) dµ(y)) dmx. Note that by (A.8)

EG(1),...,G(n)

(
(×nj=1Hj)(µz)− (×nj=1Hj)(µv)

)2 (A.35)

= 2n
∫ ∫

(u1(x− y))2nd(µz(x)− µv(x))d(µz(y)− µv(y)).

Therefore, by Lemma A.1 we have that {(×nj=1Hj)(µx), x ∈ Tm} is continuous in
L2. This enables us to take a measureable and separable version of {(×nj=1Hj)(µx), x ∈
Tm}. We see that the two processes

{(×nj=1Hj)(µτy), y ∈ Tm} (A.36)

and

{
∫
fτ (y − x)(×nj=1Hj)(µy) dmx, y ∈ Tm} (A.37)

are stochastically equivalent. This implies that

‖ sup
y∈Tm

(×nj=1Hj)(µτy)‖2 ≤ ‖ sup
y∈Tm

(×nj=1Hj)(µy)‖2. (A.38)

We claim that the convergence (×nj=1Lj)(µ
τ ) = limε→0(×nj=1Lj)(ε, µ

τ ) in (A.16)
holds in L2(P zλ1,...,λn

) for each z ∈ Tm, and in fact is uniform in z ∈ Tm. To see
this we compute

Ezλ1,...,λn

(
(×nj=1Lj)(ε, µ

τ )(×nj=1Lj)(ε
′, µτ )

)
=
∫ ∫ (

Ezλ

∫ λ

0

∫ λ

0

fε(X(s)− x)fε′(X(t)− y) ds dt

)n
dµτ (x) dµτ (y)

= 2n
∫ ∫ (∫ ∫

u1(v − z)u1(w − v)fε(v − x)fε′(w − y) dv dw
)n

dµτ (x) dµτ (y) (A.39)

= 2n
∫ ∫ (∫ ∫

u1(x+ v − z)u1(y − x+ w − v)fε(v)fε′(w) dv dw
)n

dµτ (x) dµτ (y)

= 2n
∫ ∫ ∫ ∫ n∏

j=1

u1(x+ vj − z)u1(y − x+ wj − vj) dµτ (x) dµτ (y)


n∏
j=1

fε(vj)fε′(wj) dvj dwj .

Since µτ = fτ ∗ µ ∈ G2n and is also a finite measure, our assretion follows from
Lemma A.1.

Convergence in L2(P zλ1,...,λn
) implies convergence in L1(P zλ1,...,λn

). Therefore

Ezλ1,...,λn
((×nj=1Lj)(µ

τ )) = lim
ε→0

Ezλ1,...,λn
((×nj=1Lj)(ε, µ

τ ))
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= lim
ε→0

Ezλ1,...,λn

∫ ∫ λ1

0

· · ·
∫ λn

0

n∏
j=1

fε(Xj(t)− x)
n∏
j=1

dtj

 dµτ (x)(A.40)

= lim
ε→0

∫ ∫ n∏
j=1

u1(vj − z)fε(vj − x) dvj

 dµτ (x)

= lim
ε→0

∫ ∫ n∏
j=1

u1(vj + x− z)fε(vj) dvj

 dµτ (x)

= lim
ε→0

∫ ∫ n∏
j=1

u1(vj + x− z) dµτ (x)

 n∏
j=1

fε(vj) dvj

=
∫

(u1(x− z))n dµτ (x)

for all z ∈ Tm. The last line follows from Lemma A.1 since µτ = fτ ∗ µ ∈ G2n.
Furthermore, calculations similar to those in (A.39) show that

Ezλ1,...,λn

(
{(×nj=1Lj)(µ

τ
w)− (×nj=1Lj)(µ

τ
v)}2

)
= 2n

∫ ∫
(u1(x− z))n

(u1(y − x))nd(µτw(x)− µτv(x))d(µ
τ
w(y)− µτv(y)). (A.41)

By Lemma A.1 this shows that {(×nj=1Lj)(µ
τ
y), y ∈ Tm} is continuous in L2(P zλ1,...,λn

)
for each z ∈ Tm. Therefore we can choose a separable version {(×nj=1L̃j)(µ

τ
y), y ∈

Tm} of {(×nj=1Lj)(µ
τ
y), y ∈ Tm} in L2(P zλ1,...,λn

) for each z ∈ Tm. When D ⊆ Tm

is a countable dense set we then have

sup
y∈Tm

(×nj=1L̃j)(µ
τ
y) = sup

w∈D
(×nj=1L̃j)(µ

τ
w) (A.42)

P zλ almost surely, for each z ∈ Tm.
The fact that the convergence of

(×nj=1Lj)(µ
τ ) = lim

ε→0
(×nj=1Lj)(ε, µ

τ ) (A.43)

in L2(P zλ1,...,λn
), is uniform in z ∈ Tm shows that the convergence also holds in

L2(P ρλ1,...,λn
) for any probability measure ρ. This implies that in Theorem A.3 we

can replace {(×nj=1Lj)(µ
τ
y), y ∈ Tm} by {(×nj=1L̃j)(µ

τ
y), y ∈ Tm}. Using Theorem

A.3, and an argument similar to the one used in (6.6), and (A.38) we see that for
any probability measure ν ∈ Gn and any y, z ∈ Rm we have∫

Ezλ1,...,λn
((×nj=1L̃j)(µ

τ
y)) dν(z) ≤

∫
Ezλ1,...,λn

( sup
w∈D

(×nj=1L̃j)(µ
τ
w)) dν(z)

≤ C‖ sup
w∈D

(×nj=1Hj)(µw)‖22 (A.44)

≤ C‖ sup
w∈Tm

(×nj=1Hj)(µw)‖22

where C is a constant independent of z and τ . In particular this holds when ν is
normalized Lebesgue measure on Tm. Using (A.40) we see that for any z ∈ Tm∫

(u1(y − x))n dµτ (x) =
∫

(u1(z − x))n dµτz−y(x)
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= Ezλ1,...,λn
((×nj=1L̃j)(µ

τ
z−y)) (A.45)

≤ Ezλ1,...,λn
( sup
w∈D

(×nj=1L̃j)(µ
τ
w)).

Integrating (A.45) with respect to normalized Lebesgue measure, which we denote
by dmz, and using (A.44) we see that∫

(u1(z − x))n dµτ (x) ≤ C‖ sup
w∈Tm

(×nj=1Hj)(µw)‖22 (A.46)

where C is a constant independent of z and τ . Since x ∈ Tm and both µ and
dmz are contained in G2n, (and recalling (3.1)) we see that (u1)n ∗ µ ∈ L1(dmz).
Consequently∫

(u1(z − x))n dµτ (x) = (u1)n ∗ µ ∗ fτ (z) →
∫

(u1(z − x))n dµ(x)

as τ → 0 for almost all z ∈ Tm. Hence for almost all z ∈ Tm we have∫
(u1(z − x))n dµ(x) ≤ C‖ sup

w∈Tm

(×nj=1Hj)(µw)‖22 (A.47)

where C is a constant independent of z. Finally, since u1(z − x) is continuous in x
except when z = x, and each µ ∈ G2n

F is non-atomic, (i) follows by Fatou’s lemma.
The result on continuity is treated similarly.

In order to prove Theorem A.1 we prove a lemma which is both an application
and a generalization of Theorem 2.2, [1]. Consider the Gaussian process Gx,δ the
building block of the Wick power chaos. This has a Karhunen-Loeve expansion,
as in (3.17). To simplify the interchange of limits we truncate the expansion and
define

Gx,δ,N =
∑
|i|≤N

giφi(x, δ). (A.48)

Next, similarly to (3.20), we define the Wick power Gaussian chaos

: Gmµ(δ,N) :=
∫

: Gmx,δ,N : dµ(x)

=
∑

i1,...,im≤N

∫
φi1(x, δ) · · ·φim(x, δ) dµ(x)

∏
j≥1

Hmj(i1,...,im)(gj).(A.49)

When µ ∈ Gm, : Gmµ(δ,N) : converges in L2, as δ → 0 and N →∞, to
: Gmµ :, the basic m-th Wick power chaos. We associate with : Gmµ(δ,N) : the
decoupled chaos

: Gmdecµ(δ,N) :=
∑

i1,...,im≤N

∫
φi1(x, δ) · · ·φim(x, δ) dµ(x)g(1)

i1
· · · g(m)

im
(A.50)

where, in general, {g(k)
i }∞i=0, k ≥ 1, are independent copies of {gi}∞i=0. This is just∫ ( m∏

p=1

G
(p)
x,δ,N

)
dµ(x) (A.51)

where
G

(p)
x,δ,N =

∑
ip≤N

g
(p)
ip
φip(x, δ). (A.52)
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In order to use Theorem 2.2, [1] we note that the real valued coefficients in the
series representation of : Gmµ(δ,N) : in (A.49) are symmetric in i1, . . . , im.

Let N be a finite set of finite measures and let ‖ · ‖N be a norm on N . Theorem
2.2, [1] states that for all u > 0

2−6m−2P (cm‖ : Gmµ(δ,N) : ‖N ≥ u) ≤ P (‖ : Gmdecµ(δ,N) : ‖N ≥ u)
≤ 2m−1P

(
c−1
m ‖ : Gmµ(δ,N) : ‖N ≥ u

)
. (A.53)

were cm = (m!/mm)1/2.
We need a version of (A.53) for the integral of products of independent Wick

powers. Consider the product of r independent Wick powers
r∏
a=1

:Gma

a,x,δ,N : (A.54)

where {ma}ra=1 are integers and each term :G(ma)
x,δ,N : is generated, as above, by a

Gaussian process

Ga,x,δ,N =
∑
|i|≤N

ga,iφa,i(x, δ) (A.55)

where the sequences {{ga,i}}ra=1 are independent sequences of independent identi-
cally distributed N(0,1) random variables. The sequences of functions {{φa,i(x, δ)}}ra=1

are not necessarily the same for different values of a.
Let

QN,δ(µ)
def
=
∫ r∏

a=1

:Gma

a,x,δ,N : dµ(x). (A.56)

Similarly

QN,dec(µ) =
∫ r∏

a=1

(
ma∏
p=1

G
(p)
a,x,δ,N

)
dµ(x) (A.57)

where
G

(p)
a,x,δ,N =

∑
|ip|≤N

g
(p)
a,ip

φa,ip(x, δ) (A.58)

and {{g(p)
a,ip

}}ma
p=1 are independent copies of {{ga,i}}, a = 1, . . . , r. In the next

Lemma, by decoupling each Wick power separately, while holding the other terms
fixed on the appropriate probability product space, we see that (A.53) holds for the
more general processes QN,δ(µ) and QN,δ,dec(µ) except that the constants are now
products of the constants in (A.53) over m1, . . . ,mr.

Lemma A.2. Let bm = 2−6m−2, cm = (m!/mm)1/2, dm = 2m−1, bm̂ =∏r
a=1 bma

and similarly for cm̂ and dm̂. Then for QN,δ(µ) and QN,δ,dec(µ) as
defined in (A.56) and (A.57) and for all u > 0

bm̂P (cm̂‖QN,δ(·)‖N ≥ u) ≤ P (‖QN,δ,dec(·)‖N ≥ u) (A.59)

≤ dm̂P
(
c−1
m̂ ‖QN,δ(·)‖N ≥ u

)
.

Proof. The proof is straight forward. We indicate how it goes by obtaining
the left-hand side inequality in (A.59) in the case a = 2. Let Ωa be the prod-
uct probability space of {{g(p)

a,ip
}}ma
p=1 and ωa ∈ Ωa, a = 1, 2. To emphasize the
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dependence on the probability space we write

QN,δ(µ, ω1, ω2) =
∫

:Gm1
1,x,δ,N (ω1) ::Gm2

2,x,δ,N (ω2) : dµ(x) (A.60)

and

QN,δ,dec(µ, ω1, ω2) =
∫ m1∏

p=1

G
(p)
1,x,δ,N (ω1)

m2∏
p=1

G
(p)
2,x,δ,N (ω2) dµ(x) (A.61)

where ωa = (ω(1)
a , . . . , ω

(ma)
a ), a = 1, 2. By (A.53), with ω2 fixed

bm1Pω1 (cm1‖QN,δ( · , ω1, ω2)‖N ≥ u) ≤ Pω1 (‖IN,dec( · , ω1, ω2)‖N ≥ u)
(A.62)

where

IN,dec(µ, ω1, ω2) =
∫ m1∏

p=1

G
(p)
1,x,δ,N (ω1) :Gm2

2,x,δ,N (ω2) : dµ(x)

=
∫

:Gm2
2,x,δ,N (ω2) :

m1∏
p=1

G
(p)
1,x,δ,N (ω1) dµ(x). (A.63)

Taking the expectation of each side of (A.62) over Ω2 we get

bm2bm1P (cm2cm1‖QN,δ(·)‖N ≥ u) ≤ bm2P (cm2‖IN,dec(·)‖N ≥ u)
= bm2Eω1Pω2 (cm2‖IN,dec( · , ω1, ω2)‖N ≥ u) . (A.64)

Using the representation of IN,dec given in the last line of (A.63) and using (A.53)
again we see that

bm2Pω2 (cm2‖IN,dec( · , ω1, ω2)‖N ≥ u)
≤ Pω2 (‖QN,δ,dec( · , ω1, ω2)‖N ≥ u) . (A.65)

Taking the expectation of (A.65) over Ω1 and combinning the result with (A.64)
we obtain the left-hand side inequality in (A.59) in the case a = 2. The right-hand
side inequality in this case follows similarly as does the general case stated in the
theorem.

Proof of Theorem A.1. Theorem A.1 (i) follows from Theorem A.4 (i), be-
cause there exist constants 0 < C1, C2 <∞, depending only on n such that

E

(
sup

x∈[−1,1]m
| : G2nµx : |

)
≤ C1E

(
sup

x∈[−1,1]m
|(×nj=1Hj)(µx)|

)

≤ C2E

(
sup

x∈[−1,1]m
| : G2nµx : |

)
(A.66)

and the fact that a Gaussian chaos process has all moments. We now show that the
relationship in (A.66) follows from Lemma A.2. We note that the bounds in Lemma
A.2 are independent of N and δ and hence they continue to hold for limits in L2 of
the processes QN,δ(µ) and QN,δ,dec(µ). When µ ∈ G2n, : G2nµ : and (×nj=1Hj)(µ)
are limits of ∫

:G2n
x,δ,N : dµ(x) and

∫ n∏
a=1

:G2
a,x,δ,N : dµ(x) (A.67)
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respectively. These are two different realizations of QN,δ(µ). However, the cor-
responding QN,δ,dec(µ) is the same for both of them. Therefore the moments of
both of these processes are comparable. Since (A.59) is also independent of the
cardinality of N it can be extended to a countable set of measures {µx}, where x is
dense in [−1, 1]m. The extension to all x ∈ [−1, 1]m follows from the separability of
the processes. This completes the proof of Theorem A.1 (i). The proof of Theorem
A.1 (ii) is the same except that the sup-norm is replaced by a norm which measures
the modulus of continuity.
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