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ABSTRACT. - We prove functional laws of the iterated logarithm for L~,
the number of returns to the origin, up to step n, of recurrent random
walks on Z~ with slowly varying partial Green’s function. We find two
distinct functional laws of the iterated logarithm depending on the scaling
used. In the special case of finite variance random walks, we obtain one
limit set for 0  ~  1, and a different limit set for

n log3 n) ; 0  x,  1. In both cases the limit sets are classes of
distribution functions, with convergence in the weak topology. © Elsevier,
Paris

* This research was supported by Hungarian National Foundation for Scientific Research,
Grants No. T 16384 and T 19346.

t This research was supported, in part, by grants from the National Science Foundation and
PSC-CUNY.

AMS Classifications: 60 J 15, 60 F 17

Annales de I’Institut Henri Poincaré - Probabilités et Statistiques - 0246-0203

Vol. 34/98/04/@ Elsevier, Paris

Vol. 34, n° 4, 1998, p..545--563.



546 E. CSAKI, P. REVESZ AND J. S. ROSEN

RESUME. - Nous demontrons des lois fonctionnelles du logarithme itere
pour L~, le nombre de retours a l’origine avant l’instant n d’une marche
aleatoire recurrente sur Z~ avec une fonction de Green a variation lente.
Nous obtenons deux lois fonctionnelles differentes selon le changement
d’ échelle utilise. Dans Ie cas particulier des marches aleatoires a variance
finie, nous obtenons un ensemble limite pour / (log n log3 n) ; 0  x 

1, et un ensemble limite different pour n log3 n) ; 0  x  1.

Dans les deux cas les ensembles limites sont des classes de fonctions de

distribution, avec convergence pour la topologie faible. © Elsevier, Paris

1. INTRODUCTION

Let Xn be a symmetric adapted recurrent random walk on Z2. We use
to denote the transition density of Xn, and let

denote the partial Green’s function. We can extend g(t) to be a

continuous monotone increasing function of t > 0. Recurrence means

that limt~~ g(t) = ~. It is known, see e.g. Proposition 2.14 of [7], that

so that g(n) is sub-logarithmic, i.e. g~n)  C log n. Throughout this paper
we make the assumption that g(n) is slowly varying at oo. This will be
satisfied in particular if Xn is in the domain of attraction of a non-degenerate
R2-valued normal random variable.

As usual, L~ will denote the local time of X at x, i.e. the number of

times k  n such that Xk = x. We extend Lt to non-integer t by linear
interpolation. The following law of the iterated logarithm for the local time
L~ was proven in [7]:

where logj denotes the j’th iterated logarithm. For the simple random walk
in Z2, (1.3) was proven by Erdos and Taylor [4]. See also Bertoin and

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Caballero [1] ] for an alternate proof and generalization of ( 1.3). The object
of this paper is to prove functional laws of the iterated logarithm for the
local time L~.

Let A4 be the set of functions  x  1, which are non-
decreasing, right-continuous on [0,1) and left-continuous at x = 1. Let

M* C A4 be the set of functions m(x) in M such that m(0) = 0 and

We will always consider with the weak topology, which is induced
by the Levy metric

where = m(O) for x  0 and m(x) = m(l) for x > 1.
Let {~(?~, x) ; 0  :~  1}, for n = 1,2,..., be any sequence of functions

in M such that

for each 0  ~  1. Thus, for example, if c log n, we can take
t(n, x) = If g(n) - c0, we can take t(n, x) = while if

c log2 n, we can take t(n, x) = e~~~~. Our main theorem is

THEOREM 1. - If 
’

then a.s. the set of limit points n = 1,2,...} C is .J~1’~.

The meaning of this statement is that there exists an event 00 C 0 of
probability zero with the following two properties:

Property 1. - For any cJ f/:. 00 and any sequence of integers
1  z/(l)  v(2)  ... there exist a random subsequence v(kj) and
function m E such that

Property 2. - For any m E M* and 03C9~ 00 there exists a sequence of
integers = such that

Vol. 34, n° 4-1998.
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We will prove Theorem 1 by showing that each of the above two

properties holds. This is done in sections 2-3.

The special case of finite variance random walks on Z2 deserves explicit
mention:

COROLLARY 1. - Let Xn be a symmetric random walk on Z2 with finite
variance and let denote the determinant of the covariance matrix Q
of X l . If

then a.s. the set of limit points n = 1,2,...} C is

(2!Q ~/7T)~~
We want to contrast Theorem 1 with the functional law of the iterated

logarithm for the local times L~ of a symmetric random walk on Z in
the domain of attraction of a stable random variable of index 1  2.

Theorem 1.4 of [8], see also Theorem 1.4 of [7], says that a.s. the set

of limit points of

in the uniform topology is .Jt~~, where is a universal constant and

.il~( ~ is the set of functions f G .~t which are absolutely continuous
with respect to Lebesgue measure, with

Thus, ,~li( 2 is the set of monotone functions in the usual Strassen class.

We note that for the random walks considered in Theorem 1 we have

see the proof of Theorem 1.1 in [7]. In comparing (1.6) with (1.8) we see
that the scaling of L~ in n, the topology and the limit sets are all quite
different. If we use the scaling in the case of recurrent random walks

on Z2 we obtain another limit set which we now describe.

Let

Armales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Define the set of functions C as follows:

if and only if

for a triple 0  ml  m2  1, 0  T  1.

We have the following result.

THEOREM 2. - Let

Then the set of limit points of the = 1, 2, ...} 
is .I1~ °.
The proof of Theorem 2 is given in sections 4-6.
We note that similar functional laws of the iterated logarithm hold for the

local times of 1-dimensional symmetric random walks and Levy processses
in the domain of attraction of a Cauchy random variable. In these cases
g(n) need not satisfy (1.9). Rather than state a general theorem we only
mention that under the conditions of Theorem 1.3 of [7] the proofs of this
paper can be used to show that if

then a. s . the set of limit points = 1,2,...} C is 

2. THEOREM 1: PROOF OF PROPERTY 1

We begin by recalling certain results from [7]. In the following, 8 will
denote an arbitrarily small positive number, whose value may change from
line to line. By Lemma 2.5 of [7], for any 8 > 0 and x > ~o (b) sufficiently
large we have

Vol. 34, n° 4-1998.
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. 

while by Lemma 2.7 of [7], for x > xo(8) sufficiently large (but much
smaller than t, see the exact statement in [7] for the details, which won’t

present a problem here)

Combining these we see that for any b > 0 and y > x > 0

for n sufficiently large, depending on b, x, y and 6 > 0. Furthermore, Lemma
2.7 of [7] also provides the following lower bound for walks starting from z

where

and x+ = max(x,O). We extend a(z, t) to non-integer t by linear

interpolation.
Our proof of Theorem 1 will be based on the following:

LEMMA 1.

(i) For 0  xi  x~  ...  1, 0  vi  v2  ...  vr, we

have for n large enough

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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vr-1  ur-1  2lr  2Lr, we have for n large enough 
.

Proof of Lemma 1. - Let qo = 0, q2 = w2 g(n) log2 g(n~~, i = 1,... , r,

where [x] denotes the integer part of x, and let po = 0  pl  p2  ... be

the times of returns to the origin of our random walk. Then

m w

Now (2.5) follows by applying (2.1). ,

To show (2.6), set to = uo = 0 and let 8i = + 1, ti =

1,...,r. Then 0  S2  t2 

...  8r-1  tr-i  8r  tr for large enough n. Using Zl == Z and Zj = 0

for all j ~ 1, and the conventions t(n, xo) = 0, = t(n, xr+1) _
t(n, (1 - (5)~r+1) = oo we have

Vol. 34, n° 4-1998.
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where we have applied (2.2), (2.3) and (2.4). This completes the proof
of Lemma 1.

Now we prove Property 1.

0  ~i  ~2  ...  ~r such that

Define r~~ by g(nk) = dk with 1  d  band

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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It follows from (2.5) that

Since b/d > 1 this shows that i.o.} = 0. By interpolating for

nk  n  this implies

By choosing rational, one can see that there is a universal set n1 of
probability 1 such that for all 03C9 G 03A91 and all rational we have that

occur only finitely often.

Since is a sequence of a.s. bounded functions in Jl4, by the
Helly-Bray theorem every subsequence has a further subsequence which
is convergent in the Levy metric. Its limit m is in .M. Suppose that for
an 03C9 E H, m ~ Ji4*, i.e. > 1. Then one can find rational

x2, zi, z = 1,...,r such that Zi  i = 1,..., r and at least for
some i, z2  m(xi) and moreover,

In view of (2.12) and since m is supposed to be a limit point we

conclude that úJ t/:. Qi. This proves Property 1.

3. THEOREM 1: PROOF OF PROPERTY 2

Now we turn to the proof of Property 2.
Let m* E M* such that ~o ~  1. Given small ~ > 0, we can

find 0  xl  ...  ~ ~ 1 and 0  zi  ... such that

and

Vol. 34, n ° 4-1998.
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and for any f e 

LEMMA 2. - Define the events A~ by

where ~ > 0, 0  x1,  ...  xr  l, zi, xi satisfy (3.1) and (3.2). Then

ProofofLemma 2. - We follow the proof of Theorem 1.1 of [7], to which
the reader can refer for further details. Define nk by g(nk) = 0~ with 1  8.

As usual, we let Fn denote the a-algebra generated by X 1, ... , Xn . By the
extended Borel-Cantelli Lemma (see Corollary 5.29 in [2])

so that to prove our Lemma it suffices to show that for sufficiently large 0

and using (1.3) we see that it suffices to show that

for all 03B8 sufficiently large, where

Using the Markov property it suffices to show that the event

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



555FUNCTIONAL LIL’ S FOR LOCAL TIMES OF RANDOM WALKS

has probability > 1 - 3/~. We note that t(nk, = oo, as

follows from the proof of Proposition 2.9 in [7]. Hence

Thus the left hand side of (3.10) is no less than

By (2.6) this can be bounded from below by

where

and 8’ > 0. It is easily checked using (1.9) that

for k and 0 large, so that the expectation of (3.11 ) diverges. Since clearly
 1 we can use the Paley-Zygmund inequality

(see e.g. Inequality II, page 8 of [5]) to show that (3.10) has probability
> 1 - 3/B. This concludes the proof of Lemma (2).

It follows from Lemma (2) and (3.3) that for m* E A4* we have

d( f n, m* )  e i.o. with probability 1, but the exceptional set of probability
0 may depend on m* . To show that this is not the case we note that

one can choose a countable set of functions m* with ~10 1 x dm* (x)  1,
dense in (with respect to the Levy metric). The countable union of the
exceptional sets of probability 0 is also of probability 0, and obviously this
exceptional set is universal for all m* E J1~E*. By choosing £ = ~~ = 
for all 03C9 not in this exceptional set one can find a sequence {Vk} such that
d(fvk’ m*)  1/~, i.e. iVk - m* as k - oo in the Levy metric, so m* is a
limit point and we have Property 2. This completes the proof of Theorem 1.

Vol. 34, n° 4-1998.
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4. ESTIMATES ON NON-RETURN

The next two sections develop material needed for the proof of

Theorem 2.

The following Lemma and its proof are simple translations of [4] to our
context. Let p denote the length of the first excursion from the origin.

LEMMA 3.

Proof of Lemma 3. - Let

Considering the last return to the origin we have

so that

which shows that

On the other hand. 14.2~ also shows that

Now

and using the fact that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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so that

we have

Hence

Our lemma then follows from the slow variation of g.

5. LARGE EXCURSIONS

Introduce the following notation:

Let

be the order statistics of the sequence

Vol. 34, n° 4-1998.
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Now we have

LEMMA 4.

Proof. - Define nj by g(nj ) = j. Using the fact that as in (4.7)

together with Lemma 3 we have

if j is big enough. Let

Then, since N(nj) = j log j, we have

Thus  1 a. s. for all but finitely many j. Now take nj  n  
Since

and

we obtain that

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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Since L~  N(n) (cf. (1.3)) there are no more than N(n) excursions before
time n. Thus the sum of those elements of the sequence

which are no larger than n (g (n) ) -2 is bounded by

Hence the fact that ~{n)  1 implies the Lemma.
This Lemma and its proof are essentially the same as the corresponding

Lemma and proof in Revesz and Willekens [9].
When n = pm for some m, the last element in (5.1 ) vanishes and the

above proof immediately implies the following corollary.

COROLLARY 2.

COROLLARY 3. - For any ~ > 0 let 6") resp. ~) be the last resp.
first return of the random walk X. to the origin before resp. after ( 1 + ~) pn.
Then for any K > 0 there exists an no = no(K, w) such that

Proof of Corollary 3. - Assume on the contrary that we can find an
infinite sequence nj such that  for some K. By
Corollary 2 we can find an excursion in ( 0, with length M-nj ~
Similarly, since is itself of the form pn for some n, we can find

an excursion in of length Pnj. Since our

assumption says that ( 1 + ( 1 + E + so that

the existence of the two (distinct) excursions of length Mn would
contradict Corollary 2 applied to p~ = 

~ 

Vol. 34, n° 4-1998.
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6. PROOF OF THEOREM 2

We will prove Theorem 2 by showing that there exists an event Ho C H
of probability zero with the following two properties:

Property 1 ‘. - For any no and any sequence of integers
1  z/(l)  v(2)  ... there exist a random subsequence v(kj) and
function m E Jt~ ° such that

Property 2’. - For any m E and 03C9 ~ no there exists a sequence
of integers v(k) = v(k,w,m) such that

By the Helly-Bray theorem, for any subsequence of the 
there exists a further subsequence which is convergent in the Levy metric.
Lemma 4 clearly implies that the limit is in with probability 1. This

proves Property 1’ .

To show Property 2’ we prove that any

is a limit point of the sequence {~M} with probability 1.

LEMMA 5. - For almost all 0~ and any 0   1 > 0 there

exists a sequence of integers = 77~2 ? ~)  ?T’2 = n2 (c,~, ?~2?~)  ...

such that

Proof of Lemma 5. - Let ~ > 0 be so small that ~  and

m2 + c  1 - e. Clearly, there exist sequences ~n~~~ = ~~(~, 77~2, ~)} and
~n~2~ = n~2~ (cv, ~~ ~ such that

and

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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We may assume that the two sequences are alternating, i.e.  nt2~ 
n))I , i = 1 , 2, .... It is intuitively clear that we can find a subsequence with
the desired property by interpolating between these two sequences. This
argument can be made precise as follows. Define 7~ by

Then obviously ni  n~2~ and L~ i = L° i _ 1 +1. Hence Xn2 = (0, 0), since
L~ increases at return points only. Moreover,

i.e. we have the Lemma.

Next we prove

LEMMA 6. - For any 0  T  1, 0  m1  m2  1 and é > 0 we have

where d is the Levy metric and h = is defined by (1.10).

Proof of Lemma 6. - Let

i.e. the (random) index of the longest of the first N excursions and define
the events

where aN is defined by g(aN) = 2N.

Vol. 34, n° 4-1998.
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We use the following

LEMMA 7. - two sequences of events
such that i.o.} > 0 and > 0. Assume further
that either one of the following two conditions hold:

(i) BN is independent of ~AN, AN +1, ...}, N = 1 , 2, ...
(ii) B N is independent A2 , ... , N = 1, 2, ...

Then > 0.

This Lemma under the condition (i) is proved in Klass [6], while for the
proof under (ii) we refer to Lemma 3.1 and its proof in [3].
To show Lemma 6, observe that BN defined by (6.2) is independent of

AN+I, ...~ defined by (6.1). By Lemma 5 we have i.o.} = 1
and it is easy to see that lim infN~~ P{BN} > 0. Hence applying
Lemma 7 (i) we get > 0. Now let AN = AN n BN .
Then CN defined by (6.3) is independent of A*2,..., A*N and

lim infN~~ P{CN} > 0. (This can easily be seen by using our Lemma 3
together with the argument used for (3.7)-(3.8) of [4]). Hence by Lemma
7(ii), > 0.

It is easy to see that AN n BN n CN implies

and
,

Moreover, for large enough N, AN implies

hence 2 pN  aN. Now let n = PN/T. Since 

g(n)log2g(n) we can see using Corollary 2 and 3, that AN n BN n CN
implies

and

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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for some 6-1 > 0, which in turn implies h)  ~ 1. Since E and hence
61 is arbitrary, we can complete the proof of our Lemma by using the
0-1 law for Xn .
Now we are ready to show Property 2’.

By choosing c > 0, T, ml, m2 rational, and using that such functions
are dense in .JI~! ° with respect to the Levy metric, one can see that there
is a universal set of probability one for which d(f n, h)  ~ for infinitely
many n, therefore we can find a sequence such that h)  I /k
implying that the Levy metric, i.e. h is a limit point. This
shows Property 2’, and completes the proof of Theorem 2.
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