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ABSTRACT. - Let X = {X~ ~ > 1}, X’ = {X~, n > I} be two
independent copies of a symmetric random walk in Z4 with finite third
moment. In this paper we study the asymptotics of In, the number of
intersections up to step n of the paths of X and X’ as n - oo. Our
main result is

where Q denotes the covariance matrix of Xl . A similar result holds for Jn ,
the number of points in the intersection of the ranges of X and X’ up
to step n.

* This research was supported, in part, by grants from the National Science Foundation,
the Guggenheim Foundation, PSC-CUNY and an Scholar Incentive Award from The City
College of CUNY. M. B. Marcus is grateful as well to Université Louis Pasteur and C.N.R.S.,
Strasbourg and the Statistical Laboratory and Clare Hall, Cambridge University for the support
and hospitality he received while much of this work was carried out.

t This research was supported, in part, by grants from the National Science Foundation,
PSC-CUNY and the Lady Davis Fellowship Trust. J. Rosen is grateful as well to the Institute
of Mathematics of the Hebrew University, Jerusalem for the support and hospitality he received
while much of this work was carried out.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques - 0246-0203

Vol. 33/97/01/$ 7.00/© Gauthier-Villars



38 M. B. MARCUS AND J. ROSEN

RESUME. - Soient X = {Xn, n > 1}, X’ = {X~, ~ > I} deux copies
indépendantes d’une marche aléatoire symétrique dans Z4 avec un moment
d’ ordre trois. Dans cet article, nous étudions le comportement asymptotique
de In, le nombre de couples de temps d’intersection jusqu’au temps n des
trajectoires de X et X’. Notre principal résultat donne

où Q designe la matrice de covariance de Xi. Un résultat analogue est
vrai pour Jn, Ie nombre de points d’intersection des trajectoires jusqu’ au
temps n.

1. INTRODUCTION

Let X = ~ X n , n > 1}, X~ = {X~ ~ > 1} be two independent copies
of a symmetric random walk in Z4 with finite variance. In this paper we
study the asymptotics of the number of intersections up to step n of the
paths of X and X’ as n - oo, both the number of "intersection times"

and the number of "intersection points"

where X(l, n) denotes the range of X up to time n and IAI denotes the
cardinality of the set A. For random walks with finite variance, dimension
four is the "critical case" for intersections, since In; In r oo almost surely
but two independent Brownian motions in R4 do not intersect.
We assume that Xn is adapted, which means that Xn does not live on any

proper subgroup of Z~. In the terminology of Spitzer [7] Xn is aperiodic.
We have the following two limit theorems.

THEOREME 1. - Assume that  00. Then

where Q denotes the covariance matrix of X 1.

Annales de 1 ’Institut Henri Poincaré - Probabilités et Statistiques



39LAWS OF THE ITERATED LOGARITHM

As usual, log; denotes the j-fold iterated logarithm.
In the particular case of the simple random walk on Z4, where Q = ~7,

Theorem 1 states that

A similar result holds for Jn:

THEOREME 2. - Assume  00. Then

where q denotes the probabil ity that X will never return to its initial point.
Le Gall [2] proved that (log converges in distribution to the

square of a normal random variable. In this paper we use some of the ideas

of [2] along with techniques developed in [5], [6].

2. PROOF OF THEOREM 1

We use pn(x) to denote the transition function for Xn. Recall

We set

where in the last step we used the fact that our random walk X is symmetric.
As shown in [7] the random walk Xn is adapted if and only if the

origin is the unique element of T4 satisfying = 1 where is
the characteristic function of X l and T~ = (-x, 7r]4 is the usual four

Vol. 33, n° 1-1997.



40 M. B. MARCUS AND J. ROSEN

dimensional torus. We use T to denote the number of elements in the set

{p E T41 ] ~~(p)~ =1}. According to the local central limit theorem, see e.g.
Prop. 2.4 of [3], we have that

while

where Q denotes the covariance matrix of Xi.
When T = 1 we see from (2.2) and (2.3) that

The same sort of calculation shows that this holds in general:

Thus the assertion of Theorem 1 can be written as

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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We begin our proof with some moment calculations.

where ¿7r runs over the set of permutations 7r of {1, 2, ... , ~}. Set

Then we see from (2.7) that

while

We note here that by Lemma 5 of the Appendix we have

Vol. 33, n° 1-1997.
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On the other hand, using  oo we have

so that

giving us the bound

LEMMA 1. - For all integers n ; t > 0 and for any E > 0

where

Here (2n)!! == ~~t-1 (2 j - 1) denotes the odd factorial.
Proof of Lemma 1. - We will make use of several ideas of Le Gall [2].

We begin by rewriting (2.8) as

where Yi - Xi - Xi-I,

and (with a slight abuse of notation), k ~]7r(j 2014 1),7!’(~’)] means

In view of (2.16), in order to prove our lemma it suffices to show that

Annales de l ’Institut Henri Poincaré - Probabilités et Statistiques



43LAWS OF THE ITERATED LOGARITHM

with R(n, t) as in (2.15). For each permutation 03C3 of {1, 2,..., n} we define

and rewrite the left hand side of (2.18) as

Note that by (2.10)

and that by (2.2)

Let .4~ ~ {(~/i,...,~) ~ 1  I  4 l Yak - o 1 1 ° Using the

Cauchy-Schwarz inequality we have

Set

We see that the sum in (2.19) differs from the sum over 03C3 by an error term
which can be incorporated into R(n, t). Up to the error terms described
above, we can write the sum in (2.19) as

Vol. 33, n° 1-1997.
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For given a, x define the map (~ = ~~ : {1,2,...,~} ’-~ {1,2,...,~}
by

where

Note that on Aa, ~( j ) is the unique integer in ]7r(j - l),7r(j)] such
that = Futhermore, on 0~, we see that

I  I  Using the Cauchy-Schwarz inequality, and
the bounds (2.10), (2.13) we have

We now show that

unless § = ~~ i {1,2,...,?~} H-~ {1,2,...~} is bijective.
To begin, we note that by (2.17) both {~ ~ = 1~...,~} and

= 1, ... , n} generate {xj, j = 1,.... n} in the sense of linear
combinations, so that both sets consist of n linearly independent vectors.
Furthermore, from (2.17) we see that each is a sum of vectors from

= 1, ... , n ~ . However, from the definitions, we see that when we
write out any vector in I ~,7rj ~ m} as such a sum, the sum will
only involve vectors m, ~ . I ~,7r,j ~ m}
will contain at most m linearly independent vectors. Therefore, for each
m = 0 ;1, ... , n - 1, the I > m} will contain at least

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



45LAWS OF THE ITERATED LOGARITHM

n - m elements. Equivalently, for each m == 0, 1, ... , n - 1, the set

( j I (7"~~(j’) > will contain at least n - m elements. This shows that

for each m = 0,1, ... , n - 1, the product

will contain at least n - m factors of the form

with j > m. We now return to (2.25) and sum in turn over the variables
... , using the fact that

while for any k > 1

The above considerations show that as we sum successively over the
variables 2~Q.(n-1~, ... , at the stage when we sum over 
we will be summing a factor of the form 1 1+|y03C3(j)|4k for some k ~ 1, while
if cP == ~.~ : {1~2~...,?~} t-~ {1,2,.... n~ is not bijective we must have
k > 1 at some stage. These considerations, together with (2.26) and (2.27)
establish (2.25).

Let nn be the set of (a, 7r) for which is a bijection. Up to the error
terms described above, we can write the sum in (2.23) as

Since on Aa, we have that > I, we can then replace
each occurence of in (2.28) by bounding the error terms using

Vol. 33, n° 1-1997.
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which comes from (2.13) and Lemma 6 of the Appendix.
Thus, up to error terms described which can be incorporated into R(n , t),

we can write the sum in (2.28) as

Proceeding as above, up to the err or terms described above, we can replace

Since

and as by the remark following Lemma 2.5 of [2] we have Innl _ (2n) ! !,
the lemma is proved. Q

We will use to denote expectation with respect to the random walks
X , X’ where X o = v and X o = w. We define

where

We will need the following lower bound.

LEMMA 2. - For all integers n, t > 0 and for any E > 0

where

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Proof of Lemma 2. - We first note that as in (2.9)

where now we use the convention xo = = w. We then use (2.18),
observing that if Øa,7r is bijective we must have ~~;~ ( j ) = 1 for some j
and this must be j = 1 since 1 ~]7!’(,y 2014 1), ~r ( j ) ~ is possible only for j = 1.
Thus, is replaced in (2.23) by D

LEMMA 3. - For all t > 0 and x = O (log log h(t) ) we have

Proof of Lemma 3. - We first note that if n = O(log log h( t)) then

as t ~ oo, so that by Lemma 1 we have

Then Chebyshev’s inequality gives us

for any n = O(log log h(t)). Taking n = [x] then yields (2.37). D

LEMMA 4. - For all E > 0 there exists an xo and a t’ = t’ (E, xo ) such that
for all t > t’ and xo  ~ = O(log log h(t) ) we have

and

for some ~’ > 0.

Vol. 33, n° 1-1997.
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Proof of Lemma 4. - This follows from Lemmas 2, 3 and (2.38) by the
methods used in the proof of Lemma 2.7 in [5]. D

Proof of Theorem. 1. - For () > 1 we define the sequence ~tn ~ by

By Lemma 3 we have that for all integers n > 2 and all E > 0

Therefore, by the Borel-Cantelli lemma

By taking 8 arbitrarily close to 1 it is simple to interpolate in (2.45) to obtain

We now show that for any E > 0

for all () sufficiently large. It is sufficient to show that

Let sn == tn -tn-1 and note that, as in (2.60) of [5], we have h(sn) I"V h(tn).
We also note that

where

As in Lemma 1, we can show that for t  tf, and for all integers n > 0
and any E > 0

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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which, as before, leads to

Using this for 03B8 large, (2.49), Levy’s Borel-Cantelli lemma (see
Corollary 5.29 in [ 1 ]) and the Markov property, we see that (2.48) will
follow from

If we apply Lemma 4 with t = sn and x = log log sn we see that (2.53)
will follow from

We begin by showing

To see this we note that

so that

Vol. 33, n° 1-1997.



50 M. B. MARCUS AND J. ROSEN

Also note that

This follows fairly easily since h( t) t"’V c log(t). (For the details, in a
more general setting, see the proof of Theorem 1.1 of [5], especially
that part of the proof surrounding (2.82)). Furthermore, we have by the
Cauchy-Schwarz inequality

Taking 6~ large establishes 2.55.
Furthermore, since a(v, w, t)  1 (compare (2.4) and (2.33)), we see

that for any E’  1 / 2

(2.54) will now follow from the Paley-Zygmund lemma once we show that

for all E > 0, when n > m > N(e) for some N(E) sufficiently large. To
prove (2.61) we begin by noting that as in (2.56)

Annales de l’Institut Henri Poincare - Probabilités et Statistiques
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and for t’  t

From (2.62), (2.63) we see that

Now let us assume that t - t’ > ( 1 - E)t. (This will certainly
hold in our case where t = = with m  n). Then
i + j + 2(t - t’) > (1 - E)(i + j + 2t). Assume first that T = 1. Since

by (2.3) we have that p. (0) is regularly varying at infinity of order -2, we
see that if t is sufficiently large, then

so that (2.64) is  1 + 2E. This completes the proof of (2.61 ) when T = 1.
The general case is easily handled if instead of tn we work with t’n ~ tn
satisfying tn = 0 mod T. This completes the proof of Theorem 1. D

Vol. 33, n° 1-1997.
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3. PROOF OF THEOREM 2

We begin with some moment calculations. Recall

As usual set

and note that

where L7r runs over the set of permutations x 2, ... , ~}. Set

Then we see from 3.2 that
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while

Here we used the fact that the inequality in 3.2 is due to the possible
double counting if Xi for some i, j .

Let

so that

We have

where as usual we set po(x) = From this we see that

Consequently we have

and

Vol. 33, n° 1-1997.
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Now it is well known that

so that for any E > 0 we can find to  oo such that

for all t > to and x. Hence (3.3) and (3.4) give us

and

The proof of Theorem 2 now follows exactly along the lines of the proof
of Theorem l. D

4. APPENDIX

LEMMA 5. - Let Xn be a mean-zero adapted random walk in Z4. Assume
that  oo. Then for some C  00

for all x.
In the proof of Lemma 5 we actually show that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



55LAWS OF THE ITERATED LOGARITHM

where G(x) is the Green’s function of the non-isotropic Brownian motion
in R4 with covariance matrix equal to that of Xl.

In a recent paper [4], Lawler shows that 4.1 does not hold for all mean
zero finite variance random walks. He also proves Lemma 5. We present
here a different proof of Lemma 5 because our method of proof will be
used, in Lemma 6, to obtain a bound for IG(x + a) - 

Proof of Lemma 5. - Let

denote the characteristic function of We have

Let Q = denote the covariance matrix of X1 =

(Xil), Xi2), X13), Xi4)), i.e. = We write

for p E ~-~r, ~r~ 4. Let qt(x) denote the transition density for Brownian
motion in R4 and set

We have

Note that

as 6 - 0 and thus to prove (4.1 ) it suffices to show that

Vol. 33, n° 1-1997.
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If x = (xl, x2, x3, ~4), we can assume, without loss of generality, that
Ixl # 0 and that = maxj We have

where A = [-7r,7r]~ B = [-7r,7r~ x [-7r,7r]3, and C = R x ([-~,~3)’-.
Note that

We have

We first show that

To see this we integrate by parts three times in the pi direction to see that

and

Note that infp~B~CQ(p) ~ d > 0. Also, Dj1(1 Q(p)) is homogeneous in

p of degree - (2 + j), so that the last term in (4.13) is integrable on C
even when we take 8 = 0. Since

Annales de l ’Institut Henri Poincaré - Probabilités et Statistiques
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and is homogeneous in p of degree -3, scaling out 8
shows that the integral of the absolute value of the third term in (4.13)
is bounded by

The first two terms in (4.13) are handled similarly, proving (4.11 ).
We next integrate the first two terms in (4.10), by parts, twice in the

pi direction, to get

where we have used the fact that the boundary terms coming from the
integrals over A and B cancel. (These boundary terms are easily seen to
be finite). Arguing as in the proof of 4.11 ) we see that

(In fact, a further integration by parts shows that

as in the proof of (4.11 ) . )
We now write

Vol. 33, n° 1-1997.
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As before, we see that the last three terms in (4.19) give rise to bounded
integrals over A. (In fact, they vanish as 6 - 0). More care will be needed
to handle the first term

We write out the first term on the right hand side of (4.20) as

Observe that for Ip I  1

Hence, we can bound (4.21) by

Using the second line of (4.22) we see that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Similarly, we see that

and using this as in (4.24) we see that

The same methods apply to the second term on the right hand side
of (4.20), completing the proof of the lemma.

Remark 1. - As 8 - 0 we see that

which together with the Riemann-Lebesgue lemma establishes 4.2.

LEMMA 6. - Let X be a mean-zero adapted random walk in Z4. Assume
that  ~. Then for some C  o0

for all a, x satisfying lal  
Furthermore, for some C  o0

for all a, x, t satisfying lal  and  t.

Proof of Lemma 6. - As in the proof of the previous lemma we may
assume that = maxj|xj| and we have

Vol. 33, n° 1-1997.
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It suffices to show that in the limit as 6 - 0 the right hand side is 0 ( ~ ). .
By (4.11) we see immediately that this holds for the last integral in (4.30).
For the first two integrals on the right hand side of (4.30) we obtain as
in (4.16)

Using the fact that

and the arguments used to bound (4.16) it is easily seen that (4.31) is

equal to

where denotes a term whose 6 ~ 0 limit is To

bound the integrals in (4.32) we now integrate by parts once more in the pi
direction to obtain

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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Once again, the (finite) boundary terms cancel. (Actually, each boundary
term is 0(l/~p).) As before, we easily see that (4.33) equals

As in the proof of (4.11 ), we see that

To handle the first integral in (4.34) we note that

Once again it is easy to control the last four terms in (4.36), while for
the first term we use

Vol. 33, n° 1-1997.
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The assumptions of our lemma give

and

These show that

completing the proof of (4.28).
To prove (4.29) we first note that

Set

We note that by the mean-value theorem

where we have used the fact that under our assumptions

is, up to a constant multiple, the transition density for

Brownian motion in R~, which has Green’s function we have

Therefore, it suffices to bound as before an expression of the form (4.30)
where u is replaced by and v~ is replaced by All bounds involving

Annales de l’Institut Henri Poirtcare - Probabilités et Statistiques
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vb are handled exactly as before. We only point out that whereas in the
proof of the previous lemma we were often satisfied with a bound such as
(4.15), since we are taking 8 ~ 0, we now make use of the extra factor

eipx with the bound

to guarantee that after scaling no (divergent) factors involving n will remain.
The terms invoving will be handled similarly, after we make

several observations. First of all, using Spitzer’s trick, in Section 26 of [7],
it suffices to assume that T = 1, (in Spitzer’s terminology this means that X
is strongly aperiodic) so that ~~(p) ~ = 1 if and only if p = 0. Hence for any
E > 0 we have that !~(p)! I  7 for some "I  1, so that, using our
assumtion that n -1 > we find that the factor together with all
its derivatives gives us rapid falloff in Ix I. Taking E sufficiently small, and
using (4.38)-(4.41), we see that in the region Ipl  E, the integrals involving

and its derivatives can be handled as in the preceeding paragraphs.
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