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Joint continuity of renormalized
intersection local times

Jay S. ROSEN

College of Staten Island, CUNY,
Staten Island, New York. *

Ann. Inst. Henri Poincaré,

Vol. 32, n° 6, 1996, p. 671-700 Probabilités et Statistiques

ABSTRACT. - We study k-fold self-intersection local times c~(x2, ..., t),
and k-fold renormalized self-intersection local times ~y(x2, ... , t) for

Levy processes. Our main result says that the k-fold renormalized self-
intersection local time ~y(x2, ... , x~; t) for the symmetric stable process
of order j3 in R2 is jointly continuous almost surely if and only if

(21~ - 1)(2 - /3)  2.

Key words: Intersections, renormalization.

1. INTRODUCTION

The object of this paper is to establish the almost sure joint continuity
of intersection local time and renormalized intersection local time for the
multiple intersections of a large class of Levy process in Rm including the
symmetric stable processes in the plane.

Intersection local times were originally envisioned as a means of

"measuring" the amount of self-intersections of a stochastic process
Xt E Rm. Formally, the k-fold intersection local time is
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672 J. S. ROSEN

where 6(x) denotes the 8-function.
More precisely, we can set

where fg is an approximate 8- function, and try to take the c 2014~ 0 limit.

In general, this limit will not exist! This gives rise to the problem of
renormalization: the attempt to subtract from terms involving lower
order intersections, for j  1~, in such a way that a finite ~ -~ 0
limit results. This was originally done for double intersections of Brownian
motion by Varadhan [17], and gave rise to a large literature summarized
in Dynkin [3]. Such renormalized intersection local times have turned out
to be the right tool for the solution of certain "classical" problems: the
asymptotic expansion of the area of the Wiener and stable sausage in the
plane, and the fluctuations of the range of stable random walks, see Le
Gall [9], [8], Le Gall-Rosen [11] ] and Rosen [14]. For a clear account of

progress concerning Brownian intersection local times up to 1990 see Le
Gall’s lecture notes [10]. Dynkin introduced the idea of studying 
for t == ( an independent mean 1 exponential time, and demonstrated how
one could exploit the resulting simplifications. Dynkin’s renormalization,
introduced for Brownian motion in the plane, is

with x)g(y)dy, where = Here, we
use the convention al,E(t) = t.

In [5] we suggested studying

x3, ..., t) = lim~~0 03B1k,~(x2, x3, ... , t) can often be realized
as an occupation density which "measures" near-intersections. The

occupation density formula states that

Annnles de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



673JOINT CONTINUITY OF RENORMALIZED INTERSECTION LOCAL TIMES

for all bounded Borel measurable functions ~ on We formally
recover ak (t) if we take (x2, x3, ..., _ (0, 0, ... ; 0). However, in the
cases we shall consider, x3, ... ; t) will exist only for 0, Vi.

Following the work of Le Gall [7] for the case k = 2, we recast the
renormalization problem as an attempt to subtract from the intersection
local time a~ (x2 ; x3, ... , x~; t) terms involving lower order intersection
local times so that the resulting function has a continuous extension to all
(x2, x,3, ..., t). This continuous extension will allow us to exhibit the
exact form of the asymptotics of cx~ (x2, x3, ... , xk ; t) as the Xi -~ 0.

In [16], [15] we showed how to construct a jointly continuous
renormalized triple intersection local time for Brownian motion and stable
processes in the plane. In a recent paper Bass and Khoshnevisan [1] ]
have constructed a jointly continuous renormalized intersection local time
for k-multiple intersections of planar Brownian motion. Werner [18] then
showed that for t = ( an independent mean 1 exponential time, the

renormalization of Bass and Khoshnevisan agrees with that of Dynkin
when (x2, x,3, ... , ~~) _ (0, 0, ... , 0) and provides a natural generalization
for arbitrary Xi.

These recent results of Bass, Khoshnevisan and Werner have motivated
the present paper. We define the renormalized k-fold intersection local time
for x = (~2, ... , E (R"2 - ~~~)~ 1 by

where for any B = {i1  ...  C {2,... k,}

Here, we use the convention al (t) = t. We now state our main result.

THEOREM l. - Let Xt denote the symmetric stable process of order ~ in
R2. If (21~ - 1)(2 - ~)  2, then, restricted to (x, t) E (R2 - ~~~)~-1 x R+

exists and is jointly continuous a.s., and t), defined for (x, t) E

( R2 - ~ 0 ~ ) ~ -1 x R+, has an extension to x R+ which is jointly
continuous a. s.

Note that this result is best possible in the sense that we know from [ 13]
that our renormalization will not converge if (2k - 1)(2 - ,~) > 2. We
also note that the symmetric stable process of order ,~ in R2 will have

Vol. 32, nO 6-1996.



674 J. S. ROSEN

k-fold intersections a.s. if and only if I~(2 - /3)  2. For this and other
details concerning k-multiple points of Levy processes see [4], [6] and
references therein.
Our renormalization is similar in form to the renormalization used by

Bass and Khoshnevisan for Brownian motion in R2, and our proof gives
an alternate derivation of their a.s. joint continuity result. However, our
methods do not yield the a. s. j oint Holder continuity which they obtain.

Simple combinatorics show that

Since the ~y~ are continuous, we can read off the asymptotics of ak(x; t)
as the x i --~ 0.

Let us define the approximate renormalized k-fold intersection local time
for x = (~2, ... , x~) E by

THEOREM 2. - Let Xt denote the symmetric stable process of order ,~ in
R2. If (2k - 1 ) (2 - ~)  2, then t) converges to t) locally
uniformly on x R+ as ~ ~ 0 with probability l.

In particular we have

Remark 1. - A function Z~ (x) indexed by ~ E (0, 1] and x in a topological
space S will be said to converge locally uniformly on S as ~ ~ 0 if for
any compact K E S, converges uniformly in x E K as ~ ~ 0.
Our paper is organized as follows. After laying the groundwork in

sections 2 and 3, we establish general criteria in section 4 for the existence
and almost sure continuity of cx~ (x2, ~3, ... , Xk; () when 0, Vi, where
( is an independent mean-1 exponential random variable. Section 5 gives
a general criteria for existence of an almost sure continuous extension to

of the renormalized k-fold intersection local time, again at an
independent exponential time. In section 6 we obtain a.s. joint continuity. In
section 7 we show that our theorems cover the symmetric stable processes
of order j3 in the plane when (2k - 1)(2 - ,~ )  2.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



675JOINT CONTINUITY OF RENORMALIZED INTERSECTION LOCAL TIMES

2. INTERSECTION LOCAL TIMES : MOMENTS

Let Xt denote a Levy process in Rm with transition densites In

this section we introduce approximate intersection local times for Xt and
compute the expectations of their moments.

Let f denote a smooth positive function supported on the unit ball of
Rrn = 1, and for any e > 0 let

and fE,f(y) = We define the approximate intersection local time
of order k as

We often abbreviate this as t) where x = (~2, ~~, ... , E

Let g(x) = dt denote the Green’s function for Xt,
and let ( denote a mean-1 exponential random variable independent of Xt.
The following expectation follows easily from the Markov property for Xt.

LEMMA 1.

where xi = (xi2 , xi3,... xi . ) k _ 03A3ni=1 ki, (w . w ) _ (y1 > . ,yn) E
(Rm)k and V is the set of bijections v of { 1, 2, ... , k} such that whenever

T wv(P) _ we have p > j.
A change of variables leads to the following more useful formula.

Vol. 32, n° 6-1996.



676 J. S. ROSEN

LEMMA 2.

(~2, x3, ... , ~~i ), 1~ = the set of mappings s:
~1, 2, ... , I~~ H ~1, ... , n~ such that = ki,V1  2  n, and
c(p) =: = s(~) ~ ~-

3. THE BASIC LEMMA

A finite chain C is a finite linearly ordered set. If i E C we use i 2014 1, i +1
to denote the immediate predecessor and successor of i (when they exist).
If i is the first element in C, we set i - 1 = 0. We use f to denote the final
element of C. As usual, I C I will denote the cardinality of the finite set C.

Let us define a k-fold n-colored chain as a pair ~ C, r ~ consisting of
a finite chain C and a function r from C to ~ 1, 2, ... , n ~ satisfying the
following two properties

1. for each 1  j  n, is non-empty with at most k elements.
2. r(i) ~ r(i - 1) for all i; z - 1 E C.

We think of r as a coloring of C. r(2) indicates the color of the element
z E C. Property 1 says that each of n possible colors appears at least once-
but no more than k times, while property 2 says that adjacent elements in
C must have different colors.
The following simple lemma is the key to our results.

LEMMA 3 (The Basic Lemma). - Let h > 0 be a spherically symmetric
function on R"z with

and such that h(x) is monotonically decreasing in ~~~.
Then if (C, r ~ is any k-fold n-colored chain we have

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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where we set xr(o) = 0, and a = (al, ... , E 

We first prove a variant of the Basic Lemma:

LEMMA 4. - Let h > 0 be a spherically symmetric function on R"~ with

and such that for some d  o0

Then if (C, r ~ is any k-fold n-colored chain we have

where we set = 0, and a = (al, ... , E 

Proof of Lemma 5. - Fix l~. We will argue by induction on n. n = 1 is

trivial and if n = 2 our integral must be of the form

where j = + r -1 ( 2 ) - 1  2k - 1, so that by (3.3) our lemma
holds when n = 2.

We now give the inductive step. Let {C, r} be a k-fold n-colored chain as
in our lemma. By relabeling the colors we may assume that r maps the last
element in C to n. Then the integral in our lemma will have at most 21~ -1
factors of h containing the variable xn. To motivate our proceedure, note
that by (3.3) we could integrate out these factors. However, there would be
no guarantee that the remaning integral can be associated with a k-fold n-1
colored chain. In particular, after integrating out all factors involving e.g.
the variables xn, xn_l, ..., we may find that there no longer remain
any h factors involving xj, so that the dxj integral will be infinite.
To handle this we proceed in increasing order through the elements of C.

We first give an overview of our procedure, and then provide the details.
Set Co = C. At the step corresponding to element z we will replace Ci-l
by a subset Ci C Ci -1 such that when r is restricted to will
form a new k-fold n-colored chain, (n - 1 colored if i = f ). We will bound
our integral (3.5) in terms of a new integral

Vol. 32, n° 6-1996.



678 J. S. ROSEN

where the constants a) e ~,~ will be specified and Fi will involve a
product of h functions containing xn. Note that in (3.6), (and throughout
this proof), the expression j - 1 refers to the immediate predecessor of j
in After the final step, C f will no longer contain any elements j with
r(j) = n, so that in (3.6) the variable xn will only appear in Ff. F f will
involve a non-empty product of no more than 2k - 1 h functions containing
xn, hence the integral will be finite and eliminate F f from (3.6). The
remaining integral will be finite by the induction hypothesis.
We now describe our procedure in detail. Set a° = aj and Fo = 1.

Assume that either i is the first element of C or that we have already
completed the steps associated with all elements preceeding z. We describe
the step associated with the element z.

I) Assume first that z is not the final element in our chain.

A) If r( i) ~ ~t we do nothing, i.e. set Ci = Cz-i , a) = a~-1, Fi = FZ -1.
This completes the step associated with i in this case.

B) If r(z) = n, and r(z - 1) = r(z + 1), set Ci = ~z, i + l~, 
and Fi = + + ai+1}. Thus

we have removed the elements i, i + 1 from our chain, and moved two
factors involving = xn to Fi. Our new r~ is a k-fold n-colored
chain: the only point to note is that if e.g. r( i-I) = r( i + 1) = v (where
of course n ~ v), although we have removed one element, i + 1, from
r-1 (v~, the latter will remain non-empty since it contains i - l, while

(n). ~ f~ since it contains the last element of C. We note also that (3.6)
corresponding to Ci-l contained the factor

If we set p = i + 2, then in Ci , p - 1 = z - 1, and since r ( z - 1 ) = r( i + 1)
we can write the above factor as

This completes the step associated with i in the present case, and since Ci
no longer contains z + 1, our next step will be associated with the element
p = i + 2, the immediate successor of i - 1 in Ci .

C) If r(z) = ~ and r(z - 1) ~ r(z + 1), we set C,_i - {z}. This
is easily checked to give a new k-fold n-colored chain. We now use the
bound which comes from (3.4):

Annales de 1 ’Institut Henri Poincaré - Probabilités et Statistiques
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factor in (3.6) corresponding to the element p = ~ + 1, with i - I the
immediate predecesor of p in Ci. Thus, we set ap = + ai-l, while
a~ = a~-1, b’ j ~ p. This completes the step associated with the element
i in this case.

II) Finally, if i = f is the last element in our chain, by assumption
2 = n. Set Ci = ~Z~, Fi = + C~~ ~ ~, and
a~ = a~-1. It is easy to see is a k-fold n- I colored chain,
which no longer contains any element j with r( j) = n, while contains
at least 1 but no more than 2k - 1 h factors, all of which involve xn. As
described above, this completes the proof of our lemma. D

Proof of Lemma 4. - By the triangle inequality

for all x, y E R m, so that by monotonicity

We now mimic the proof of Lemma 5. Whenever we applied (3.4) in that
proof we now use (3.8). We then get (3.6) except that one h factor, the
factor arising from (3.8), has its argument -~- a~, replaced
by 2 (~r(p) - + By monotonicity we bound (3.6) by halving
the arguments appearing in all other factors. We then have (3.6) with h
replaced by h(x) = h(x/2), and this allows us to continue following the
proof of Lemma 5 to prove our present lemma. D

4. INTERSECTION LOCAL TIMES : EXISTENCE
AND CONTINUITY AT EXPONENTIAL TIMES

We first consider the intersection local time c~~ at an independent
exponential time.

THEOREM 3. - Assume that we can find a positive, spherically symmetric
function h(x) on R"2, monotonically decreasing in with

and such that for some b > 0 we have

Vol. 32, n° 6-1996.
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for all a, x E 
Then, restricted to x E 

exists and is continuous a. s. and in all LP.

Furthermore, the occupation density formula holds:

for all bounded Borel measurable functions 4J on 

Remark 2. - The occupation density formula (4.3) shows that ()
is independent of the particular f used to define ().

Proof of Theorem 3. - We will show that for n even and ~y > 0

for all 0  ~ , ~’  ~y / 2 and all x , x’ E where R.~ _ ~ x, E
( > ~y ~ . The multidimensional version of Kolmogorov’ s lemma then

gives us that for any 8’  6 and any M  oo we have

for all rational 0  ~, ~’  ~y / 2 and all rational x, x’ E ( R^’,’~ ) ~’ -1, ~ x ~ , ~ 
M. Since () is clearly continuous as long as ~ > 0, this will

establish (4.2).
To establish (4.4) we first handle the variation in c. From Lemma 1

we have

Annles de l’Institut Henri Poincaré - Probabilités et Statistiques
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We expand this as a sum of many terms using

so that in each term there is one difference of the form

for each 1  i  n, where in the last display j = j ( i ) . We then change
variables as in lemma 2, and once more employ (4.7) to obtain a sum

of many terms, each of which contains for each 1  i  n a difference

involving one g factor. Since each g factor in (2.3) involves at most two
i’s, whenever our procedure gives two differences involving the same g
factor we write one of the differences as two terms. The upshot is that
the integral in (4.6) can be written as a sum of many terms of the form
appearing in (2.3) except that at least n/2 of the g factors have been

replaced by factors of the form

where e can be variously and the notation ~~,~.~;~ denotes a difference
between two g factors of the above form in which one of the ~’s, multiplying
~~ ~~~ or has been replaced by ~’.

For a fixed s E S we will say that p is a "good p" if s ( p) ~ s ( p - 1),
while p is a "bad p" if ~~ (p) = s ( p - 1). Assume first that (4.8) involves a
bad p. Then, setting s(p) = i, (4.8) can be written simply as

and we have the bound

for ~, ~’  ~y/2. (Recall that each ( > ~y and each 7/J is integrated with
respect to the density f which is supported in the unit ball in so that

Vol. 32, n° 6-1996.
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we can assume I  1). Similarly, if one of the g factors not involving
a subtraction contains a bad p, we use the bound

We now turn to the g factors containing good p’s. If such a g doesn’t
involve a subtraction, we simply bound it by h of the same argument. If g
is of the form considered in (4.8) we use the bound

Finally, applying the Basic Lemma to the dz integral now establishes (4.4)
for the variation in c, and the variation in x is handled similarly. We write
out E({03B1k,~(x;03BE) - 03B1k,~(x’; 03B6)}n) as we did for the ~ variation in (4.6),
leading to the following analogue of (4.8)

where i can be variously ~ ; x’ . We follow along the lines of the proof for
the ~ variation, replacing (4.9) by

and (4.10) by

This completes the proof of (4.2).
To prove the occupation density formula (4.3) we note that

P

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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where ..., x~ ) _ Hence, by what we have established
above, we can take the c ~ 0 limit in (4.14) to yield (4.3) whenever
~ is a bounded continuous function supported on (R,~ ) ~-1 where

E -y ~ . The monotone convergence theorem then allows
us to obtain (4.3) for all bounded Borel measurable ~. This completes the
proof of theorem 2. D

5. RENORMALIZED INTERSECTION LOCAL
TIMES : CONTINUITY AT EXPONENTIAL TIMES

By Theorem 2 and Lemma 2 we have

We note in particular that if p is a bad integer, i.e. s(p) = s(p - 1), the
g factor in the above product has the form

Recall that we have defined the renormalized intersection local time of
order k for x = (:r2.... a;k) E (R"~ _ {0})~’ 1 by

where for any

We use the convention ai(t) = t.

Let us now analyze the changes which occur in (5.1) when we

replace the factor () by (). Keeping
in mind (5.2) we see that now s runs over those s E S such that

Vol. 32, n° 6-1996.
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s(p) = r, c(p) E A ~ s(p - 1) = r, i.e. such p’s are bad, and in the
integrand on the right hand side of (5.1), aside from the factor 
all other occurences of xi, i E A are deleted.

If h(x) is any function of the variable x we use the notation

for the difference between the value of h, at x and it’s value at x = 0. If
s we set B~. _ {pls(p) = s(p - 1)~. The upshot is that we have
LEMMA 5.

where xi = (xi2, xi3,...,xiki), k = 03A3ni=1 ki, S is the set of mappings s:
~l; 2, ... , I~~ ~ ~l, ... , n~ such that ~s-1(2,~~ = ki,V1  z  n, and
G~~~ _ ~ C ~ ( s(n~ _ ~’(~~ ~ ~~
We can now state our continuity theorem for renormalized intersection

local time at an exponential time. In section 6 we will show that the

conditions of our theorem are satisfied by the symmetric stable processes
in R2. We recall the standard notation for difference operators

THEOREM 4. - Assume that

and that for some b > Oj and all ~.I > 0

for all (~~  ~~~/4  M.

Assume f urther that we can find a positive, spherically symmetric function
h(x) on monotonically decreasing in with

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



685JOINT CONTINUITY OF RENORMALIZED INTERSECTION LOCAL TIMES

and such that we have

for all x E and with the notation hu(x) _ (h(x) V we have

for d = 0,1, 2 and all integers ~c > 0, and all x, a1, a2, ..., au+d E Rm.
Then (), defined for x = (x2, ... , E (R"2 - ~0~)~-1, has an

extension to which is continuous a. s. and in all LP.

Proof of Theorem 4. - We will show that for all even n

with cn independent of y, w E (Rm - {0})~-1 with ~w~  M.

We begin by showing how to obtain a bound

independent of xi E ( R’n - ~ 0 ~ ) ~ -1 with  M. We use Lemma 6, and
fix for the moment one s E S. We have ~s-1 ( j ) ~ = l~ for each 1  j  n.

Set C = Bs and r to be s restricted to C. Then {C, r} forms an k-fold n-
colored chain. We partition Bs into the subsets = j ~ .
We have = 1~ - ~ We can expand the summand in (5.5)
corresponding to s as a sum of many terms, in which each p E Bs
~ ~ 

c(p)
is applied to exactly one of the g factors to its right. Necessarily, this will
be a g factor containing For a given term, let denote the set
of p E such that s(p) = r(i) and is applied to the factor

+ ei)’ Similarly, we let denote the set of

p E such that s(p) = r(i - 1) and is applied to the factor

+ ez ). Any such term can be written in the form

Vol. 32, n° 6-1996.
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(We take to be the identity operator whenever D = (~.) Clearly, for
each j, the sets i E C~ form a partition of Bs,j. Therefore
if we set b(z) = = we see that

for all 1  ,?  n .

Using (5.9) with c~ = 0 we see that (5.12) can be bounded by a sum
of terms of the form

The following variant of the Basic Lemma will now establish (5.11).

LEMMA 6. - Let h > 0 be a spherically symmetric function on with

and such that h(x) is monotonically decreasing in 
Then if (C, r ~ is any k-fold n-colored chain, and b, b are integer valued

functions on C such that b( f ) = 0 and

then

where yve set = 0, and a = (al, ... , E 

Proof of Lemma 6. - Set

D ( j ) counts the number of factors in (5.16) containing the variable x j,
and thus gives a measure of the divergence in x j. Using (5.15) and the

Annales clP l’Institut Henri Poincaré - Probabilités et Statistiques
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disjointness of the sets we see that

where we use b( 1 ) to denote the value of b on the initial element in C.
This shows that for some j, D(j)  2k - 1. By relabeling the colors

we can assume that D(n)  2k - 1.
We now proceed along the lines of the proof of Lemma 5. We use

to denote functions at stage i satisfying (5.15) with bi ( f ) = 0.
We shall only describe the modifications. In case B), we set Fi =

+ ai+1 ), and hi (i - 1) = bi_ 1 (i + 1 ) . In case C), we use (3.7) only on
the h factors, while all h(x) = h(x) V 1 factors are thrown into Fi . Thus in
the notation of the proof of Lemma 5, F. = 

xr(i-i) > + xr(i) > + We then set

hi(i - 1) = bi (i + 1) = 0. Finally, as in case C), if i = f and r( f) = n, we
Set and b2~2-1) = O.

It is easy to check that F f contains at least one h factor, but no more
than D(n)  2k - 1 factors altogether, hence the dxn integral is finite and
will eliminate the factor The remaining integral will then be of the
form (5.16) with b = b f, b = b f satisfying (5.15) and b( f ) = 0 and our
proof will be completed by induction. D

Proof of Theorem 4 (continued). - With these results, we now turn to the
bound (5.10). For ease of exposition we use to denote the y, w’s in
the i’th factor; in the end we will set yi = ~, wi = w. We may assume that
y, w differ only in the v’th coordinate, and we set a == Yv - Wv. We use
Lemma 6 to expand (5.10) as a sum of many terms similar in form to (5.5),
where now xi is variously yi or wi, and each term is preceeded by

Vol. 32, n° 6-1996.
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where, if h is a function of the variable r or s, then = h ( r ) - ~ ( s ) .
We reorganize such a term in the form of (5.12), again preceeded by (5.19).
Expanding as before, we can associate each D j j with one of the factors

of (5.12).
If (j, v) ~ (s(~), c(p)) for any p E the effect of

is simply to add another 0~ to one of the + ei)
factors in (5.12) and using (5.9) with d = 1, 2 we see that (5.13) will now
have an extra factor of a ~ b . .
Assume now that (j, v) _ (s(p); c(p)) for some p E 

so that either or = If we have that

both |a| > and |a| ~ wz, ( /4, (5.13) directly provides us with a
factor 

If on the other hand, say |a| ~ |yj03C5|/4 so that |a| ~ |wj03C5|/2, we make
use of the identity

For the first term in (5.20) we use (5.7) and (5.13), while for the second
term we use (5.6) and (5.13) noting that

Thus, each factor in (5.19) contributes a factor a ~ s . This completes the
proof of (5.10), hence of our theorem. D

Recall the approximate k-fold renormalized intersection local time

with

THEOREM 5. - Under the assumptions of Theorem 4,

a. s. and in all LP, and this convergence is locally uniform on (R’rz ) 
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Proof of Theorem 5. - We will show that for all even n

with cn independent of 0  ~, ~’  1 and  M.

Comparing Lemma 2 and (5.1) we see that (~ L; ()) can
be expressed as in lemma 6 except that each occurence of xij is replaced
by and the resulting expression is integrated with respect to

- 03A0kij=2 f(yij)
The proof of theorem 4 now shows that the left hand side of (5.24)

is bounded by

where ~2 = ~J3, ... , and cn is as in (5.10). (5.24) immediately
follows.

From this it follows that () converges locally uniformly on
as c - 0. The limit must be a continuous function of

x E Since we know from Theorem 2 that for x E 
this limit is (), and from Theorem 4 that () has a unique
continuous extension to our present theorem follows. D

6. JOINT CONTINUITY

Recall the approximate k’th order renormalized intersection local time.

THEOREM 6. - Under the assumptions of theorem 4, t) converges
locally uniformly on x R+ as ~ ~ 0, with probability 1. Hence

is almost surely continuous in (x, t) E x R+.

Proof - Let % denote our Levy process Xt killed at an independent
mean-1 exponential time (. From now on t) will be defined for
the process x in place of Xt. By Fubini’s theorem it suffices to show
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that t) converges locally uniformly on x [0, () as ~ ~ 0
with probability 1.

If S is a subset of Euclidean space we will say that (~, ~) E
(0,1] x S} converges rationally locally uniformly on S as ~ ~ 0 if for
any compact K E S, converges uniformly when
restricted to dyadic rational x, ~. We note that since t) for ~ > 0
is continuous in ~, x, t, saying that converges locally uniformly
or converges rationally locally uniformly on x [0, () as ~ ~ 0
are equivalent.
We know from Theorem 5 that oo) converges locally uniformly

on as ~ ~ 0 with probability 1. Using martingale techniques we
will see that the right continuous martingale

converges rationally locally uniformly on (Rm)k-1 x R+ as ~ ~ 0 with
probability 1. t) is not the same as t), but we will see that
they differ by terms of "lower order", and we will be able to complete our
proof by induction. Given all the tools we have developped so far in this
paper, the proof of joint continuity is conceptually fairly straightforward,
but in order to treat the "lower order" terms systematically we need to
introduce some notation. This we now proceed to do.
We first define the approximate k’th order generalized intersection local

time

and set

a ~, ~ ( x 2 ; ~ 3 ; ... , x ~ ; ~ ) is the approximate k’th order generalized total
intersection local time. For ease of notation in later formulas, we also set

although t) is actually independent of ~; t.
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Observe that

where

Vol. 32, n° 6-19%.



692 J. S. ROSEN

Setting

we have

We next define the approximate k’th order generalized renormalized
intersection local time

and set

is the approximate k’th order generalized total
renormalized intersection local time. As before, for ease of notation in
later formulas, we also set

although is actually independent of ~, t. Using (6.4) we find that

where
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and

We will say that zi+1, ... , Zk; u] is obtained from § by adjunction
of zi+1, ... , u. We note that when ~ - 1 we have for all i  1~ - 1

whereas

Therefore we have

We will say that a function ... , z) is an admissable function of
z with auxilliary parameters ~l , ... , if it can be written in the form

where Bi C ~ 1, ... , n ~ , Vi = 0 ,1, ... , p, = Here
p is an arbitrary positive integer. If ..., Yn; z) is of the above form we
will say that 03C6(y1,...,yn; z ) is of weight |B0| +p. Note that the weight of

... , z) is the number of g factors in (6.15). We will also consider
the function ~p ( z ) = 1 to be an admissable function of z (of weight 0 and
with no auxilliary parameters).

If cp(~l, ... , z) is an admissable function of z with auxilliary
parameters ... , Yn we will use the notation ~p~ ... , z ) to denote
the function in which some of the auxilliary variables have been smoothed.
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More precisely, we will say that is a totally ~-smoothed
version of if

for some subset A C ~ l, ... , n~ such that (with the notation of (6.15))
Bo C A and Bi n A ~ f~ for all i = 1, ... , p, i.e. we require that each g
factor in (6.15) contain at least one element of the set E A. Here ~co
is the Dirac measure which puts unit mass at the origin. It would be more
precise to refer to the function defined in {6.16) as ..., z), but
in order to avoid further cluttering the notation, and because the actual
nature of the set A will be irrelevant for us, we shall simply drop it from
the notation.

It is easy to see that 03C6~(y1, ..., z) is continuous in ~, y1, ..., yn, z for
~ > 0, and therefore .) ; t) is continuous in E, x, y for ~ > 0.
Thus, as with t), saying that .) ; t) converges locally
uniformly or converges rationally locally uniformly on x R+
as ~ ~ 0 are equivalent.
The next lemma assembles some facts about adjunction which follow

easily from the definitions.

LEMMA 7. - Let 03C6(y1, ..., z ) be an admissable function of z of weight q
and auxilliary parameters y1, ..., gn, and let [03C6(y;.);xi+1, ..., u]
denote the function in (6.11) obtained from 03C6(y1, ..., yn ; z) by adjunction
of xi+l, ... , u. Then:

1. 
..., u~(z) is an admissable function of z of

weight q + k - i and auxilliary parameters gl, ... , ~i+1, ... , u.

2. If 03C6~(y1, ..., yn ; z) is a totally ~-smoothed version of 03C6(y1, ..., yn ; z),
then defined in (6.10) is a totally
~-smoothed version of ~cp(g; ~); x2+l, ..., u~.
The next lemma generalizes Theorems 4 and 5.

’ 

LEMMA 8. - Let cp(g; z) be an admissable function of z of weight k - i
and auxilliary parameters g = (gl , ... , and let z) be a totally
~-smoothed version of cp(g; z). Then under the assumptions of theorem 4,
there exists b > 0 such that for each n and M  oc we can find Gna~,T  ~o

such that
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where supFM is taken over all dyadic rational pairs (c , x, y) ~ (c’ , x’, y’)
such that 0  ~, ~’  1 and  M.

Proof of Lemma 8. - According to Theorem 2.1, chapter 1 of [12], it

suffices to show that there exists 03B4 > 0 such that for each n and M  oo

we can find  oo such that

for all (~, ~, ~), (~’, ~’, ~’) such that 0  ~, ~’  1 and ~~’~  M.
This follows as in the proof of Theorems 4 and 5 once we realize that
the condition that cp(y; z) be an admissable function of z of weight k - i
is precisely what is needed to guarantee (5.15). This completes the proof
of Lemma 8. D

Proof of Theorem 6 (continued). - We will show by induction on
z = 0, 1 , ... , k that t) converges locally uniformly in

(x, y, t) E x [0, () as ~ ~ 0 for all admissable functions

cp(y; z ) of z of weight k - z and auxilliary parameters y = ( ~1, ... , 
The case i = k and z ) - 1 will prove our theorem.

Consider first the case of i = 0. We have to show that if z)
is an admissable function of z of weight k and auxilliary parameters
Y = (~l, ... , and z) is a totally ~-smoothed version of cp(y; z),
then 

r

converges locally uniformly in y E as 6 --~ 0. But it follows
from (5.15) as in the proof of Theorem 4 that

is continuous in y E hence recalling the definition (6.16) of z)
we see converges locally uniformly in
y E (R m)j as c ~ 0.
Assume now that for all p  z, and for all admissable functions z)

of z of weight k - p and auxilliary parameters ~/ = ( ~1, ... , ~~ ~ ) we
have that .); t) converges locally uniformly in (x, ~, t) E

(Rm)~‘+P-1 x ~0, ~) as ~ -~ 0 for any totally e-smoothed version z)
z ) . Let us show that if z ) is an admissable functions of z of
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weight k - i and auxilliary parameters ~ _ (~l, ... , and z) is

a totally ~-smoothed version of z), then t) converges
locally uniformly in (x,y,t) E x [0, () as ~ ~ 0.
With as in Lemma 8, let rn = 1, 2, ... be an exhaustion of

by a sequence of finite symmetric subsets. (A set F of pairs (a, b) is

symmetric if (a, b) E F ~ (b, a) E F). Let us define the right continuous
martingale

By Lemma 8 applied to the right continuous submartingale

we have that

Hence

In particular this shows that

where denotes the set of dyadic rational (x, y) E 

with M. Thus, T i,~ (x; ~~ (~; ~) ; t) converges rationally locally
uniformly on x R+ as ~ ~ 0 with probability 1.
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By (6.9)

Hence to show that converges locally uniformly on
x [0, () as ~ ~ 0 with probability 1 it suffices to show that

for each p  2

converges locally uniformly on x [0, () as ~ ~ 0 with

probability 1. However, by Lemma 7 is
a totally e-smoothed version of and the
latter is an admissable function of weight k - p with auxilliary variables
~, xp+1, ..., x2, ~c. Therefore, by our induction assumption,

converges locally uniformly in (x,y,u,t) E x [0, 03B6) as ~ ~ 0
with probability l. Since Yt is locally bounded on [0, (), this completes
proof of Theorem 6. D

THEOREM 7. - Under the assumptions of theorem 4, t) converges
locally uniformly on (Rm - {0})k-1 x R+ as ~ ~ 0, with probability l.
Hence

is almost surely continuous in (x, t) E (R"2 - ~0~)~-1 x R+.
Furthermore,

for all (x, t) E (Rm - ~0~)~-1 x R+.
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In addition, the occupation density formula holds a.s.:

for all bounded Borel measurable functions 4J on 

Remark 3. - The occupation density formula (6.27) shows that t)
is independent of the particular f used to define t).

Proof. - This follows easily by induction from Theorem 6 using (6.1).
(6.27) follows by the methods used to prove (4.3) of Theorem 3. D

7. THE SYMMETRIC STABLE PROCESSES

In this section we prove Theorems 1 and 2 of the Introduction by
verifying that the conditions of our Theorems 3-7 are satisfied by the
symmetric stable processes in R2.

Proof of Theorems 1 and 2. - It is well known that for

0. By (2.10), and (7.15) of Rosen [13] we have for |x| ~ 0

for where ra,b(x) denotes a function which is ~ for

Ixl small, and for x ~ large.
Take h to be a symmetric monotone decreasing r2_~+2h;3 where b > 0 is

chosen sufficiently small so that (21~ -1 ) (2 - j3 + 28)  2, so that (5.8) will
be satisified. We first prove (5.9) . If for all 1  i  ~c + d,
this follows easily from (7.2). In general, let A = {i; 
and expand )g(x) as a sum of terms involving Da1 ) g
evaluated at points x + b where b involves the ai E A c. For i E A c’ s
we use the fact that cg(x)   V 1) 
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V 1), and similarly 1  For each b, we now divide
the indices in A into two groups, setting Ab = {i E A; ~a,,~  ~~+b~/4m},
expand + b) as a sum of terms involving 
evaluated at points x + b + d where d involves the ai E For i E ~4~
we use the fact that + b) V 1) and 1  + 6~
as above. This proceedure, iterated a finite number of times, will complete
the proof of (5.9).
To prove (5.6) it suffices to note that for the symmetric stable processes

g(x) is monotone decreasing in This is obvious for Brownian motion,
and for the general case we use the formula

which comes from subordination, where ps (x) is the transition density for
Brownian motion in the plane (obviously monotone in and is

the 1-potential density for the stable subordinator of index /3/2. See (2.30)
of [2]. (5.7) then follows easily from (7.2) and the fact, already mentioned
above, that for 0. D
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